Approximation methods for nonlinear eigenvalue problems - Erik Lindgren (KTH Royal Institute of Technology, Sweden)
Dettagli dell'evento
Quando
10/05/2017
dalle 12:00 alle 13:00
dalle 12:00 alle 13:00
Dove
Dipartimento di Matematica e Informatica - Aula 3
Persona di riferimento
Michele Miranda
Abstract
In this talk, I will discuss two novel methods for approximating extremals of "nonlinear" Rayleigh quotients. The first approximation scheme is based on the method of inverse iteration for square matrices. The second method is based on the large time behavior of solutions of a doubly nonlinear evolution, corresponding to the heat equation in the case of the eigenvalue problem for the Laplace operator. Both schemes have the property that the Rayleigh quotient is nonincreasing along solutions and that properly scaled solutions converge to an extremal of the Rayleigh quotient. I will focus on concrete examples in Sobolev spaces where our results apply. The talk is based on joint work with Ryan Hynd (University of Pennsylvania).