Existence and multiplicity of solutions for p-Laplacian supercritical Neumann problems - Francesca Colasuonno (Università di Bologna)
Seminario di Analisi
Dettagli dell'evento
Quando
25/10/2017
dalle 15:00 alle 15:00
dalle 15:00 alle 15:00
Dove
Aula B3, palazzo Manfredini
Persona di riferimento
Lorenzo Brasco
I will present some results concerning existence and multiplicity of radial positive solutions to a p-Laplacian problem set in a ball of R^N, with Neumann boundary conditions. The main feature of the problem is that the equation involves a nonlinearity which is possibly supercritical in the sense of Sobolev embeddings. The techniques used are variational methods and the shooting method for ODEs.
This talk is based on joint works with Alberto Boscaggin and Benedetta Noris.
[1] F. Colasuonno, B. Noris, A p-Laplacian supercritical Neumann problem, Discrete Contin. Dyn. Syst., Vol. 37 (2017) 3025-3057
[2] A. Boscaggin, F. Colasuonno, B. Noris, Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions, arXiv:1703.05727
[2] A. Boscaggin, F. Colasuonno, B. Noris, Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions, arXiv:1703.05727