CONVERGENCE OF $P_n x$

The aim of this project is to give a complete proof of Theorem 7.1.2 of the Lecture Notes. As usual, X is a separable Banach space endowed with a centred Gaussian measure γ . We recall that, fixed an orthonormal basis $\{\hat{h}_j : j \in \mathbb{N}\}$ of X^*_{γ} contained in $j(X^*)$, the projections P_n are defined by

$$P_n x = \sum_{j=1}^n \hat{h}_j(x) h_j, \quad n \in \mathbb{N}, \ x \in X.$$

We shall prove that

 $\lim_{n \to \infty} P_n x = x, \quad \gamma - a.e. \ x \in X.$

The proof uses only concepts introduced in the lecture notes, no extra notion is needed.

References

V.I. Bogachev, Gaussian Measures, American Mathematical Society, Providence, 1998.
G. Da Prato, J. Zabczyk Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, 1992.

Coordinator: Alessandra Lunardi