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We collect here the revised edition of the 19th Internet Seminar on “Infinite dimen-
sional analysis”. In the lectures, we consider separable infinite dimensional Banach spaces
endowed with Gaussian measures and we describe their main properties; in particular
we are interested in integration by parts formulae that allow the definition of gradient
and divergence operators. Once these tools are introduced, we study Sobolev spaces. In
the context of Gaussian analysis the role of the Laplacian (∆ = div∇) is played by the
Ornstein-Uhlenbeck operator. We study the realisation of the Ornstein-Uhlenbeck op-
erator and the Ornstein-Uhlenbeck semigroup in spaces of continuous functions and in
Lp spaces. In particular, for p = 2 the Ornstein-Uhlenbeck operator is self-adjoint and
we show that there exists an orthogonal basis consisting of explicit eigenfunctions (the
Hermite polynomials) that give raise to the “Wiener Chaos Decomposition”.

In the present revision we have taken into account the feedback coming from all the
participants to the discussion board and we are grateful for all the contributions, which
have corrected many mistakes and improved the presentation. We warmly thank in par-
ticular, Prof. Jürgen Voigt and the whole Dresden group for their careful reading and
their constructive criticism. We are planning to prepare another revision after the final
workshop in Casalmaggiore, where we shall take into account possible further commnets.
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Lecture 1

Preliminaries

We present the basic notions of measure theory, with the aim of fixing the notation and
making the exposition self-contained. We deal only with finite measures, even though of
course positive infinite measures are the first natural examples. In particular, we assume
familiarity with the Lebesgue measure in Rd, which we denote by λd. Assuming that the
basic notions relative to positive measures are known, we go straight to finite real measures
because all measures we are going to discuss are of this type. In the first section we present
real measures and the related notions of Lp spaces, absolute continuous and singular
measures, the Radon-Nikodym theorem, weak convergence and product measures. In the
case of topological spaces we introduce Borel and Radon measures. Next, we introduce
characteristic functions (or Fourier transforms) of measures and Gaussian measures in Rd.

1.1 Abstract Measure Theory

We start by introducing measurable spaces, i.e., sets equipped with a σ-algebra.

Definition 1.1.1 (σ-algebras and measurable spaces). Let X be a nonempty set and let
F be a collection of subsets of X.

(a) We say that F is an algebra in X if ∅ ∈ F , E1∪E2 ∈ F and X \E1 ∈ F whenever
E1, E2 ∈ F .

(b) We say that an algebra F is a σ-algebra in X if for any sequence (Eh) ⊂ F its
union

⋃
hEh belongs to F .

(c) For any collection G of subsets of X, the σ-algebra generated by G is the smallest
σ-algebra containing G . If (X, τ) is a topological space, we denote by B(X) the
σ-algebra of Borel subsets of X, i.e., the σ-algebra generated by the open subsets of
X.

(d) If F is a σ-algebra in X, we call the pair (X,F ) a measurable space.

1
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It is obvious by the De Morgan laws that algebras are closed under finite intersections,
and σ-algebras are closed under countable intersections. Moreover, since the intersection
of any family of σ-algebras is a σ-algebra and the set of all subsets of X is a σ-algebra,
the definition of generated σ-algebra is well posed. Once a σ-algebra has been fixed, it is
possible to introduce positive measures.

Definition 1.1.2 (Finite measures). Let (X,F ) be a measurable space and let µ : F →
[0,∞). We say that µ is a positive finite measure if µ(∅) = 0 and µ is σ-additive on F ,
i.e., for any sequence (Eh) of pairwise disjoint elements of F the equality

µ

( ∞⋃
h=0

Eh

)
=
∞∑
h=0

µ(Eh) (1.1.1)

holds. We say that µ is a probability measure if µ(X) = 1.
We say that µ : F → R is a (finite) real measure if µ = µ1 − µ2, where µ1 and µ2 are
positive finite measures. The triple (X,F , µ) is called a measure space.

If µ is a real measure, we define its total variation |µ| for every E ∈ F as follows:

|µ|(E) := sup

{ ∞∑
h=0

|µ(Eh)| : Eh ∈ F pairwise disjoint, E =
∞⋃
h=0

Eh

}
(1.1.2)

and it turns out to be a positive measure, see Exercise 1.2. If µ is real, then (1.1.1) still
holds, and the series converges absolutely, as the union is independent of the order. Notice
also that the following equality holds for Borel measures µ on Rd:

|µ|(Rd) = sup
{∫

Rd
fdµ : f ∈ Cb(Rd), ‖f‖∞ ≤ 1

}
. (1.1.3)

See Exercise 1.3.

Remark 1.1.3. (Monotonicity) Any positive finite measure µ is monotone with respect to
set inclusion and continuous along monotone sequences, i.e., if (Eh) ⊂ F is an increasing
sequence of sets (resp. a decreasing sequence of sets), then

µ

( ∞⋃
h=0

Eh

)
= lim

h→∞
µ(Eh), resp. µ

( ∞⋂
h=0

Eh

)
= lim

h→∞
µ(Eh),

see Exercise 1.1.

We recall the following (unique) extension theorem for σ-additive set functions defined
on an algebra. It is a classical result due to K. Carathéodory, we refer to [9], Theorems
3.1.4 and 3.1.10.

Theorem 1.1.4 (Carathéodory Extension Theorem). Let G be an algebra of sets of X.
If µ : G → [0,∞) is a finite σ-additive set function then µ can be uniquely extended to
σ(G ) and the extension is a measure on (X,σ(G )).
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Definition 1.1.5 (Radon measures). A real measure µ on the Borel sets of a topological
space X is called a real Radon measure if for every B ∈ B(X) and ε > 0 there is a
compact set K ⊂ B such that |µ|(B \K) < ε.
A measure is tight if the same property holds for B = X.

Proposition 1.1.6. If (X, d) is a separable complete metric space then every real measure
on (X,B(X)) is Radon.

Proof. Observe that it is enough to prove the result for finite positive measures. The
general case follows splitting the given real measure into its positive and negative parts.
Let then µ be a positive finite measure on (X,B(X)). Let us first show that it is a regular
measure, i.e., for any B ∈ B(X) and for any ε > 0 there are an open set G ⊃ B and a
closed set F ⊂ B such that µ(G \ F ) < ε. Indeed, for a given ε > 0, if B = F is closed
it suffices to consider open sets Gδ = {x ∈ X : d(x, F ) = infy∈F d(x, y) < δ}, getting
F =

⋂
δ>0Gδ. As µ(Gδ) → µ(F ) as δ → 0 by Remark 1.1.3, fixed ε > 0, for δ small

enough we have µ(Gδ \F ) < ε. Next, we show that the family G containing ∅ and all sets
B ∈ B(X) such that for any ε > 0 there are an open set G ⊃ B and a closed set F ⊂ B
such that µ(G \ F ) < ε is a σ-algebra. To this aim, given a sequence (Bn) ⊂ G , consider
open sets Gn and closed sets Fn such that Fn ⊂ Bn ⊂ Gn and µ(Gn \ Fn) < ε/2n+1. For
G =

⋃∞
n=1Gn and F =

⋃N
n=1 Fn, with N ∈ N such that µ(

⋃∞
n=1 Fn \ F ) < ε/2, we have

F ⊂
⋃
nBn ⊂ G and µ(G \ F ) < ε. Therefore, G is closed under countable unions, and,

since it is closed under complementation as well, it is a σ-algebra.
Since we have proved that all closed sets belong to G , then it coincides with B(X).

As a consequence, we prove that any positive finite measure on (X,B(X)) is Radon
iff it is tight. If µ is Radon then it is tight by definition. Conversely, assuming that µ
is tight, for every ε > 0 and every Borel set B ⊂ X, there exists a compact set K1 such
that µ(X \ K1) < ε and a closed set F ⊂ B such that µ(B \ F ) < ε. Then, the set
K := K1 ∩ F is compact, because it is complete (being closed) and precompact, and it
verifies µ(B \K) < 2ε.

Therefore, to prove our statement it suffices to show that every positive finite Borel
measure on X is tight. Let (xn) be a dense sequence and notice that X ⊂

⋃∞
n=1B(xn, 1/k)

for every k ∈ N. Then, given ε > 0, for every k ∈ N there is Nk ∈ N such that

µ
( Nk⋃
n=1

B(xn, 1/k)
)
> µ(X)− ε/2k.

Then, the set

K :=

∞⋂
k=1

Nk⋃
n=1

B(xn, 1/k)

is closed and totally bounded. It verifies µ(K) > µ(X)− ε.

Let us come to measurable functions.

Definition 1.1.7 (Measurable functions). Let (X,F , µ) be a measure space and let (Y,G )
be a measurable space. A function f : X → Y is said to be (F − G )-measurable if
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f−1(A) ∈ F for every A ∈ G . If Y is a topological space, a function f : X → Y is said to
be F -measurable (or µ-measurable) if f−1(A) ∈ F for every open set A ⊂ Y .

In particular, if Y is a topological space and f is F -measurable then f−1(B) ∈ F for
every B ∈ B(Y ). For E ⊂ X we define the indicator (or characteristic) function of E,
denoted by 1lE , by

1lE(x) :=

{
1 if x ∈ E
0 if x 6∈ E

and we say that f : X → R is a simple function if the image of f is finite, i.e., if f belongs
to the vector space generated by the indicator functions of measurable sets. We assume
that the readers are familiar with the usual notion of integral of a measurable function.
For µ positive, we define the Lp (semi)-norms and spaces as follows,

‖u‖Lp(X,µ) :=

(∫
X
|u|p dµ

)1/p

if 1 ≤ p <∞, and

‖u‖L∞(X,µ) := inf {C ∈ [0,∞] : |u(x)| ≤ C for µ-a.e. x ∈ X}

for every F -measurable u : X → R. We define the space Lp(X,µ) as the space of
equivalence classes of functions u agreeing µ-a.e. such that ‖u‖Lp(X,µ) < ∞. In this way,
‖ · ‖Lp(X,µ) is a norm and Lp(X,µ) is a Banach space, see e.g. [9, Theorem 5.2.1]. When
there is no risk of confusion, we use the shorter notation ‖ · ‖p.

We assume that the reader is familiar also with the properties of integrals, measurable
functions and Lp spaces as well as the main convergence theorems of Levi, Fatou, Lebesgue,
see e.g. [9, Section 4.3]. We just recall the convergence in measure and the Lebesgue-Vitali
theorem on uniformly integrable sequences, see Exercise 1.4.

Definition 1.1.8. Let (X,F , µ) be a measure space and let (fk) be a sequence of real-
valued F -measurable functions. We say thet (fk) converges in measure to the function
f : X → R if

lim
k→∞

µ({x ∈ X : |fk(x)− f(x)| > ε}) = 0 for every ε > 0 . (1.1.4)

Theorem 1.1.9 (Lebesgue-Vitali Convergence Theorem). Let (X,F ) be a measurable
space, let µ be a positive finite measure on it and let (fk) be a sequence of measurable
functions such that

lim
M→∞

sup
k∈N

∫
{|fk|>M}

|fk| dµ = 0.

If fk → f in measure then f ∈ L1(X,µ) and limk→∞
∫
X |f − fk|dµ = 0.

Given a σ-algebra on a set X, we have defined the class of real-valued measurable
functions. Conversely, given a family of real-valued functions defined on X, it is possible
to define a suitable σ-algebra.
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Definition 1.1.10. Given a family F of functions f : X → R, let us define the σ-algebra
E (X,F ) generated by F on X as the smallest σ-algebra such that all the functions f ∈ F
are measurable, i.e., the σ-algebra generated by the sets {f < t}, with f ∈ F and t ∈ R.

Given a metric space, the set of real Borel measures µ is a vector space in an obvi-
ous way. All continuous and bounded functions are in L1(X,µ) and we define the weak
convergence of measures by

µj → µ ⇐⇒
∫
X
f dµj →

∫
X
f dµ ∀f ∈ Cb(X). (1.1.5)

Let us now introduce the notions of absolute continuity and singularity of measures. Let µ
be a positive finite measure and let ν be a real measure on the measurable space (X,F ).
We say that ν is absolutely continuous with respect to µ, and we write ν � µ, if µ(B) =
0 =⇒ |ν|(B) = 0 for every B ∈ F . If µ, ν are real measures, we say that they are
mutually singular, and we write ν ⊥ µ, if there exists E ∈ F such that |µ|(E) = 0 and
|ν|(X \ E) = 0. Notice that for mutually singular measures µ, ν the equality |µ + ν| =
|µ|+ |ν| holds. If µ� ν and ν � µ we say that µ and ν are equivalent and we write µ ≈ ν.
If µ is a positive measure and f ∈ L1(X,µ), then the measure ν := fµ defined below is
absolutely continuous with respect to µ and the following integral representations hold,
see Exercise 1.2:

ν(B) :=

∫
B
f dµ, |ν|(B) =

∫
B
|f | dµ ∀B ∈ F . (1.1.6)

In the following classical theorem we see that if a real measure ν is absolutely continuous
with respect to µ, then the above integral representation holds, with a suitable f .

Theorem 1.1.11 (Radon-Nikodym). Let µ be a positive finite measure and let ν be a real
measureon the same measurable space (X,F ). Then there is a unique pair of real measures
νa, νs such that νa � µ, νs ⊥ µ and ν = νa + νs. Moreover, there is a unique function
f ∈ L1(X,µ) such that νa = fµ. The function f is called the density (or Radon-Nikodym
derivative) of ν with respect to µ and it is denoted by dν/dµ.

Since trivially each real measure µ is absolutely continuous with respect to |µ|, from
the Radon-Nikodym theorem the polar decomposition of µ follows: there exists a unique
real valued function f ∈ L1(X, |µ|) such that µ = f |µ| and |f | = 1 |µ|-a.e.

The following result is a useful criterion of mutual singularity.

Theorem 1.1.12 (Hellinger). Let µ, ν be two probability measures on a measurable space
(X,F ), and let λ be a positive measure such that µ� λ, ν � λ. Then the integral

H(µ, ν) :=

∫
X

√
dµ

dλ

dν

dλ
dλ

is independent of λ and

2(1−H(µ, ν)) ≤ |µ− ν|(X) ≤ 2
√

1−H(µ, ν)2. (1.1.7)
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Proof. Let us first take λ = µ+ν and notice that µ, ν � λ. Then, setting f := dµ/dλ and
g := dν/dλ, i.e., µ = fλ and ν = gλ, we have |µ− ν|(X) = ‖f − g‖L1(X,λ) and integrating
the inequalities

(
√
f −√g)2 ≤ |f − g| = |

√
f −√g| |

√
f +
√
g|

we get ∫
X

(
√
f −√g)2 dλ = 2(1−H(µ, ν)) ≤

∫
X
|f − g| dλ = |µ− ν|(X)

=

∫
X
|
√
f −√g| |

√
f +
√
g| dλ

≤
(∫

X
|
√
f −√g|2 dλ

)1/2(∫
X
|
√
f +
√
g|2 dλ

)1/2

= (2− 2H(µ, ν))1/2(2 + 2H(µ, ν))1/2 = 2
√

1−H(µ, ν)2,

where we have used the Cauchy-Schwarz inequality. If λ′ is another measure such that
µ = f ′λ′ � λ′ and ν = g′λ′ � λ′, then λ� λ′: setting φ := dλ

dλ′ , we have f ′ = φf, g′ = φg
and then∫

X

√
dµ

dλ

dν

dλ
dλ =

∫
X

√
fg dλ =

∫
X

√
fgφ dλ′ =

∫
X

√
f ′g′ dλ′ =

∫
X

√
dµ

dλ′
dν

dλ′
dλ′.

Corollary 1.1.13. If µ and ν are probability measures, then µ ⊥ ν iff H(µ, ν) = 0 iff
|µ− ν|(X) = 2.

Proof. It is obvious from Hellinger’s theorem that |µ−ν|(X) = 2 if and only if H(µ, ν) = 0.
Let us show that this is equivalent to µ ⊥ ν. Using the notation in the proof of Theorem
1.1.12, notice that H(µ, ν) = 0 if and only if the set F defined by F := {fg 6= 0}
verifies λ(F ) = 0 (hence also µ(F ) = ν(F ) = 0). Therefore, for the measurable set
E = {f = 0, g > 0} we have µ(E) = ν(X \ E) = 0 and the assertion follows.

We recall the notions of push-forward of a measure (or image measure) and the con-
structions and main properties of product measure. The push-forward of a measure gen-
eralises the classical change of variable formula.

Definition 1.1.14 (Push-forward). Let (X,F ) and (Y,G ) be measurable spaces, and let
f : X → Y be (F ,G )-measurable, i.e., such that f−1(F ) ∈ F whenever F ∈ G . For any
positive or real measure µ on (X,F ) we define the push-forward or image measure of µ
under f , that is the measure µ ◦ f−1 in (Y,G ) by

µ ◦ f−1(F ) := µ
(
f−1(F )

)
∀F ∈ G .

Sometimes µ ◦ f−1 is denoted by f#µ.
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The change of variables formula immediately follows from the previous definition. If
u ∈ L1(Y, µ ◦ f−1), then u ◦ f ∈ L1(X,µ) and we have the equality∫

Y
u d(µ ◦ f−1) =

∫
X

(u ◦ f) dµ. (1.1.8)

The above equality is nothing but the definition for simple functions f , and it is immedi-
ately extended to the whole of L1 by density.

We consider now two measure spaces and we describe the natural resulting structure
on their cartesian product.

Definition 1.1.15 (Product σ-algebra). Let (X1,F1) and (X2,F2) be measurable spaces.
The product σ-algebra of F1 and F2, denoted by F1 ×F2, is the σ-algebra generated in
X1 ×X2 by

G = {E1 × E2 : E1 ∈ F1, E2 ∈ F2} .

Remark 1.1.16. Let E ∈ F1 × F2; then for every x ∈ X1 the section Ex := {y ∈
X2 : (x, y) ∈ E} belongs to F2, and for every y ∈ X2 the section Ey := {x ∈ X1 : (x, y) ∈
E} belongs to F1. In fact, it is easily checked that the families

Gx := {F ∈ F1 ×F2 : Fx ∈ F2} , G y := {F ∈ F1 ×F2 : F y ∈ F1}

are σ-algebras in X1 ×X2 and contain G , see Exercise 1.5.

Theorem 1.1.17 (Fubini). Let (X1,F1, µ1), (X2,F2, µ2) be measure spaces with µ1, µ2

positive and finite. Then, there is a unique positive finite measure µ on (X1×X2,F1×F2),
denoted by µ1 ⊗ µ2, such that

µ(E1 × E2) = µ1(E1) · µ2(E2) ∀E1 ∈ F1, ∀E2 ∈ F2.

Furthermore, for any µ-measurable function u : X1 ×X2 → [0,∞) the functions

x 7→
∫
X2

u(x, y)µ2(dy) and y 7→
∫
X1

u(x, y)µ1(dx)

are respectively µ1-measurable and µ2-measurable and∫
X1×X2

u dµ =

∫
X1

(∫
X2

u(x, y)µ2(dy)

)
µ1(dx)

=

∫
X2

(∫
X1

u(x, y)µ1(dx)

)
µ2(dy).

Remark 1.1.18. More generally, it is possible to construct a product measure on infinite
cartesian products. If I is a set of indices, typically I = [0, 1] or I = N, and (Xt,Ft, µt),
t ∈ I, is a family of probability spaces, the product σ-algebra is that generated by the
family of sets of the type

B = B1 × · · · ×Bn ×
ą

t∈I\{t1,...,tn}
Xt, Bk ∈ Ftk ,

whose measure is µ(B) := µt1(B1) · · ·µtn(Bn).
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In the sequel we shall sometimes encounter some ideas coming from probability theory
and stochastic analysis. In order to simplify several computations concerning probability
measures on Rd, it is often useful to use characteristic functions of measures. This is the
probabilistic counterpart of Fourier transform. Indeed, given a finite real measure µ on
(Rd,B(Rd)), we define its characteristic function by setting

µ̂(ξ) :=

∫
Rd
eix·ξ µ(dx), ξ ∈ Rd. (1.1.9)

We list the main elementary properties of characteristic functions, whose proofs are in
Exercise 1.6.

1. µ̂ is uniformly continuous on Rd;

2. µ̂(0) = µ(X);

3. if µ̂1 = µ̂2 then µ1 = µ2;

4. if µj → µ in the sense of (1.1.5), then µ̂j → µ̂ uniformly on compacts;

5. if (µj) is a sequence of probability measures and there is φ : Rd → C continuous in
ξ = 0 such that µ̂j → φ pointwise, then there is a probability measure µ such that
µ̂ = φ.

1.2 Gaussian measures

Gaussian (probability) measures are the main reference measures we shall encounter in the
Lectures. Let us start from the finite dimensional case. We recall the following elementary
equality

1

σ
√

2π

∫
R

exp
{
−(x− a)2

2σ2

}
dx = 1, (1.2.1)

that holds for all a ∈ R and σ > 0. An easy way to prove (1.2.1) is to compute the double
integral ∫

R2

exp{−(x2 + y2)} dxdy

using polar coordinates and the change of variables formula and apply Fubini Theorem
1.1.17.

Definition 1.2.1 (Gaussian measures on R). A probability measure γ on (R,B(R)) is
called Gaussian if it is either a Dirac measure δa at a point a (in this case, we put σ = 0),
or a measure absolutely continuous with respect to the Lebesgue measure λ1 with density

1

σ
√

2π
exp
{
−(x− a)2

2σ2

}
,

with ainR and σ > 0. In this case we call a the mean, σ the mean-square deviation and
σ2 the variance of γ and we say that γ is centred or symmetric if a = 0 and standard if
in addition σ = 1.
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By elementary computations we get

a =

∫
R
x γ(dx), σ2 =

∫
R

(x− a)2 γ(dx).

Remark 1.2.2. For every a, σ ∈ R we have γ̂(ξ) = eiaξ−
1
2
σ2ξ2 , see Exercise 1.7. Con-

versely, by property 3 of characteristic functions, a probability measure on R is Gaussian
iff its characteristic function has this form. Therefore, it is easy to recognise a Gaussian
measure from its characteristic function. This is true in Rd, as we are going to see in
Proposition 1.2.4, and also in infinite dimensions, as we shall see in the next lecture.

Let us come to Gaussian measures in Rd.

Definition 1.2.3 (Gaussian measures on Rd). A Borel probability measure γ on Rd is
said to be Gaussian if for every linear functional ` on Rd the measure γ ◦ `−1 is Gaussian
on R.

The first example of Gaussian measure in Rd is γd := (2π)−d/2e−|x|
2/2λd, that is called

standard Gaussian measure. We denote by Gd the standard Gaussian density in Rd, i.e.,
the density of γd with respect to λd. Notice also that if d = h+ k then γd = γh ⊗ γk.

The following result gives a useful characterisation of a Gaussian measure through its
characteristic function.

Proposition 1.2.4. A measure γ on Rd is Gaussian if and only if its characteristic
function is

γ̂(ξ) = exp
{
ia · ξ − 1

2
Qξ · ξ

}
(1.2.2)

for some a ∈ Rd and Q nonnegative symmetric d × d matrix. Moreover, γ is absolutely
continuous with respect to the Lebesgue measure λd if and only if Q is nondegenerate. In
this case, the density of γ is

1√
(2π)ddetQ

exp
{
−1

2

(
Q−1(x− a) · (x− a)

)}
. (1.2.3)

Proof. Let γ be a measure such that (1.2.2) holds. Then, for every linear funtional ` :
Rd → R (here we identify ` with the vector in Rd such that `(x) = ` · x) we compute the
characteristic function of the measure µ` := γ ◦ `−1 on R,

µ̂`(τ) =

∫
R
eiτt µ`(dt) =

∫
Rd
eiτ`(x) γ(dx) = γ̂(τ`) = exp

{
iτa · `− τ2

2
Q` · `

}
by (1.2.2). Therefore, by Remark 1.2.2 µ` is a Gaussian measure with mean a` = a · ` and
variance σ2

` = Q` · `, and also γ is a Gaussian measure by the arbitrariness of `.
Conversely, assume that µ` is Gaussian for every ` as above. Its mean a` and its

variance σ2
` are given by

a` :=

∫
R
t µ`(dt) =

∫
Rd
`(x) γ(dx) = ` ·

(∫
Rd
x γ(dx)

)
(1.2.4)

σ2
` :=

∫
R

(t− a`)2 µ`(dt) =

∫
Rd

(`(x)− a`)2 γ(dx). (1.2.5)
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These formulas show that the map ` 7→ a` is linear and the map ` 7→ σ2
` is a nonnegative

quadratic form. Therefore, there are a vector a ∈ Rd and a nonnegative definite symmetric
matrix Q = (Qij) such that a` = a · ` and σ2

` = Q` · `, whence (1.2.2) follows. Notice that

a =

∫
Rd
x γ(dx), Qij =

∫
Rd

(xi − ai)(xj − aj) γ(dx).

To prove the last part of the statement, let us assume that γ � λd, i.e. γ = fλd for some
f ∈ L1(Rd, λd). We want to show that Q` · ` = 0 iff ` = 0. From (1.2.4), (1.2.5) we have

Q` · ` =

∫
Rd

(` · (x− a))2f(x)dx,

then Q` · ` = 0 iff (` · (x − a))2 = 0 for a.e. x ∈ Rd, i.e. iff ` = 0, as f 6≡ 0. Hence Q is
nondegenerate.

Conversely, if Q is nondegenerate, we consider the measure ν = fλd with f given by (1.2.3)
and we compute its characteristic function. Using the change of variable z = Q−1/2(x−a),
since γd = ⊗dj=1γ1, we have:

ν̂(ξ) =

∫
Rd

exp{iξ · x}f(x)dx =
1√

(2π)ddetQ

∫
Rd

exp
{
iξ · x− 1

2

(
Q−1(x− a) · (x− a)

)}
dx

= exp{iξ · a}
∫
Rd

exp{iQ1/2ξ · z}γd(dz) = exp{iξ · a}
d∏
j=1

∫
R

exp{i(Q1/2ξ)jt}γ1(dt)

= exp{iξ · a}
d∏
j=1

γ̂1((Q1/2ξ)j) = exp(iξ · a)
d∏
j=1

exp

{
−1

2
((Q1/2ξ)j)

2

}

= exp

{
iξ · a− 1

2
Qξ · ξ

}
= γ̂(ξ).

Hence, by property 3 of the characteristic function, γ = ν.

Remark 1.2.5. If γ is a Gaussian measure and (1.2.2) holds, we call a the mean and Q
the covariance of γ, and we write γ = N (a,Q) when it is useful to emphasise the relevant
parameters. If a = 0 we say that γ is centred. If the matrix Q is invertible then the
Gaussian measure γ = N (a,Q) is said to be nondegenerate. Its density, given by (1.2.3),
is denoted Ga,Q. The nondegeneracy is equivalent to the fact that µ` � λ1 for every
` ∈ Rd.

Proposition 1.2.6. Let γ centred Gaussian measure in Rd and for every θ ∈ R define the
map φ : Rd×Rd → Rd by φ(x, y) := x sin θ+y cos θ. Then, the image measure (γ⊗γ)◦φ−1

in Rd is γ.

Proof. We use characteristic functions and Proposition 1.2.4. Indeed, the characteristic
function of γ is exp{−1

2Qξ ·ξ} for some nonnegative d×d matrix Q. Then we may compute
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the characteristic function of µ := (γ ⊗ γ) ◦ φ−1 as follows:

µ̂(ξ) =

∫
Rd
eizξ µ(dz)

=

∫
Rd×Rd

ei(x sin θ+y cos θ)ξ γ ⊗ γ(d(x, y))

=

∫
Rd
ei(x sin θ)ξ γ(dx)

∫
Rd
ei(y cos θ)ξ γ(dy)

= exp{−1

2
sin2 θ Qξ · ξ} exp{−1

2
cos2 θQξ · ξ}

= exp{−1

2
Qξ · ξ},

and the assertion follows from property 3 of characteristic functions.

Remark 1.2.7. We point out that the property stated in Proposition 1.2.6 is not the
invariance of γ under rotations in Rd. Indeed, rotation invariance holds iff the covariance
of γ is a positive multiple of an orthogonal matrix.

1.3 Exercises

Exercise 1.1. Let µ be a positive finite measure on (X,F ). Prove the monotonicity
properties stated in Remark 1.1.3.

Exercise 1.2. Prove that the set function |µ| defined in (1.1.2) is a positive finite measure
and that the integral representation for |ν| = |fµ| in (1.1.6) holds. Prove also that if µ ⊥ ν
then |µ+ ν| = |µ|+ |ν|.

Exercise 1.3. Prove the equality (1.1.3).

Exercise 1.4. Prove the Vitali–Lebesgue Theorem 1.1.9.

Exercise 1.5. Prove that the families Gx and G y defined in Remark 1.1.16 are σ-algebras.

Exercise 1.6. Prove the properties of characteristic functions listed in Section 1.1.

Exercise 1.7. Prove the equality γ̂(ξ) = eiaξ−
1
2
σ2ξ2 stated in Remark 1.2.2.

Exercise 1.8. (Layer cake formula) Prove that if µ is a positive finite measure on (X,F )
and 0 ≤ f ∈ L1(X,µ) then∫

X
f dµ =

∫ ∞
0

µ
(
{x ∈ X : f(x) > t}

)
dt.
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Lecture 2

Gaussian measures in infinite
dimension

In this lecture, after recalling a few notions about σ-algebras in Fréchet spaces, we in-
troduce Gaussian measures and we prove the Fernique Theorem. This is a powerful tool
to get precise estimates on the Gaussian integrals. In most of the course, our framework
is an infinite dimensional separable real Fréchet or Banach space that we denote by X.
In the latter case, the norm is denoted by ‖ · ‖ or ‖ · ‖X when there is risk of confusion.
The separability assumption is not essential in most of the theory, but Radon Gaussian
measures are concentrated on separable subspaces, see [3, Theorem 3.6.1], hence we as-
sume saparability from the beginning. The open (resp. closed) ball with centre x ∈ X
and radius r > 0 will be denoted by B(x, r) (resp. B(x, r)). We denote by X∗, with norm
‖ · ‖X∗ , the topological dual of X consisting of all linear continuous functions f : X → R.
Sometimes, we shall discuss the case of a separable Hilbert space in order to highlight
some special features. The only example that is not a separable Banach space is RI (see
Lecture 3), but we prefer to describe this as a particular case rather than to present a
more general abstract theory.

2.1 σ-algebras in infinite dimensional spaces and
characteristic functions

In order to present further properties of measures in X, and in particular approximation
of measures and functions, it is useful to start with a discussion on the relevant underly-
ing σ-algebras. Besides the Borel σ-algebra, to take advantage of the finite dimensional
reductions we shall frequently encounter in the sequel, we introduce the σ-algebra E (X)
generated by the cylindrical sets, i.e, the sets of the form

C =
{
x ∈ X : (f1(x), . . . , fn(x)) ∈ C0

}
,

13
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where f1, . . . , fn ∈ X∗ and C0 ∈ B(Rn), called a base of C. According to Definition 1.1.10,
E (X) = E (X,X∗). Notice that the cylindrical sets constitute an algebra. The following
important result holds. We do not present its most general version, but we do not even
confine ourselves to Banach spaces because we shall apply it to R∞, which is a Fréchet
space. We recall that a Fréchet space is a complete metrisable locally convex topological
vector space, i.e., a vector space endowed with a sequence of seminorms that generate a
metrisable topology such that the space is complete.

Theorem 2.1.1. If X is a separable Fréchet space, then E (X) = B(X). Moreover, there
is a countable family F ⊂ X∗ separating the points in X (i.e., such that for every pair of
points x 6= y ∈ X there is f ∈ F such that f(x) 6= f(y)) such that E (X) = E (X,F ).

Proof. Let (xn) be a sequence dense in X, and denote by (pk) a family of seminorms
which defines the topology of X. By the Hahn-Banach theorem for every n and k there is
`n,k ∈ X∗ such that pk(xn) = `n,k(xn) and sup{`n,k(x) : x ∈ X, pk(x) ≤ 1} = 1, whence
`n,k(x) ≤ pk(x) for every n, k ∈ N and x ∈ X. As a consequence, for every x ∈ X and
k ∈ N we have pk(x) = supn{`n,k(x)}. Indeed, if (xnh) is a subsequence of (xn) such that
xnh → x as h→∞, we have limh `nh,k(xnh) = pk(x). Therefore, for every r > 0

Bk(x, r) := {y ∈ X : pk(y − x) ≤ r} =
⋂
n∈N
{y ∈ X : `n,k(y − x) ≤ r} ∈ E (X).

As X is separable, there is a countable base of its topology. For instance, we may take
the sets Bk(xn, r) with rational r, see [10, I.6.2 and I.6.12]. These sets are in E (X), as

Bk(xn, r) =
⋂
m∈N
{x ∈ X : `m,k(x− xn) < r}.

Hence, the inclusion B(X) ⊂ E (X) holds. The converse inclusion is trivial.
To prove the last statement, just take F = {`n,k, n, k ∈ N}. It is obviously a countable
family; let us show that it separates points. If x 6= y, there is k ∈ N such that pk(x− y) =
supn `n,k(x− y) > 0 and therefore there is n̄ ∈ N such that `n̄,k(x− y) > 0.

In the discussion of the properties of Gaussian measures in infinite dimensional spaces,
as in Rd, the characteristic functions, defined by

µ̂(f) :=

∫
X

exp{if(x)}µ(dx), f ∈ X∗, (2.1.1)

play an important role. The properties of characteristic functions seen in Lecture 1 can be
extended to the present context. We discuss in detail only the extension of property (iii)
(the injectivity), which is the most important for our purposes. In the following proposi-
tion, we use the coincidence criterion for measures agreeing on an algebra of generators of
the σ-algebra, see e.g. [9, Theorem 3.1.10].

Proposition 2.1.2. Let X be a separable Fréchet space, and let µ1, µ2 be two probability
measures on (X,B(X)). If µ̂1 = µ̂2 then µ1 = µ2.
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Proof. It is enough to show that if µ̂ = 0 then µ = 0 and in particular, by Theorem 2.1.1,
that µ(C) = 0 when C is a cylinder with base C0 ∈ B(Rd). Let be µ̂ = 0, consider
F = span {f1, . . . , fd} ⊂ X∗ and define µF = µ ◦ P−1

F , where PF : X → Rd is given by
PF (x) = (f1(x), . . . , fd(x)). Then for any ξ ∈ Rd

µ̂F (ξ) =

∫
F

exp{iξ · y}µF (dy) =

∫
X

exp{iξ · PF (x)}µ(dx) =

∫
X

exp{iP ∗F ξ(x)}µ(dx) = 0,

where P ∗F : Rd → X∗ is the adjoint map

P ∗F (ξ) =
d∑
i=1

ξifi.

It follows that µF = 0 and therefore the restriction of µ to the σ-algebra E (X,F ) is the
null measure.

2.2 Gaussian measures in infinite dimensional spaces

Measure theory in infinite dimensional spaces is far from being a trivial issue, because there
is no equivalent of the Lebesgue measure, i.e., there is no nontrivial measure invariant by
translations.

Proposition 2.2.1. Let X be an infinite dimensional separable Hilbert space. If µ :
B(X)→ [0,∞] is a σ-additive set function such that:

(i) µ(x+B) = µ(B) for every x ∈ X, B ∈ B(X),

(ii) µ(B(0, r)) > 0 for every r > 0,

then µ(A) =∞ for every open set A.

Proof. Assume that µ satisfies (i) and (ii), and let {en : n ∈ N} be an orthonormal basis
in X. For any n ∈ N consider the balls Bn with centre 2ren and radius r > 0; they are
pairwise disjoint and by assumption they have the same measure, say µ(Bn) = m > 0 for
all n ∈ N. Then,

∞⋃
n=1

Bn ⊂ B(0, 3r) =⇒ µ(B(0, 3r)) ≥
∞∑
n=1

µ(Bn) =

∞∑
n=1

m =∞,

hence µ(A) =∞ for every open set A.

Definition 2.2.2 (Gaussian measures on X). Let X be a separable Fréchet space. A
probability measure γ on (X,B(X)) is said to be Gaussian if γ◦f−1 is a Gaussian measure
in R for every f ∈ X∗. The measure γ is called centred (or symmetric) if all the measures
γ ◦ f−1 are centred and it is called nondegenerate if for any f 6= 0 the measure γ ◦ f−1 is
nondegenerate.
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Our first task is to give characterisations of Gaussian measures in infinite dimensions
in terms of characteristic functions analogous to those seen in Rd, Proposition 1.2.4.

Notice that if f ∈ X∗ then f ∈ Lp(X, γ) for every p ≥ 1: indeed, the integral∫
X
|f(x)|p γ(dx) =

∫
R
|t|p (γ ◦ f−1)(dt)

is finite because γ ◦ f−1 is Gaussian in R. Therefore, we can give the following definition.

Definition 2.2.3. We define the mean aγ and the covariance Bγ of γ by

aγ(f) :=

∫
X
f(x) γ(dx), (2.2.1)

Bγ(f, g) :=

∫
X

[f(x)− aγ(f)] [g(x)− aγ(g)] γ(dx), (2.2.2)

f, g ∈ X∗.

Observe that f 7→ aγ(f) is linear and (f, g) 7→ Bγ(f, g) is bilinear in X∗. Moreover,
Bγ(f, f) = ‖f − aγ(f)‖2L2(X,γ) ≥ 0 for every f ∈ X∗.

Theorem 2.2.4. A Borel probability measure γ on X is Gaussian if and only if its char-
acteristic function is given by

γ̂(f) = exp
{
ia(f)− 1

2
B(f, f)

}
, f ∈ X∗, (2.2.3)

where a is a linear functional on X∗ and B is a nonnegative symmetric bilinear form on
X∗.

Proof. Assume that γ is Gaussian. Let us show that γ̂ is given by (2.2.3) with a = aγ and
B = Bγ . Indeed, we have:

γ̂(f) =

∫
R

exp{iξ}(γ ◦ f−1)(dξ) = exp
{
im− 1

2
σ2
}
,

where m and σ2 are the mean and the covariance of γ ◦ f−1, given by

m =

∫
R
ξ(γ ◦ f−1)(dξ) =

∫
X
f(x)γ(dx) = aγ(f),

and

σ2 =

∫
R

(ξ −m)2(γ ◦ f−1)(dξ) =

∫
X

(f(x)− aγ(f))2γ(dx) = Bγ(f, f).

Conversely, let γ be a Borel probability measure on X and assume that (2.2.3) holds.
Since a is linear and B is bilinear, we can compute the Fourier transform of γ ◦ f−1, for
f ∈ X∗, as follows:

γ̂ ◦ f−1(τ) =

∫
R

exp{iτ t} (γ ◦ f−1)(dt) =

∫
X

exp{iτf(x)} γ(dx)

= exp
{
iτa(f)− 1

2
τ2B(f, f)

}
.

According to Remark 1.2.2, γ ◦ f−1 = N (a(f), B(f, f)) is Gaussian and we are done.
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Remark 2.2.5. We point out that at the moment we have proved that aγ is linear on
X∗ and Bγ is bilinear on X∗ ×X∗, but they are not necessarily continuous. We shall see
that if X is a Banach space then aγ and Bγ are in fact continuous.

As in the finite dimensional case, we say that γ is centred if aγ = 0; in this case, the
bilinear form Bγ is nothing but the restriction of the inner product in L2(X, γ) to X∗,

Bγ(f, g) =

∫
X
f(x)g(x) γ(dx), Bγ(f, f) = ‖f‖2L2(X,γ). (2.2.4)

In the sequel we shall frequently consider centred Gaussian measures; this requirement
is equivalent to the following symmetry property.

Proposition 2.2.6. Let γ be a Gaussian measure on a Fréchet space X and define the
measure µ by

µ(B) := γ(−B), ∀B ∈ B(X).

Then, γ is centred if and only if γ = µ.

Proof. We know that γ̂(f) = exp{iaγ(f)− 1
2‖f−aγ(f)‖2L2(X,γ)}. On the other hand, since

µ = γ ◦R−1 with R : X → X given by R(x) = −x,

µ̂(f) =

∫
X
eif(x)µ(dx) =

∫
X
e−if(x)γ(dx) = exp

{
−iaγ(f)− 1

2
‖f − aγ(f)‖2L2(X,γ)

}
.

Then µ̂ = γ̂ if and only if aγ(f) = 0 for any f ∈ X∗, whence the statement follows by
Proposition 2.1.2.

Let us draw some interesting (and useful) consequences from the above result.

Proposition 2.2.7. Let X be a separable Freéchet space and let γ be a Gaussian measure
on X.

(i) If µ is a Gaussian measure on a Fréchet space Y , then γ⊗µ is a Gaussian measure
on X × Y .

(ii) If µ is another Gaussian measure on X, then the convolution measure γ ∗µ, defined
as the image measure in X of γ ⊗ µ on X ×X under the map (x, y) 7→ x + y is a
Gaussian measure and is given by

γ ∗ µ(B) =

∫
X
µ(B − x)γ(dx) =

∫
X
γ(B − x)µ(dx). (2.2.5)

(iii) If γ is centred, then for every θ ∈ R the image measure (γ ⊗ γ) ◦ R−1
θ in X × X

under the map Rθ : X×X → X×X, Rθ(x, y) := (x cos θ+y sin θ,−x sin θ+y cos θ)
is again γ ⊗ γ.
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(iv) If γ is centred, then for every θ ∈ R the image measures (γ ⊗ γ) ◦ φ−1
i , i = 1, 2 in X

under the maps φi : X ×X → X,

φ1(x, y) := x cos θ + y sin θ, φ2(x, y) := −x sin θ + y cos θ

are again γ.

Proof. All these results follow quite easily by computing the relevant characteristic func-
tions. We start with (i) taking into account that for f ∈ X∗ and g ∈ Y ∗ we have

Bγ(f, f) = ‖f − aγ(f)‖2L2(X,γ), Bµ(g, g) = ‖g − aµ(g)‖2L2(Y,µ).

For every ` ∈ (X × Y )∗, we define f and g by

`(x, y) = `(x, 0) + `(0, y) =: f(x) + g(y).

Then

γ̂ ⊗ µ(`) =

∫
X×Y

exp{i`(x, y)}(γ ⊗ µ)(d(x, y))

=

∫
X

exp{if(x)}γ(dx)

∫
Y

exp{ig(y)}µ(dy)

= exp

{
iaγ(f)− 1

2
‖f − aγ(f)‖2L2(X,γ) + aµ(g)− 1

2
‖g − aµ(g)‖2L2(Y,µ)

}
= exp

{
i(aγ(f) + aµ(g))− 1

2

(
‖f − aγ(f)‖2L2(X,γ) + ‖g − aµ(g)‖2L2(Y,µ)

)}
.

On the other hand, since∫
X×Y

(f(x)− aγ(f))(g(y)− aµ(g))(γ ⊗ µ)(d(x, y)) =

=

∫
X

(f(x)− aγ(f))γ(dx)

∫
Y

(g(y)− aµ(g))µ(dy) = 0,

we have

‖f − aγ(f)‖2L2(X,γ) + ‖g − aµ(g)‖2L2(Y,µ) =

=

∫
X

(f(x)− aγ(f))2γ(dx) +

∫
Y

(g(y)− aµ(g))2µ(dy)

=

∫
X

(`(x, 0)− aγ(f))2γ(dx) +

∫
Y

(`(0, y)− aµ(g))2µ(dy)

=

∫
X×Y

(`(x, 0)− aγ(f))2(γ ⊗ µ)(d(x, y)) +

∫
X×Y

(`(0, y)− aµ(g))2(γ ⊗ µ)(d(x, y))

=

∫
X×Y

(`(x, 0)− aγ(f))2 + (`(0, y)− aµ(g))2(γ ⊗ µ)(d(x, y))

=

∫
X×Y

(`(x, 0) + `(0, y)− (aγ(f) + aµ(g)))2(γ ⊗ µ)(d(x, y))

=

∫
X×Y

(`(x, y)− (aγ(f) + aµ(g)))2(γ ⊗ µ)(d(x, y)).
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So we have

Bγ⊗µ(`, `) = ‖`(x, y)− (aγ(f) + aµ(g)‖L2(X×Y,γ⊗µ) = Bγ(f, f) +Bµ(g, g)

if we decompose ` by `(x, y) = f(x) + g(y), f(x) = `(x, 0), g(y) = `(0, y) as before.
The proof of statement (ii) is similar; indeed if h : X ×X → X is given by h(x, y) =

x+ y, then

̂(γ ⊗ µ) ◦ h−1(`) =

∫
X

exp{i`(x)}
(
(γ ⊗ µ) ◦ h−1

)
(dx)

=

∫
X×X

exp{i`(h(x, y))}(γ ⊗ µ)(d(x, y))

=

∫
X

exp{i`(x)}γ(dx)

∫
X

exp{i`(y)}µ(dy)

= exp

{
iaγ(`)− 1

2

(
‖`‖2L2(X,γ) + iaµ(`)‖`‖2L2(X,µ)

)}
.

for every ` ∈ X∗. Using the notation of Remark 1.1.16, for every B ∈ B(X) we have

{(x, y) ∈ X ×X : h(x, y) ∈ B}x = B − x,
{(x, y) ∈ X ×X : h(x, y) ∈ B}y = B − y.

Applying the Fubini Theorem to the characteristic functions of h−1(B) we deduce that
the convolution measure is given by (2.2.5),

γ ∗ µ(B) = (γ ⊗ µ)(h−1(B)) =

∫
X×X

1lh−1(B)(γ ⊗ µ)(d(x, y))

=

∫
X
γ(dx)

∫
{y∈X:x+y∈B}

µ(dy) =

∫
X
µ(B − x)γ(dx).

To show (iii), set µ := (γ ⊗ γ) ◦ R−1
θ ; taking into account that for any ` ∈ (X ×X)∗

we have

`(Rθ(x, y)) =`(x cos θ + y sin θ,−x sin θ + y cos θ)

= `(x, 0) cos θ − `(0, x) sin θ︸ ︷︷ ︸
=:fθ(x)

+ `(y, 0) sin θ + `(0, y) cos θ︸ ︷︷ ︸
=:gθ(y)

.

We find

µ̂(`) =

∫
X×X

exp{i`(Rθ(x, y))}(γ ⊗ γ)(d(x, y))

=

∫
X

exp{ifθ(x)}γ(dx)

∫
X

exp{igθ(y)}γ(dy)

= exp

{
−1

2
(Bγ(fθ, fθ) +Bγ(gθ, gθ))

}
.
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Since Bγ is bilinear,

Bγ(fθ, fθ) +Bγ(gθ, gθ) = Bγ(f0, f0) +Bγ(g0, g0),

where f0(x) = `(x, 0), g0(y) = `(0, y) and

Bγ(f0, f0) +Bγ(g0, g0) = Bγ⊗γ(`, `)

by the proof of statement (i).
To prove (iv), we notice that the laws of γ ⊗ γ under the projection maps p1, p2 :

X ×X → X,
p1(x, y) := x, p2(x, y) := y

are γ by definition of product measure. Since φi = pi ◦Rθ, i = 1, 2 we deduce

(γ ⊗ γ) ◦ φ−1
i = (γ ⊗ γ) ◦ (pi ◦Rθ)−1 = ((γ ⊗ γ) ◦R−1

θ ) ◦ p−1
i = (γ ⊗ γ) ◦ p−1

i = γ.

2.3 The Fernique Theorem

In this section we prove the Fernique Theorem; we start by proving it in the case of centred
Gaussian measures and then we extend the result to any Gaussian measure.

Theorem 2.3.1 (Fernique). Let γ be a centred Gaussian measure on a separable Banach
space X. Then there exists α > 0 such that∫

X
exp{α‖x‖2} γ(dx) <∞.

Proof. If γ is a Dirac measure the result is trivial, therefore we may assume that this is
not the case. The idea of the proof is to show that the measures of suitable annuli decay
fast enough to compensate the growth of the exponential function in the integral. Let
us fix t > τ > 0 and let us estimate γ({‖x‖ ≤ τ})γ({‖x‖ > t}). Using property (iii) of
Proposition 2.2.7 with θ = −π

4 , we obtain

γ({x ∈ X : ‖x‖ ≤ τ})γ({x ∈ X : ‖x‖ > t})
= (γ ⊗ γ) ({(x, y) ∈ X ×X : ‖x‖ ≤ τ} ∩ {(x, y) ∈ X ×X : ‖y‖ > t})

= (γ ⊗ γ)

({
(x, y) ∈ X ×X :

‖x− y‖√
2
≤ τ

}
∩
{

(x, y) ∈ X ×X :
‖x+ y‖√

2
> t
})

.

The triangle inequality yields ‖x‖, ‖y‖ ≥ ‖x+y‖
2 − ‖x−y‖2 , which implies the inclusion{

(x, y) ∈ X ×X :
‖x− y‖√

2
≤ τ

}
∩
{

(x, y) ∈ X ×X :
‖x+ y‖√

2
> t
}

⊂
{

(x, y) ∈ X ×X : ‖x‖ > t− τ√
2

}
∩
{

(x, y) ∈ X ×X : ‖y‖ > t− τ√
2

}
.
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As a consequence, we have the estimate

γ({‖x‖ ≤ τ})γ({‖x‖ > t}) ≤ γ
(
X \B

(
0,
t− τ√

2

))2

. (2.3.1)

We leave as an exercise, Exercise 2.1, the fact that if γ is not a Dirac measure, then
γ(B(0, τ)) < 1 for any τ > 0. Let us fix τ > 0 such that c := γ

(
B(0, τ)

)
∈ (1/2, 1) and set

α :=
1

24τ2
log
( c

1− c

)
,

t0 := τ, tn := τ +
√

2tn−1 = τ(1 +
√

2)
(√

2
n+1 − 1

)
, n ≥ 1.

Applying estimate (2.3.1) with t = tn and recalling that tn−τ√
2

= tn−1, we obtain

γ(X \ B̄(0, tn)) ≤ γ(X \ B̄(0, tn−1))2

γ(B̄(0, τ))
=
(γ(X \ B̄(0, tn−1))

c

)2
c

and iterating

γ(X \ B̄(0, tn)) ≤ c
(

1− c
c

)2n

.

Therefore ∫
X

exp{α‖x‖2} γ(dx) =

∫
B(0,τ)

exp{α‖x‖2} γ(dx)+

+

∞∑
n=0

∫
B(0,tn+1)\B(0,tn)

exp{α‖x‖2} γ(dx)

≤c exp{ατ2}+
∞∑
n=0

exp{αt2n+1} γ(X \B(0, tn)).

Since (
√

2
n+2 − 1)2 ≤ 2n+2 for every n ∈ N,∫

X
exp{α‖x‖2} γ(dx) ≤ c

(
exp{ατ2}+

∞∑
n=0

exp{4ατ2(1 +
√

2)22n}
(1− c

c

)2n)
= c
(

exp{ατ2}+
∞∑
n=0

exp
{

2n
(

log
1− c
c

+ 4ατ2(1 +
√

2)2
)})

= c
(

exp{ατ2}+
∞∑
n=0

exp
{

2n
(1

2
−
√

2

3

)
log
(1− c

c

)})
.

The last series is convergent because c > 1/2 and hence log
(

1−c
c

)
< 0.

The validity of the Fernique Theorem can be extended to any Gaussian measure, not
necessarily centred.
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Corollary 2.3.2. Let γ be a Gaussian measure on a separable Banach space X. Then
there exists α > 0 such that ∫

X
exp{α‖x‖2} γ(dx) <∞.

Proof. Let us set µ(B) = γ(−B) for any B ∈ B(X). According to (2.2.5), the measure
γ1 = γ ∗µ is given by (γ⊗µ) ◦h−1, h(x, y) = x+ y, and it is a centred Gaussian measure.
Therefore, there exists α1 > 0 such that

∞ >

∫
X

exp{α1‖x‖2} γ1(dx) =

∫
X×X

exp{α1‖x+ y‖2} (γ ⊗ µ)(d(x, y))

=

∫
X×X

exp{α1‖x− y‖2} (γ ⊗ γ)(d(x, y)) =

∫
X
γ(dy)

∫
X

exp{α1‖x− y‖2} γ(dx).

Then, for γ–a.e. y ∈ X, ∫
X

exp{α1‖x− y‖2} γ(dx) <∞.

Using the inequality 2ab ≤ εa2 + 1
εb

2, which holds for any a, b and ε > 0, we get

‖x‖2 ≤ ‖x− y‖2 + ‖y‖2 + 2‖x− y‖‖y‖ ≤ (1 + ε)‖x− y‖2 +
(

1 +
1

ε

)
‖y‖2.

For any α ∈ (0, α1), by setting ε = α1
α − 1, we obtain∫

X
exp{α‖x‖2} γ(dx) ≤ exp

{
αα1

α1 − α
‖y‖2

}∫
X

exp{α1‖x− y‖2} γ(dx).

Then for any α < α1, ∫
X

exp{α‖x‖2} γ(dx) <∞.

As a first application of the Fernique theorem, we notice that for every 1 ≤ p <∞ we
have ∫

X
‖x‖p γ(dx) <∞ (2.3.2)

since ‖x‖p ≤ cα,p exp{α‖x‖2} for all x ∈ X and for some constant cα,p depending on α and
p only. We already know, through the definition of Gaussian measure, that the functions
f ∈ X∗ belong to all Lp(X, γ) spaces, for 1 ≤ p <∞. The Fernique Theorem tells us much
more, since it gives a rather precise description of the allowed growth of the functions in
Lp(X, γ). Moreover, estimate (2.3.2) has important consequences on the functions aγ and
Bγ .

Proposition 2.3.3. If γ is a Gaussian measure on a separable Banach space X, then
aγ : X∗ → R and Bγ : X∗ × X∗ → R are continuous. In addition, there exists a ∈ X
representing aγ, i.e., such that

aγ(f) = f(a), ∀f ∈ X∗.
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Proof. Let us define

c1 :=

∫
X
‖x‖ γ(dx), c2 :=

∫
X
‖x‖2 γ(dx). (2.3.3)

Then, if f, g ∈ X∗

|aγ(f)| ≤ ‖f‖X∗
∫
X
‖x‖ γ(dx) = c1‖f‖X∗ ,

|Bγ(f, g)| ≤
∫
X
|f(x)− aγ(f)||g(x)− aγ(g)| γ(dx)

≤ ‖f‖X∗‖g‖X∗
∫
X

(‖x‖+ c1)2 γ(dx) = (c2 + 3c2
1)‖f‖X∗‖g‖X∗ .

To show that aγ can be represented by an element a ∈ X, by the general duality theory
(see e.g. [1, VIII, Théorème 8]), it is enough to show that the map f 7→ aγ(f) is weakly∗

continuous on X∗, i.e., continuous with respect to the duality σ(X∗, X). Moreover, since
X is separable, by [4, Theorem 3.28] weak∗ continuity is equivalent to continuity along
weak∗ convergent sequences.

Let (fj) be a sequence weakly∗ convergent to f , i.e.,

fj(x)→ f(x), ∀x ∈ X.

By the Uniform Boundedness Principle,

sup
j∈N
‖fj‖X∗ <∞,

and by the Lebesgue Dominated Convergence Theorem, we deduce

lim
j→∞

aγ(fj) = lim
j→∞

∫
X
fj(x) γ(dx) =

∫
X
f(x) γ(dx) = aγ(f).

If X is a Banach space, it is easily seen that the space X∗ is contained in L2(X, γ) and
the inclusion map j : X∗ → L2(X, γ),

j(f) = f − aγ(f), f ∈ X∗ (2.3.4)

is continuous because ‖j(f)‖L2(X,γ) ≤ (c
1/2
2 + c1)‖f‖X∗ , where c1 and c2 are defined in

(2.3.3). If X is a Fréchet space, then the range of the function j defined in (2.3.4) is still
contained in L2(X, γ). We define the reproducing kernel (1) as the closure of the range of
the map j.

(1)This terminology comes from the general theory of Reproducing Kernel Hilbert Spaces due to N.
Aronszajn, see Theory of Reproducing Kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404 and [29,
§III.9].
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Definition 2.3.4 (Reproducing kernel). The reproducing kernel is defined by

X∗γ := the closure of j(X∗) in L2(X, γ), (2.3.5)

i.e. X∗γ consists of all limits in L2(X, γ) of sequences of functions j(fh) = fh − aγ(fh)
with (fh) ⊂ X∗.

For the moment we have defined the functions aγ , γ̂ in X∗ and the function Bγ in
X∗ × X∗. Of course, using formulas (2.2.1), (2.2.2) and (2.1.1) aγ could be defined in
L1(X, γ), Bγ could be defined in L2(X, γ)×L2(X, γ), and γ̂ could be defined in the space
of all measurable functions f , but we are not interested to study the extensions of aγ , Bγ
and γ̂ to such domains. Our attention is restricted here to X∗γ .

The extension of aγ to X∗γ is trivial, since the mean value of every element of X∗γ is
zero. The extension of Bγ to X∗γ ×X∗γ is obviously continuous (X∗γ ×X∗γ is endowed with
the L2(X, γ)× L2(X, γ) norm), and since aγ ≡ 0 on X∗γ ,

Bγ(f, g) =

∫
X
f(x)g(x)γ(dx) = 〈f, g〉L2(X,γ), f, g ∈ X∗γ .

Concerning the extension of γ̂, still defined by

γ̂(f) =

∫
X
eif(x)γ(dx),

we have the following proposition.

Proposition 2.3.5. Let γ be a Gaussian measure on a separable Banach space. Then,

γ̂(f) = exp
{
−1

2
‖f‖2L2(X,γ)

}
, ∀f ∈ X∗γ .

Proof. Let f ∈ X∗γ and let gh = j(fh), fh ∈ X∗, be a sequence of functions converging to
f in L2(X, γ). Then, aγ(gh) = 0 for all h ∈ N. Using the fact that the map t 7→ eit is
1-Lipschitz, we have∣∣∣ ∫

X
exp{igh(x)} − exp{if(x)} γ(dx)

∣∣∣ ≤ ∫
X
| exp{igh(x)} − exp{if(x)}| γ(dx)

≤
∫
X
|gh(x)− f(x)| γ(dx)

≤
(∫

X
|gh(x)− f(x)|2 γ(dx)

)1/2
→ 0.

Therefore,

γ̂(f) = lim
h→∞

γ̂(gh) = lim
h→∞

exp
{
−1

2
Bγ(gh, gh)

}
= exp

{
−1

2
‖f‖L2(X,γ)

}
.
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Notice that if γ is nondegenerate then two different elements of X∗ define two different
elements of X∗γ , but if γ is degenerate two different elements of X∗ may define elements
coinciding γ-a.e.

We define the operator Rγ : X∗γ → (X∗)′ by

Rγf(g) :=

∫
X
f(x)[g(x)− aγ(g)] γ(dx), f ∈ X∗γ , g ∈ X∗. (2.3.6)

Observe that
Rγf(g) = 〈f, g − aγ(g)〉L2(X,γ). (2.3.7)

It is important to notice that indeed Rγ maps X∗γ into X, if X is a separable Banach
space. This is true also for Fréchet (and, even more genarally, locally convex) spaces, see
[3, Theorem 3.2.3], but the proof is more difficult and we do not need the result in its full
generality.

Proposition 2.3.6. Let X be a separable banach space. Then, the range of Rγ is contained
in X, i.e., for every f ∈ X∗γ there is y ∈ X such that Rγf(g) = g(y) for all g ∈ X∗.

Proof. As in the proof of Proposition 2.3.3, we show that for every f ∈ X∗γ the map
g 7→ Rγf(g) is weakly∗ continuous on X∗, i.e., continuous with respect to the duality
σ(X∗, X). By the general duality theory (see e.g. [1, VIII, Théorème 8]) we deduce that
Rγf ∈ X. Recall that, since X is separable, weak∗ continuity is equivalent to continuity
along weak∗ convergent sequences. Let then (gk) ⊂ X∗ be weakly∗ convergent to g, i.e.,
gk(x)→ g(x) for every x ∈ X. Then, by the Uniform Boundedness Principle the sequence
(gk) is bounded in X∗ and by the Dominated Convergence Theorem and Proposition 2.3.3
aγ(gk)→ aγ(g) and

Rγf(gk) =

∫
X
f(x)[gk(x)− aγ(gk)] γ(dx) −→

∫
X
f(x)[g(x)− aγ(g)] γ(dx) = Rγf(g).

Remark 2.3.7. Thanks to Proposition 2.3.6, we can identify Rγf with the element y ∈ X
representing it, i.e. we shall write

Rγf(g) = g(Rγf), ∀g ∈ X∗.

2.4 Exercises

Exercise 2.1. Prove that if γ is a Gaussian measure and γ is not a Dirac measure, then
for any r > 0 and x ∈ X,

γ(B(x, r)) < 1.

Exercise 2.2. Let X be an infinite dimensional Banach space. Prove that there is no
nontrivial measure µ on X invariant under translations and such that µ(B) > 0 for any
ball B. Hint: modify the construction described in the Hilbert case using a sequence of
elements in the unit ball having mutual distance 1/2.
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Exercise 2.3. Prove that a centred Gaussian measure on a Banach space is degenerate
iff there exists X∗ 3 f 6= 0 such that γ̂(f) = 1 and hence iff there exists a proper closed
subspace V ⊂ X with γ(V ) = 1.

Exercise 2.4. Let γ be centred. Prove that for any choice f1, . . . , fd ∈ X∗, setting

P (x) = (f1(x), . . . , fd(x)),

γ ◦ P−1 is the Gaussian measure N (0, Q), with Qi,j = 〈fi, fj〉L2(X,γ). If L : Rd → Rn is
another linear map, compute the covariance matrix of γ ◦ (L ◦ P )−1.

Exercise 2.5. Let γ = N (a,Q) be a nondegenerate Gaussian probability measure on Rd.
Show that ∫

Rd
|x|4 γ(dx) = (TrQ)2 + 2Tr(Q2).

Hint: Consider the function F (ε) =
∫
Rd e

ε|x|2γ(dx) and compute F ′′(0).

Exercise 2.6. Let γ be a centred Gaussian measure on a separable Banach space X.
Compute the integrals ∫

X
ef(x) γ(dx),

∫
X

(
f(x)

)k
γ(dx), k ∈ N

for every f ∈ X∗.



Lecture 3

The Cameron–Martin space

In this Lecture X is a separable Fréchet space, and we present the Cameron-Martin space.
It consists of the elements h ∈ X such that the measure γh(B) := γ(B − h) is absolutely
continuous with respect to γ. As we shall see, the Cameron-Martin space is fundamental
when dealing with the differential structure in X mainly in connection with integration
by parts formulas.

3.1 The Cameron–Martin space

We start with the definition of the Cameron–Martin space.

Definition 3.1.1 (Cameron-Martin space). For every h ∈ X set

|h|H := sup
{
f(h) : f ∈ X∗, ‖j(f)‖L2(X,γ) ≤ 1

}
, (3.1.1)

where j : X∗ → L2(X, γ) is the inclusion defined in (2.3.4). The Cameron-Martin space
is defined by

H :=
{
h ∈ X : |h|H <∞

}
. (3.1.2)

If Xis a Banach space, calling c the norm of j : X∗ → L2(X, γ), we have

‖h‖X = sup{f(h) : ‖f‖X∗ ≤ 1} ≤ sup{f(h) : ‖j(f)‖L2(X,γ) ≤ c} = c|h|H , (3.1.3)

and then H is continuously embedded in X. We shall see that this embedding is even
compact and that the norms ‖ · ‖X and | · |H are not equivalent in H, in general.

The Cameron-Martin space inherits a natural Hilbert space structure from the space
X∗γ through the L2(X, γ) Hilbert structure.

Proposition 3.1.2. An element h ∈ X belongs to H if and only if there is ĥ ∈ X∗γ such

that h = Rγ ĥ. In this case,

|h|H = ‖ĥ‖L2(X,γ). (3.1.4)

27
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Therefore Rγ : X∗γ → H is an isometry and H is a Hilbert space with the inner product

[h, k]H := 〈ĥ, k̂〉L2(X,γ)

whenever h = Rγ ĥ, k = Rγ k̂.

Proof. If |h|H <∞, we define the linear map L : j(X∗)→ R setting

L(j(f)) := f(h), ∀f ∈ X∗.

Such map is well-defined since the estimate

|f(h)| ≤ ‖j(f)‖L2(X,γ)|h|H , (3.1.5)

that comes from (3.1.1), implies that if j(f1) = j(f2), then f1(h) = f2(h). The map L is
also continuous with respect to the L2 topology again by estimate (3.1.5). Then L can
be continuously extended to X∗γ ; by the Riesz representation theorem there is a unique

ĥ ∈ X∗γ such that the extension (still denoted by L) is given by

L(φ) =

∫
X
φ(x)ĥ(x) γ(dx), ∀φ ∈ X∗γ .

In particular, for any f ∈ X∗,

f(h) = L(j(f)) =

∫
X
j(f)(x)ĥ(x) γ(dx) = f(Rγ ĥ), (3.1.6)

therefore Rγ ĥ = h and

|h|H = sup
{
f(h) : f ∈ X∗, ‖j(f)‖L2(X,γ) ≤ 1

}
= ‖ĥ‖L2(X,γ).

Conversely, if h = Rγ ĥ, then for every f ∈ X∗ we have

f(h) =

∫
X
j(f)(x)ĥ(x) γ(dx) ≤ ‖ĥ‖L2(X,γ)‖j(f)‖L2(X,γ), (3.1.7)

by (3.1.6), whence |h|H <∞.

The space L2(X, γ) (hence its subspaceX∗γ as well) is separable, becauseX is separable,
see e.g. [4, Theorem 4.13]. Therefore, H, being isometric to a separable space, is separable.

Remark 3.1.3. The map Rγ : X∗γ → X can be defined directly using the Bochner integral
through the formula

Rγf :=

∫
X

(x− a)f(x) γ(dx),

where a is the mean of γ. We do not assume the knowledge of Bochner integral. We shall
say something about it in one of the following lectures.
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Before going on, let us describe the finite dimensional case X = Rd. If γ = N (a,Q)
then for f ∈ Rd we have

‖j(f)‖2L2(Rd,γ) =

∫
Rd

(x− a) · f N (a,Q)(dx) = (Qf) · f

and therefore |h|H is finite if and only if h ∈ Q(Rd) and, as a consequence, H = Q(Rd)
is the range of Q. According to the notation introduced in Proposition 3.1.2, if γ is
nondegenerate, namely Q is invertible, h = Rγ ĥ iff ĥ(x) = 〈Q−1h, x〉Rd . Moreover, if γ
is nondegenerate the measures γh defined by γh(B) = γ(B − h) are all equivalent to γ in
the sense of Section 1.1 and an elementary computation shows that, writing γh = %hγ, we
have

%h(x) := exp
{

(Q−1h) · x− 1

2
|h|2
}

= exp
{
ĥ(x)− 1

2
|h|2
}
.

In the infinite dimensional case the situation is completely different. We start with a
preliminary result.

Lemma 3.1.4. For any g ∈ X∗γ , the measure

µg = exp
{
g − 1

2
‖g‖2L2(X,γ)

}
γ

is a Gaussian measure with characteristic function

µ̂g(f) = exp
{
if(Rγg) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
. (3.1.8)

Proof. First of all, we notice that the image of γ under the measurable function g : X → R
is still a Gaussian measure given by N (0, ‖g‖2L2(X,γ)) thanks to Proposition 2.3.5. Indeed,

γ̂(tg) = exp
{
−1

2
‖g‖22t2

}
for all t ∈ R,

and then γ̂(tg) can also be computed by∫
X

exp{itg(x)}γ(dx) =

∫
R

exp{itτ}(γ ◦ g−1) dτ = (̂γ ◦ g−1)(t).

Therefore, ∫
X

exp{|g(x)|} γ(dx) =

∫
R
e|t|N (0, ‖g‖2L2(X,γ))(dt) <∞,

hence exp{|g|} ∈ L1(X, γ) and µg is a finite measure. In addition, µg is a probability
measure since

µg(X) =

∫
X

exp
{
g(x)− 1

2
‖g‖2L2(X,γ)

}
γ(dx)

= exp
{
−1

2
‖g‖2L2(X,γ)

}∫
R
etN (0, ‖g‖2L2(X,γ))(dt) = 1.
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In order to prove that (3.1.8) holds, we observe that for every t ∈ R we have

exp
{
−1

2
‖g‖2L2(X,γ)

}∫
X

exp{i(f(x)− tg(x))} γ(dx)

= exp
{
−1

2
‖g‖2L2(X,γ)

}
γ̂(f − tg)

= exp
{
−1

2
‖g‖2L2(X,γ)

}
exp
{
iaγ(f − tg)− 1

2
‖j(f − tg)‖2L2(X,γ)

}
= exp

{
tf(Rγg)− 1 + t2

2
‖g‖2L2(X,γ) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
.

As
∫
X exp{α|g(x)|}γ(dx) < ∞ for all α > 0 (which can be proved exactly as at the

beginning of the proof of Lemma 3.1.4, the functions

z 7→ exp
{
−1

2
‖g‖2L2(X,γ)

}∫
X

exp{i(f(x)− zg(x))} γ(dx)

z 7→ exp
{
zf(Rγg)− 1 + z2

2
‖g‖2L2(X,γ) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
are entire holomorphic and coincide for z ∈ R, hence they coincide in C. In particular,
taking z = i we obtain

µ̂g(f) = exp
{
iaγ(f)− 1

2
‖j(f)‖2L2(X,γ) + iRγg(f)

}
.

Theorem 3.1.5 (Cameron-Martin Theorem). For h ∈ X, define the measure γh(B) :=
γ(B − h). If h ∈ H the measure γh is equivalent to γ and γh = %hγ, with

%h(x) := exp
{
ĥ(x)− 1

2
|h|2H

}
, (3.1.9)

where ĥ = R−1
γ h. If h /∈ H then γh ⊥ γ. Hence, γh ≈ γ if and only if h ∈ H.

Proof. For h ∈ H, let us compute the characteristic function of γh. For any f ∈ X∗ we
have

γ̂h(f) =

∫
X

exp{if(x)} γh(dx) =

∫
X

exp{if(x+ h)} γ(dx)

= exp
{
if(Rγ ĥ) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
, f ∈ X∗.

Taking into account Lemma 3.1.4 and Proposition 2.1.2, we obtain γh = %hγ, where the
density %h is given by (3.1.9).

Now, let us see that if h /∈ H then γh ⊥ γ. To this aim, let us first consider the
1-dimensional case. If γ is a Dirac measure in R, then γh ⊥ γ for any h 6= 0 and
|γ − γh|(R) = 2. Otherwise, if γ = N (a, σ2) is a nondegenerate Gaussian measure in R,
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then γh � γ with dγh
dγ (t) = exp{− h2

2σ2 + h(t−a)
σ2 }. We can apply Theorem 1.1.12 (Hellinger)

with λ = γ, whence by Exercise 3.2

H(γ, γh) = exp
{
− h2

8σ2

}
, (3.1.10)

and then (1.1.7) implies

|γ − γh|(R) ≥ 2

(
1− exp

{
− 1

8σ2
h2
})

. (3.1.11)

In any case, (3.1.11) holds true.
Let us go back to X. For every f ∈ X∗, using just the definition, it is immediate to

verify that γh ◦ f−1 = (γ ◦ f−1)f(h) and

|γ ◦ f−1 − (γ ◦ f−1)f(h)|(R) ≤ |γ − γh|(X). (3.1.12)

If h 6∈ H, there exists a sequence (fn) ⊂ X∗ with ‖j(fn)‖L2(X,γ) = 1 and fn(h) ≥ n. By
(3.1.11) and (3.1.12) we obtain

|γ − γh|(X) ≥ |(γ ◦ f−1
n )− (γ ◦ f−1

n )fn(h)|(R) ≥ 2

(
1− exp

{
−1

8
fn(h)2

})
≥ 2

(
1− exp

{
−1

8
n2
})

.

This implies that |γ − γh|(X) = 2, hence by Corollary 1.1.13, γh ⊥ γ.

From now on, we denote by BH(0, r) the open ball of centre 0 and radius r in H and

by B
H

(0, r) its closure in H. In the proof of Theorem 3.1.9 we need the following result.

Proposition 3.1.6. If A ∈ B(X) is such that γ(A) > 0, then there is r > 0 such that
BH(0, r) ⊂ A−A.

Proof. Let us introduce the function H 3 h 7→ φ(h) := γ
(
(A+ h) ∩A

)
, i.e.,

φ(h) =

∫
X

1lA(x− h)1lA(x) γ(dx).

We claim that
lim inf
|h|H→0

φ(h) ≥ γ(A).

Assume first that A is open. For ε > 0 define

Aε := {x ∈ A : dist (x,Ac) > ε}.

Then Aε ⊂ (A+ h) ∩A for all h ∈ X with ‖h‖X < ε, and therefore

γ(Aε) ≤ lim inf
‖h‖X→0

φ(h).
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Since γ(Aε)→ γ(A) as ε→ 0, one obtains γ(A) ≤ lim inf‖h‖X→0 φ(h).

To prove the claim for every measurable set A, notice that lim|h|H→0 γ(A+h) = γ(A).

Indeed, since the image measure of γ under ĥ is N (0, |h|2H), we have

|γ(A+ h)− γ(A)| ≤
∫
X

∣∣∣∣exp
{
−ĥ(x)− 1

2
|h|2H

}
−1

∣∣∣∣ 1lA(x) γ(dx)

≤
∫
R

∣∣∣∣exp
{
−t|h|H −

1

2
|h|2H

}
−1

∣∣∣∣ γ1(dt),

and the right hand side vanishes as |h|H → 0 by the Dominated Convergence Theorem.

Let now A be a measurable set. We have seen in the proof of Proposition 1.1.6 that
for any ε > 0 there exists an open set Aε ⊃ A such that γ(Aε \ A) < ε. Therefore, for
h ∈ H we have

(A+ h) ∩A ⊇
[
(Aε + h) ∩Aε

]
\
[
((Aε \A) + h) ∪ (Aε \A)

]
;

hence

γ((A+ h) ∩A) ≥ γ((Aε + h) ∩Aε)− γ((Aε \A) + h)− γ(Aε \A).

By the first part of the proof,

lim inf
|h|H→0

γ((Aε + h) ∩Aε) ≥ γ(Aε)

and then

lim inf
|h|H→0

γ((A+ h) ∩A) ≥ γ(Aε)− 2γ(Aε \A) ≥ γ(A)− 2ε > 0

if ε < γ(A)/2. Then there is r > 0 such that φ(h) > 0 for |h|H < r and therefore for any
|h|H < r, (A+ h) ∩A 6= ∅, so that BH(0, r) ⊂ A−A.

We give the following technical result that we shall need for instance in the proof of
Theorem 3.1.9; it will be rephrased with a probabilistic language in the sequel.

Lemma 3.1.7. Let f, g ∈ X∗ and set T : X → R2, T (x) := (f(x), g(x)). Then

γ ◦ T−1 = (γ ◦ f−1)⊗ (γ ◦ g−1)

iff j(f) and j(g) are orthogonal in L2(X, γ).

Proof. We just compute the characteristic function. For every ξ ∈ R2 we have

̂γ ◦ T−1(ξ) =

∫
X

exp{iξ(T (x))}γ(dx) =

∫
X

exp{i(ξ1f + ξ2g)(x)}γ(dx)

= exp

{
iξ1aγ(f) + iξ2aγ(g)− 1

2
‖j(ξ1f + ξ2g)‖2L2(X,γ)

}
.
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On the other hand, if µ = (γ ◦ f−1)⊗ (γ ◦ g−1), then

µ̂(ξ) = ̂(γ ◦ f−1)(ξ1) ̂(γ ◦ g−1)(ξ2)

= exp

{
iξ1aγ(f) + iξ2aγ(g)− ξ2

1

2
‖j(f)‖2L2(X,γ) −

ξ2
2

2
‖j(g)‖2L2(X,γ)

}
,

whence the conclusion, since

‖j(ξ1f + ξ2g)‖2L2(X,γ) = ξ2
1‖j(f)‖2L2(X,γ) + ξ2

2‖j(g)‖2L2(X,γ)

if and only if 〈f, g〉L2(X,γ) = 0.

Let us show that it is always possible to consider orthonormal bases in X∗γ made by
elements of j(X∗); this fact can be useful in some proofs.

Lemma 3.1.8. There exists an orthonormal basis of X∗γ contained in j(X∗).

Proof. Let F = {fk : k ∈ N} be a dense sequence in j(X∗), which is a pre-Hilbert space
when endowed with the L2(X, γ) inner product. Starting from F , by the Gram–Schmidt
procedure (see e.g. [18, Theorem V.2.1]), we can build an orthonormal basis of j(X∗), say
{ek : k ∈ N}. Then, {ek : k ∈ N} is an orthonormal basis of X∗γ as well.

Theorem 3.1.9. Let γ be a Gaussian measure in a separable Banach space X, and let H
be its Cameron–Martin space. The following statements hold.

(i) The unit ball BH(0, 1) of H is relatively compact in X and hence the embedding
H ↪→ X is compact.

(ii) If γ is centred then H is the intersection of all the Borel full measure subspaces of
X.

(iii) If γ is centred and X∗γ is infinite dimensional then γ(H) = 0.

Proof. (i) It is sufficient to prove that BH(0, r) is relatively compact in X for some r > 0.
Fix any compact set K ⊂ X with γ(K) > 0 (such a set exists by Proposition 1.1.6); by
Lemma 3.1.6 there is r > 0 such that the ball BH(0, r) is contained in the compact set

K −K, which implies that B
H

(0, r) is contained in K −K and the proof is complete.
(ii) Let V be a subspace of X with γ(V ) = 1 and fix h ∈ H; by Theorem 3.1.5,

γ(V − h) =γh(V ) =

∫
V

exp
{
ĥ(x)− 1

2
|h|2H

}
γ(dx)

=

∫
X

exp
{
ĥ(x)− 1

2
|h|2H

}
γ(dx) = 1.

This implies that h ∈ V , since otherwise V ∩ (V − h) = ∅ and we would have

1 = γ(X) ≥ γ(V ) + γ(V − h) = 2,
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a contradiction. Therefore, H ⊂ V for all subspaces V of full measure.

To prove that the intersection of all subspaces of X with full measure is contained in
H, fixed any h /∈ H, we construct a full measure subspace V such that h /∈ V . If h /∈ H,
then |h|H =∞ and there is a sequence (fn) ⊂ X∗ with ‖j(fn)‖L2(X,γ) = 1 and fn(h) ≥ n.
Since

∞∑
n=1

1

n2

∫
X
|j(fn)(x)| γ(dx) ≤

∞∑
n=1

1

n2
‖j(fn)‖L2(X,γ) <∞

the subspace

V :=
{
x ∈ X : the series

∞∑
n=1

1

n2
j(fn)(x) is convergent

}
(3.1.13)

(which is a Borel set, see Exercise 3.1) has full measure, and h /∈ V .
(iii) Let us assume that X∗γ is infinite dimensional. Then, there exists an orthonormal basis
{fn : n ∈ N} ⊂ X∗ (see lemma 3.1.8) of X∗γ ; in particular for any n ∈ N, γ◦f−1

n = N (0, 1).
For every M > 0 and n ∈ N we have

γ({x ∈ X : |fn(x)| ≤M}) = N (0, 1)(−M,M) =: aM < 1;

as a consequence, since the functions fn are mutually orthogonal, by Lemma 3.1.7 we have

γ({x ∈ X : |fk(x)| ≤M for k = 1, . . . , n}) = anM → 0 as n→∞

and then

γ
({
x ∈ X : sup

n∈N
|fn(x)| ≤M

})
= γ

(⋂
n∈N
{x ∈ X : |fk(x)| ≤M,k = 1, . . . , n}

)
= 0.

Since {fn : n ∈ N} ⊂ X∗ is an orthonormal basis of X∗γ , for any h ∈ H we have

|h|2H = ‖ĥ‖2L2(X,γ) =
∞∑
n=1

〈fn, ĥ〉2L2(X,γ) =
∞∑
n=1

fn(h)2.

Therefore

H =
{
x ∈ X :

∞∑
n=1

fn(x)2 <∞
}
⊂
⋃
M>0

{
x ∈ X : sup

n∈N
|fn(x)| ≤M

}
and it has measure 0.

We close this lecture with a couple of properties of the reproducing kernel and of the
Cameron–Martin space. Then we see that the norm of the space X is somehow irrelevant
in the theory, in the sense that the Cameron–Martin space remains unchanged if we replace
the norm of X by a weaker norm.
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Proposition 3.1.10. Let γ be a Gaussian measure on a Banach space X. Let us assume
that X is continuously embedded in another Banach space Y , i.e., there exists a continuous
injection i : X → Y . Then the image measure γY := γ ◦ i−1 in Y is Gaussian and the
Cameron–Martin space H associated with the measure γ is isomorphic to the Cameron–
Martin space HY associated with the measure γY in Y .

Proof. Let f ∈ Y ∗; then f ◦ i ∈ X∗ by the continuity of the injection i. Moreover

aγ(f ◦ i) =

∫
X
f(i(x)) γ(dx) =

∫
Y
f(y) γY (dy) = aγY (f).

Denoting by jY : Y ∗ → Y ∗γY the inclusion of Y ∗ into L2(Y, γY ), we have j(f ◦ i) = jY (f)◦ i
and

‖j(f ◦ i)‖2L2(X,γ) =

∫
X
j(f ◦ i)(x)2 γ(dx) =

∫
Y
jY (f)(y)2 γY (dy) = ‖jY (f)‖2L2(Y,γY ).

We prove now that i : H → HY is an isometry. First of all, i(h) ∈ HY for any h ∈ H since
for any f ∈ Y ∗

|f(i(h))| = |(f ◦ i)(h)| ≤ ‖j(f ◦ i)‖L2(X,γ)|h|H
and then

|i(h)|HY = sup{f(i(h)) : f ∈ Y ∗, ‖jY (f)‖L2(Y,γY ) ≤ 1} ≤ |h|H <∞.

Hence i(H) ⊂ HY and
|i(h)|HY ≤ |h|H . (3.1.14)

We prove now the inclusion HY ⊂ i(H); since i(X) has full measure in Y , we have
HY ⊂ i(X) by statement (ii) of Theorem 3.1.9. Then, for any hY ∈ HY , there exists a
unique h ∈ X with i(h) = hY ; since

γY (B − hY ) = γ(i−1(B)− h),

hY ∈ HY if and only if h ∈ H. In this case

γY (B − hY ) =

∫
B

exp
{
ĥY (y)− 1

2
|hY |2HY

}
γY (dy)

=

∫
i−1(B)

exp
{
ĥY (i(x))− 1

2
|hY |2HY

}
γ(dx)

is equal to

γ(i−1(B)− h) =

∫
i−1(B)

exp
{
ĥ(x)− 1

2
|h|2H

}
γ(dx).

This implies

ĥY (i(x))− 1

2
|hY |2HY = ĥ(x)− 1

2
|h|2H (3.1.15)

for γ–a.e. x ∈ X. By (3.1.14) we obtain ĥY (i(x))− ĥ(x) ≤ 0 for γ–a.e. x ∈ X, and then,
since ∫

X
(ĥY (i(x))− ĥ(x)) γ(dx) =

∫
Y
ĥY (y) γY (dy)−

∫
X
ĥ(x) γ(dx) = 0,

we conclude that ĥY (i(x)) = ĥ(x) for γ–a.e. x ∈ X and then by (3.1.15) |hY |HY =
|i(h)|HY = |h|H .
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3.2 Exercises 3

Exercise 3.1. Prove that the space V in (3.1.13) is a Borel set.

Exercise 3.2. Show that (3.1.10) holds.

Exercise 3.3. Let γ be the measure on R2 defined by

γ(B) = γ1({x ∈ R : (x, 0) ∈ B}), B ∈ B(R2).

Prove that the Cameron–Martin space H is given by R× {0}.

Exercise 3.4. Let γ, µ be equivalent Gaussian measures in X, and denote by Hγ , Hµ the
associated Cameron–Martin spaces. Prove that for every x ∈ X, x ∈ Hγ iff x ∈ Hµ, and
if in addition γ and µ are centred, then X∗γ = X∗µ. Prove that if γ, µ are centred Gaussian
measures in X such that γ ⊥ µ, then γx ⊥ µy, for all x, y ∈ X.

Exercise 3.5. Prove that the Cameron–Martin space is invariant by translation, i.e. for
any x ∈ X, the measure

γx(B) = γ(B − x), ∀B ∈ B(X)

has the same Cameron–Martin space as γ even if γx ⊥ γ.



Lecture 4

Examples

In this Lecture we present two basic examples that provide in some sense the extreme
cases. The first one is R∞, which is not even a Banach space, but, being a countable
product of real lines, admits a canonical product Gaussian measure which generalises
Proposition 1.2.4. The second example is a Hilbert space, whose richer structure allows
a more detailed, though simplified, description of the framework. After presenting the
relevant Gaussian measures in these spaces, we describe the Reproducing Kernel X∗γ and
the Cameron–Martin space H.

4.1 The product R∞

The space RI of all the real functions defined in the set I is the only example of non Banach
space that is relevant in our lectures. Its importance comes both from some “universal”
properties it enjoys and (even more) from the fact that it appears naturally when dealing
with stochastic processes, in particular with the Brownian motion. Here, we restrict our
attention to the countable case, i.e., R∞ := RN, the space of all the real sequences. It is
obviously a vector space, that we endow with a metrisable locally convex topology coming
from the family of semi-norms pk(x) := |xk|, where x = (xk)k∈N ∈ R∞. A distance is
defined as follows,

d(x, y) :=
∞∑
k=1

1

2k
|xk − yk|

1 + |xk − yk|
.

It is easily seen that under this metric every Cauchy sequence is convergent, hence R∞
turns out to be a Fréchet space. Moreover, the subspace R∞c of finite sequences, namely
the sequences (xk) that vanish eventually, is isomorphic to the topological dual of R∞,
under the obvious isomorphism (see Exercise 4.1(i))

R∞c 3 (ξk) 7→ f, f(x) =
∞∑
k=1

ξkxk (finite sum) .

37
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The elements of R∞c with rational entries are a countable dense set, hence R∞ is separable.
The cylindrical σ-algebra E (R∞) is generated by the sets of the form{

x ∈ R∞ : (x1, . . . , xk) ∈ B,B ∈ B(Rk)
}
.

According to Definition 1.1.10, we consider the cylindrical σ–algebra E (R∞, F ) with F :=
{δj , j ∈ N}, generated by the evaluations δj(x) := xj . By Theorem 2.1.1, it coincides
with the Borel σ-algebra. According to Remark 1.1.18, we endow R∞ with the product
measure

γ :=
⊗
k∈N

γ1 (4.1.1)

where γ1 is the standard Gaussian measure. As in the Banach space case, we say that
a probability measure µ in R∞ is Gaussian if for every ξ ∈ R∞c the measure µ ◦ ξ−1 is
Gaussian on R. Moreover, it is easily seen that Theorem 2.2.4 holds in R∞ as well, see [3,
Theorem 2.2.4]. Finally, γ is obviously a Gaussian measure.

Theorem 4.1.1. The countable product measure γ on R∞ is a centred Gaussian measure.
Its characteristic function is

γ̂(ξ) = exp
{
−1

2

∞∑
k=1

|ξk|2
}

= exp
{
−1

2
‖ξ‖2`2

}
, ξ ∈ R∞c , (4.1.2)

the Reproducing Kernel is

X∗γ =
{
f ∈ L2(R∞, γ) : f(x) =

∞∑
k=1

ξkxk, (ξk) ∈ `2
}

and the Cameron-Martin space H is `2.

Proof. We compute the characteristic function of γ. For f(x) =
∑

k ξkxk, with x ∈ R∞
and ξ ∈ R∞c we have

γ̂(f) =

∫
R∞

exp{if(x)} γ(dx) =

∫
R∞

exp
{
i
∞∑
k=1

ξkxk

} ∞⊗
k=1

γ1(dx) (4.1.3)

=

∞∏
k=1

∫
R

exp{ixkξk} γ1(dxk) =

∞∏
k=1

exp
{
−1

2
|ξk|2

}
= exp

{
−1

2
‖ξ‖2`2

}
.

According to Theorem 2.2.4, γ is a Gaussian measure with mean aγ = 0 and covariance
Bγ(ξ, ξ) = ‖ξ‖2`2 .
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Let us come to the Cameron-Martin space. Since the mean of γ is 0, for every f =
(ξk) ∈ R∞c we have

‖f‖2L2(X,γ) =

∫
X

∣∣∣∑
k

ξkxk

∣∣∣2 γ(dx) =

∫
X

∑
k

ξ2
kx

2
k +

∑
j 6=k

ξjξkxjxk

 γ(dx)

=
∑
k

ξ2
k

∫
R
x2
k γ1(dxk) +

∑
j 6=k

ξjξk

∫
R
xj γ(dxj)

∫
R
xk γ(dxk)

=
∑
k

ξ2
k = ‖ξ‖2`2

(we recall that all sums are finite) and this shows that X∗γ , being the closure of j(X∗) = X∗,
consists of all the functions f(x) =

∑
k ξkxk, with (ξk) ∈ `2, see Exercise 4.1(ii). On the

other hand, for any sequence h = (hk) ∈ R∞ we have

|h|H = sup
{
f(h) : f ∈ X∗, ‖j(f)‖L2(X,γ) ≤ 1

}
= sup

{∑
k

ξkhk : ξ ∈ R∞c ,
∑
k

|ξk|2 ≤ 1
}

= ‖h‖`2 ,

and then H coincides with `2.

Remark 4.1.2. It is possible to consider more general Gaussian measures on R∞, i.e.,

µ =
∞⊗
k=1

N (ak, λk). (4.1.4)

In this case,

µ̂(ξ) = exp
{
i
∞∑
k=1

ξkak −
1

2

∞∑
k=1

λkξ
2
k

}
, ξ = (ξk) ∈ R∞c , (4.1.5)

where as before all the sums contain a finite number of nonzero terms. Let us show that
if (ak) ∈ `2 and

∑
k λk <∞ then µ is concentrated on `2, i.e., µ(`2) = 1. Indeed∫

R∞

∞∑
k=1

|xk|2 µ(dx) =

∞∑
k=1

∫
R
|xk|2 N (ak, λk)(dxk) =

∞∑
k=1

λk +

∞∑
k=1

|ak|2 <∞.

Then ‖x‖`2 <∞ µ-a.e in R∞, hence µ(`2) = 1.

4.2 The Hilbert space case

Let X be an infinite dimensional separable Hilbert space, with norm ‖ · ‖X and inner
product 〈·, ·〉X . As usual, we identify X∗ with X via the Riesz representation.

We say that an operator L ∈ L(X) is nonnegative if 〈Lx, x〉X ≥ 0 for all x ∈ X. We
also recall that an operator L ∈ L(X) is compact if (and only if) L is the limit in the
operator norm of a sequence of finite rank operators. Then, we have the following result.
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Proposition 4.2.1. Let L be a self-adjoint nonnegative bounded linear operator on X. If
there is an orthonormal basis {fk : k ∈ N} of X such that

T :=

∞∑
k=1

〈Lfk, fk〉X <∞ (4.2.1)

then L is compact.

Proof. Without loss of generality, assume that ‖L‖L(X) = 1. For every n ∈ N, let Xn be
the linear span of {f1, . . . , fn}. Let Pn be the orthogonal projection onto Xn and define
the finite rank operator Ln = PnLPn. It is nonnegative and self-adjoint, ‖Ln‖L(X) ≤ 1,
and the equality

〈Lnfk, fk〉X = 〈Lfk, fk〉X

holds for every k = 1, . . . , n. Denoting by L
1/2
n the square root of Ln, we have ‖L1/2

n fk‖2X =
〈Lfk, fk〉X for k = 1, . . . , n, whence

n∑
k=1

‖L1/2
n fk‖2X ≤ T ∀n ∈ N.

From ‖L1/2
n ‖L(X) ≤ 1 it follows that ‖Lnfk‖2X ≤ ‖L

1/2
n ‖2X‖L

1/2
n fk‖2X ≤ ‖L

1/2
n fk‖2X for

k = 1 . . . , n and

n∑
k=1

‖Lnfk‖2X ≤
n∑
k=1

‖L1/2
n fk‖2X ≤ tr(L) ∀n ∈ N.

Notice that for k = 1, . . . ,m and n ≥ m we have Lnfk = PnLfk. therefore, for every
m ∈ N and limn→∞ Lnfk = Lfk. Therefore, for every m ∈ N we have

m∑
k=1

‖Lfk‖2X = lim
n→∞

m∑
k=1

‖Lnfk‖2X ≤ T

and then letting m→∞
∞∑
k=1

‖Lfk‖2X ≤ T. (4.2.2)

Using (4.2.2) we prove that L is compact. Let

xn =

∞∑
k=1

〈xn, fk〉Xfk −→ 0 weakly.

Then, (xn) is bounded, say ‖xn‖X ≤M for any n ∈ N. Moreover,

Lxn =

∞∑
k=1

〈xn, fk〉XLfk
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whence for every N ∈ N we have

‖Lxn‖X ≤
∞∑
k=1

|〈xn, fk〉X |‖Lfk‖X =
N∑
k=1

|〈xn, fk〉X |‖Lfk‖X +
∞∑

k=N+1

|〈xn, fk〉X |‖Lfk‖X

≤
N∑
k=1

|〈xn, fk〉X |+M
( ∞∑
k=N+1

‖Lfk‖2X
)1/2

and for every ε > 0 there is N ∈ N such that the second term is < ε because the series in
(4.2.2) is convergent. Once this N has been fixed, there is ν > 0 such that the first term
is < ε for n > ν by the weak convergence of the sequence (xn) to 0. So, (Lxn) converges
in X and L is compact.

Let us recall that if L is a compact operator on X, the spectrum of L is at most
countable and if the spectrum is infinite it consists of a sequence of eigenvalues (λk) that
can cluster only at 0. If L is compact and self-adjoint, there is an orthonormal basis of X
consisting of eigenvectors, see e.g. [4, Theorem 6.11]. Moreover, L has the representation

Lx =
∞∑
k=1

λk〈x, ek〉X , x ∈ X, (4.2.3)

where {ek : k ∈ N} is an orthonormal basis of eigenvectors and Lek = λkek for any k ∈ N.
If in addition L is nonnegative, then its eigenvalues are nonnegative.

Lemma 4.2.2. Every operator that can be written in the form

Lx =
∞∑
k=1

αk〈x, fk〉Xfk,

for some orthonormal basis {fk : k ∈ N} with (αk) ⊂ R, limk→∞ αk = 0, is compact.

Proof. Let us show that L is the limit in the operator norm of the sequence of finite rank
operators

Lnx =
n∑
k=1

αk〈x, fk〉Xfk.

Indeed,

‖Lx− Lnx‖X =
∥∥∥ ∞∑
k=n+1

αk〈x, fk〉Xfk
∥∥∥
X
≤ sup

k>n
|αk|‖x‖X ,

whence ‖L− Ln‖L(X) ≤ supk>n |αk| → 0 because αk → 0 as k →∞.

It follows that if L is a nonnegative self-adjoint compact operator and {ek : k ∈ N} is
an orthonormal basis of eigenvectors with Lek = λkek. We may define the square root of
L by

L1/2x =

∞∑
k=1

λ
1/2
k 〈x, ek〉Xek.
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The operator L1/2 is obviously self-adjoint, and it is also compact by Lemma 4.2.2.

Let us show that if L ∈ L(X) verifies the hypotheses of Proposition 4.2.1 then the
sum in (4.2.1) is independent of the basis. Indeed, if {fk : k ∈ N} satisfies (4.2.1) and
{en : n ∈ N} a the basis of eigenvectors, we have

∞∑
k=1

〈Lfk, fk〉X =
∞∑
k=1

〈
L
( ∞∑
n=1

〈fk, en〉Xen
)
,
∞∑
m=1

〈fk, em〉Xem
〉
X

=
∞∑
k=1

∞∑
n=1

∞∑
m=1

〈
〈fk, en〉XLen, 〈fk, em〉Xem

〉
X

=

∞∑
k=1

∞∑
n=1

∞∑
m=1

λn

〈
〈fk, en〉Xen, 〈fk, em〉Xem

〉
X

=

∞∑
k=1

∞∑
n=1

λn〈fk, en〉2X =

∞∑
n=1

λn.

The same computation with any orthonormal basis {gk : k ∈ N} shows that the sum is
independent of the basis and is finite for any basis if it is finite for one. So, we may define
the trace-class operators.

Definition 4.2.3 (Trace-class operators). A nonnegative self-adjoint operator L ∈ L(X)
is of trace-class or nuclear if there is an orthonormal basis {ek : k ∈ N} of X such that

∞∑
k=1

〈Lek, ek〉X <∞

and the trace of L is

tr(L) :=
∞∑
k=1

〈Lek, ek〉X (4.2.4)

for any orthonormal basis {ek : k ∈ N} of X.

For a complete treatment of the present matter we refer e.g. to [10, §VI.5], [11, §§XI.6,
XI.9].

Let γ be a Gaussian measure in X. According to Theorem 2.2.4 and (2.2.1), (2.2.2)
we have

γ̂(f) = exp
{
iaγ(f)− 1

2
Bγ(f, f)

}
, f ∈ X∗,

where the linear mapping aγ : X∗ → R and the bilinear symmetric mapping Bγ : X∗ ×
X∗ → R are continuous by Proposition 2.3.3. Then, there are a ∈ X and a self-adjoint
Q ∈ L(X) such that aγ(f) = 〈f, a〉X and Bγ(f, g) = 〈Qf, g〉X for every f , g ∈ X∗ = X
(see Exercise 4.2). So,

〈Qf, g〉X =

∫
X
〈f, x− a〉X〈g, x− a〉Xγ(dx), f, g ∈ X, (4.2.5)
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and

γ̂(f) = exp
{
i〈f, a〉X −

1

2
〈Qf, f〉X

}
, f ∈ X. (4.2.6)

We denote by N (a,Q) the Gaussian measure γ whose Fourier transform is given by
(4.2.6). As in finite dimension, a is called the mean and Q is called the covariance of γ.

The following theorem is analogous to Theorem 2.2.4, but there is an important differ-
ence. In Theorem 2.2.4 a measure is given and we give a criterion to see if it is Gaussian.
Instead, in Theorem 4.2.4 we characterise all Gaussian measures in X.

Theorem 4.2.4. If γ is a Gaussian measure on X then its characteristic function is
given by (4.2.6), where a ∈ X and Q is a self-adjoint nonnegative trace-class operator.
Conversely, for every a ∈ X and for every nonnegative self-adjoint trace-class operator Q,
the function γ̂ in (4.2.6) is the characteristic function of a Gaussian measure with mean
a and covariance operator Q.

Proof. Let γ be a Gaussian measure and let γ̂ be its characteristic function, given by
(4.2.6). The vector a is the mean of γ by definition, and the symmetry of Q follows from
the fact that the bilinear form Bγ is symmetric. By (4.2.5), Q is nonnegative, and for
every orthonormal basis {ek : k ∈ N} we have

∞∑
k=1

〈Qek, ek〉X =
∞∑
k=1

∫
X
〈x− a, ek〉2X γ(dx) =

∫
X
‖x− a‖2X γ(dx)

which is finite by Corollary 2.3.2. Therefore, Q is a trace-class operator.

Conversely, let Q be a self-adjoint nonnegative trace-class operator. Then Q is given
by

Qx =
∞∑
k=1

λk〈x, ek〉Xek,

where λk ≥ 0 for all k ∈ N,
∑

k λk < ∞ and {ek : k ∈ N} is an orthonormal basis of
eigenvectors such that Qek = λkek for any k ∈ N. Let us consider the measure µ on R∞
defined by (4.1.4) and its characteristic function,

µ̂(ξ) = exp
{
i
∞∑
k=1

ξkak −
1

2

∞∑
k=1

λk|ξk|2
}
, ξ ∈ R∞c

(recall that the series contains only a finite number of nonzero elements). Let u : `2 → X
be defined by u(y) =

∑∞
k=1 ykek (and extended arbitrarily in the µ-negligible set R∞ \ `2,

see Remark 4.1.2). Let us show that γ := µ ◦ u−1 and let us prove that γ = N (a,Q) by
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computing its characteristic function. For x ∈ R∞c , setting z = u(y) we have

̂(µ ◦ u−1)(x) =

∫
X

exp{i〈z,
∞∑
k=1

xkek〉X} (µ ◦ u−1)(dz)

=

∫
R∞

exp
{
i
∞∑
k=1

ykxk

}
µ(dy)

=

∫
`2

exp
{
i
∞∑
k=1

xkyk

} ∞⊗
k=1

N (ak, λk)(dy)

= exp
{
i
∞∑
k=1

xkak −
1

2

∞∑
k=1

λkx
2
k

}
= exp

{
i〈x, a〉X −

1

2
〈Qx, x〉X

}
.

By Theorem 2.2.4, ̂(µ ◦ u−1) is the characteristic function of a unique Gaussian measure
with mean a and covariance Q.

Remark 4.2.5. Since in infinite dimensions the identity is not a trace-class operator,
the function x 7→ exp{−1

2‖x‖
2
X} cannot be the characteristic function of any Gaussian

measure on X.

As a consequence of Theorem 4.2.4 we compute the best constant in Theorem 2.3.1
(Fernique).

Proposition 4.2.6. Let γ = N (a,Q) be a Gaussian measure on X and let (λk) be the
sequence of the eigenvalues of Q. If γ is not a Dirac measure, the integral∫

X
exp{α‖x‖2X} γ(dx)

is finite if and only if

α < inf

{
1

2λk
: λk > 0

}
. (4.2.7)

Proof. Let {ek : k ∈ N} be an orthonormal basis of eigenvectors of Q, and Qek = λkek
for any k ∈ N. For every α > 0, we compute∫

X
exp{α‖x‖2X} γ(dx) =

∫
R∞

exp
{
α
∞∑
k=1

x2
k

} ∞⊗
k=1

N (ak, λk)(dx)

=
∞∏
k=1

∫
R

exp{αx2
k}N (ak, λk)(dxk)

=
∏

k:λk=0

exp{αa2
k}

∏
k:λk>0

1√
2πλk

∫
R

exp{αx2
k} exp

{
− 1

2λk
(xk − ak)2

}
dxk.



45

If α ≥ (2λk)
−1 for some k ∈ N then the integral with respect to dxk is infinite, and the

function x 7→ exp{α‖x‖2} is not in L1(X, γ). If α < inf
{

1
2λk

: λk > 0
}

then each integral

is finite and we have

1√
2πλk

∫
R

exp{αx2
k} exp

{
− 1

2λk
(xk − ak)2

}
dxk = exp

{ αa2
k

1− 2αλk

} 1√
1− 2αλk

(4.2.8)

for every k ∈ N. Therefore∫
X

exp{α‖x‖2X} γ(dx)

= exp
{
α
∑

k:λk=0

a2
k

}
exp
{
α
∑

k:λk>0

a2
k

1− 2αλk

}
exp
{ ∑
k:λk>0

log
( 1√

1− 2αλk

)}
.

The convergence of the series follows from
∑

k λk <∞.

Let us characterise X∗γ and the Cameron-Martin space H. By definition, X∗γ is the
closure of j(X∗) in L2(X, γ). For the rest of the lecture, if γ = N (a,Q) we fix an
orthonormal basis {ek : k ∈ N} of eigenvectors of Q such that Qek = λkek for any k ∈ N
and for every x ∈ X, k ∈ N, we set xk := 〈x, ek〉X .

Theorem 4.2.7. Let γ = N (a,Q) be a nondegenerate Gaussian measure in X. The
space X∗γ is

X∗γ =
{
f : X → R : f(x) =

∞∑
k=1

(xk − ak)zkλ
−1/2
k , z ∈ X

}
(4.2.9)

and the Cameron-Martin space is the range of Q1/2, i.e.,

H =
{
x ∈ X :

∞∑
k=1

x2
kλ
−1
k <∞

}
. (4.2.10)

For h = Q1/2z ∈ H, we have

ĥ(x) =

∞∑
k=1

(xk − ak)zkλ
−1/2
k . (4.2.11)

and

[h, k]H = 〈Q−1/2h,Q−1/2k〉X ∀ h, k ∈ H. (4.2.12)

Proof. Let z ∈ X. The sequence

fn(x) :=
n∑
k=1

(xk − ak)zkλ
−1/2
k



46

converges in L2(X, γ), since for m > n,

‖fm − fn‖2L2(X,γ) =

m∑
k=n+1

λ−1
k z2

k

∫
R

(xk − ak)2N (ak, λk)(dxk) =

m∑
k=n+1

z2
k,

and the limit function f(x) =
∑∞

k=1(xk − ak)zkλ
−1/2
k satisfies

‖f‖2L2(X,γ) =
∞∑
k=1

λ−1
k z2

k

∫
R

(xk − ak)2N (ak, λk)(dxk) = ‖z‖2X . (4.2.13)

Moreover, for every n ∈ N, fn = j(gn), with gn ∈ X∗,

gn(x) =

n∑
k=1

λ
−1/2
k zkxk.

So, denoting by V the set in the right hand side of (4.2.9), V is contained in the closure
of j(X∗) in L2(X, γ), which is precisely X∗γ .

Let us show that X∗γ ⊂ V . Let f ∈ X∗γ and let (w(n)) ⊂ X be a sequence such that

fn(x) = 〈x − a,w(n)〉X converges to f in L2(X, γ). Setting z(n) := Q1/2w(n), we have

fn(x) =
∑∞

k=1(xk − ak)z
(n)
k λ

−1/2
k , and by (4.2.13),

‖z(n) − z(m)‖X = ‖fn − fm‖L2(X,γ), n, m ∈ N,

so that (z(n)) is a Cauchy sequence, and it converges to some z ∈ X. Then, still by
(4.2.13), ∫

X

(
f(x)−

∞∑
k=1

(xk − ak)zkλ
−1/2
k

)2
γ(dx)

= lim
n→∞

∫
X

( ∞∑
k=1

(xk − ak)(z
(n)
k − zk)λ

−1/2
k

)2

γ(dx)

= lim
n→∞

‖z(n) − z‖2X = 0,

so that f ∈ V .
Let us come to the Cameron-Martin space. We know that H is the range of Rγ : X∗γ →

X, and that Rγf = h iff 〈f, j(g)〉L2(X,γ) = g(h) for every g ∈ X∗.
Given any f ∈ X∗γ , f(x) =

∑∞
k=1(xk − ak)zkλ

−1/2
k for some z ∈ X, and g ∈ X∗,

g(x) =
∑∞

k=1 gkxk, we have∫
X
f(x)j(g)(x)γ(dx) =

∫
X

∞∑
k=1

(xk − ak)2zkλ
−1/2
k gk γ(dx) =

∞∑
k=1

zkλ
1/2
k gk.

This is equal to g(h) for h =
∑∞

k=1 zkλ
1/2
k ek, namely h = Q1/2z. So, by definition Rγf =

Q1/2z, hence H = Q1/2(X) and for h = Q1/2z we have ĥ(x) =
∑∞

k=1(xk − ak)λ
−1/2
k zk,

nmely (4.2.11) holds. It implies that for every h, k ∈ H we have [h, k]H = 〈ĥ, k̂〉L2(X,γ) =

〈Q−1/2h,Q−1/2k〉X .



47

4.3 Exercises

Exercise 4.1. (i) Prove that the dual space of R∞ is R∞c .

(ii) Prove that the embedding ι : (`2, ‖ · ‖`2) ↪→ (RN, d) is continuous and is the unique
continuous extension of ι : (RN, ‖ · ‖`2) ↪→ (RN, d).

Exercise 4.2. LetX be a real Hilbert space, and letB : X×X → R be bilinear, symmetric
and continuous. Prove that there exists a unique self-adjoint operator Q ∈ L(X) such that
B(x, y) = 〈Qx, y〉X , for every x, y ∈ X.

Exercise 4.3. Let L : `2 → `2 be the operator defined by Lx = (x2, x1, x4, x3....), for
x = (x1, ...xn, ...) ∈ `2. Show that L is self-adjoint and 〈Lek, ek〉`2 = 0 and that L is not
compact.

Exercise 4.4. Check the computation of the integral in (4.2.8).

Exercise 4.5. Prove that if X is a separable Hilbert space, then h ∈ Rγ(j(X∗)) if and
only if h = Qx, x ∈ X, and that in this case |h|H = ‖Q1/2x‖X .

Exercise 4.6. Modify the proof of Theorem 4.2.7 in order to consider also degenerate
Gaussian measures.

Exercise 4.7. Show that `2 is a Borel measurable subset of RN.
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Lecture 5

The Brownian motion

In this and in the next Lecture we present a very important example: the classical Wiener
space, which is to some extent the basic and main reference example of the theory. To do
this, we introduce the Wiener measure and we define the Brownian motion. With these
tools, in the next Lecture we shall define the stochastic integral and we shall use it to
characterise the reproducing kernel X∗γ when γ is the Wiener measure on X = C([0, 1]),
the Banach space of real valued continuous functions. For the material of this chapter we
refer the reader for instance to the books [2, 9].

5.1 Some notions from Probability Theory

In this section we recall a few notions of probability theory. As in Definition 1.1.2, a
probability is nothing but a positive measure P on a measurable (or probability) space
(Ω,F ) such that P(Ω) = 1.

Any measurable Rd-valued function defined on a a probability space (Ω,F ,P) is called
random variable. Usually, random variables are denoted by the last letters of the alphabet.

Using the image measure, we call P ◦ X−1 the law of the Rd-valued random variable
X : Ω→ Rd. The law of a random variable is obviously a probability measure.

Given a real valued random variable X ∈ L1(Ω,F ,P), we denote by

E[X] =

∫
Ω
XdP

the average or the expectation of X. We also define the variance of the real random variable
X, in case X ∈ L2(Ω,F ,P), as

Var[X] = E[(X − E[X])2] =

∫
Ω

(X − E[X])2dP.

Let us introduce the notion of stochastic process.

49
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Definition 5.1.1. A stochastic process (Xt)t∈I on a probability space (Ω,F ,P) indexed
on the interval [0, 1] is a function X : [0, 1] × Ω → R such that for any t ∈ [0, 1] the
function Xt(·) = X(t, ·) is a random variable on (Ω,F ,P).

We give now the notion of independence, both for sets and for functions. Notice that
a measurable set is often called event in the present context.

Definition 5.1.2 (Independence). Let (Ω,F ,P) be a probability space. Two sets or events
A,B ∈ F are independent if

P(A ∩B) = P(A) · P(B).

Two sub-σ-algebras F1,F2 of F are independent if any set A ∈ F1 is independent of any
set B ∈ F2, that is

P(A ∩B) = P(A) · P(B), ∀A ∈ F1, ∀B ∈ F2.

Given a real random variable X and F ′ sub-σ-algebra contained in F , we say that X
is independent of F ′ if the σ-algebras σ(X) and F ′ are independent (1). Two random
variables X and Y are independent if σ(X) and σ(Y ) are independent. Two stochastic
processes (Xt)t∈I and (Yt)t∈I are independent if σ(Xt) and σ(Ys) are independent for any
t, s ∈ I.

One of the first properties of independence is expressed in the following

Proposition 5.1.3. Let X and Y be two independent real random variables on (Ω,F ,P).
If X,Y,X · Y ∈ L1(Ω,F ,P), then

E[X · Y ] = E[X] · E[Y ].

Proof. Splitting both X and Y in positive and negative part, it is not restrictive to as-
sume that X and Y are nonnegative. Let us consider two sequences of simple functions
(si)i∈N, (s

′
i)i∈N ⊂ S+ such that si is σ(X)-measurable and s′i is σ(Y )-measurable for any

i ∈ N, and such that 0 ≤ si ≤ Xi, 0 ≤ s′i ≤ Yi and

E[X] = lim
i→∞

E[si], E[Y ] = lim
i→∞

E[s′i].

We have

si =

ni∑
h=1

ci,h1lAi,h , s′i =

mi∑
h=1

c′i,k1lA′i,k

with Ai,h ∈ σ(X), A′i.k ∈ σ(Y ). Then (si·s′i)i∈N is a sequence of simple functions converging

(1)We recall that σ(X) is the σ–algebra generated by the sets {ω ∈ Ω : X(ω) < a} with a ∈ R.
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to X · Y and then, by independence

E[X · Y ] = lim
i→∞

E[si · s′i] = lim
i→∞

ni∑
h=1

mi∑
k=1

ci,hc
′
i,kE[1lAi,h · 1lA′i,k ]

= lim
i→∞

ni∑
h=1

mi∑
k=1

ci,hc
′
i,kP(Ai,h ∩A′i,k)

= lim
i→∞

ni∑
h=1

mi∑
k=1

ci,hc
′
i,kP(Ai,h) · P(A′i,k)

= lim
i→∞

ni∑
h=1

ci,hP(Ai,h)

mi∑
k=1

c′i,kP(A′i,k)

= lim
i→∞

E[si] · E[s′i] = E[X] · E[Y ].

Noticing that f(X) and g(Y ) are independent if X and Y are independent and f, g :
R→ R are Borel functions, the following corollary is immediate.

Corollary 5.1.4. Let X and Y be two independent real random variables on (Ω,F ,P)
and let f, g : R → R be two Borel functions. If f(X), g(Y ), f(X) · g(Y ) ∈ L1(Ω,F ,P),
then

E[f(X) · g(Y )] = E[f(X)] · E[g(Y )].

Remark 5.1.5. Using Corollary 5.1.4, it is possible to prove that two random variables X
and Y are independent if and only if P◦(X,Y )−1 = (P◦X−1)⊗(P◦Y −1), see Exercise 5.1.
As a consequence, Lemma 3.1.7 can be rephrased saying that for every f , g ∈ X∗, the
elements j(f), j(g) are orthogonal in X∗γ iff they are independent.

5.2 The Wiener measure PW and the Brownian motion

We start by considering the space R[0,1], the set of all real valued functions defined on
[0, 1]. We introduce the σ–algebra F generated by the sets

{ω ∈ R[0,1] : PF (ω) ∈ B},

where F = {t1, . . . , tm} is any finite set contained in [0, 1], B ∈ B(Rm) and PF : R[0,1] →
Rm is defined by

PF (ω) = (ω(t1), . . . , ω(tm)).

We denote by CF the σ–algebra P−1
F (B(Rm)), and we define a measure µF on CF by

setting, in the case 0 < t1 < . . . < tm

µF (A) =
1

(2π)
m
2

√
t1(t2 − t1) · . . . · (tm − tm−1)

∫
PF (A)

e
− x21

2t1
+...− (xm−xm−1)

2

2(tm−tm−1) dx;
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in the case 0 = t1 < . . . < tm

µF (A) =
1

(2π)
m−1

2

√
t2 · . . . · (tm − tm−1)

∫
(PF (A))0

e
− x22

2t2
+...− (xm−xm−1)

2

2(tm−tm−1) dx′

where
(PF (A))0 = {x′ ∈ Rm−1 : (0, x′) ∈ PF (A)}.

For F = {0}, we set µ{0} = δ0, the Dirac measure at 0. In this way we have defined a
family of measures µF on the σ–algebras CF .

We shall use the following result to extend the family of measure µF to a unique
probability measure on (R[0,1],F ). It is known as the Daniell–Kolmogorov extension
theorem, that we present only in the version we need for our purposes. Its proof relies on
the following basic results.

Proposition 5.2.1. Let µ be a nonnegative real valued finitely additive set function on
an algebra A . Then µ is countably additive on A if and only if it is continuous at ∅, i.e.

lim
n→∞

µ(An) = 0

for every decreasing sequence of sets (An) ⊂ A such that
⋂
n∈NAn = ∅.

Theorem 5.2.2. Let µ be a nonnegative real valued countably additive set function on an
algebra A . Then µ may be extended to a unique finite measure on the σ-algebra generated
by A .

The proof of Proposition 5.2.1 is left as an exercise, see Exercise 5.2. For Theorem
5.2.2 we refer to [9, Theorems 3.1.4, 3.1.10]).

Theorem 5.2.3 (Daniell–Kolmogorov extension). There exists a unique probability mea-
sure PW , called the Wiener measure on (R[0,1],F ) such that for every finite F ⊂ [0, 1],
PW (A) = µF (A) if A ∈ CF .

Proof. We notice that if F ′ = F ∪ {tm+1} with tm < tm+1 ≤ 1, then for any B ∈ B(Rm),
P−1
F (B) = P−1

F ′ (B × R), so that

µF (P−1
F (B)) = µF ′(P

−1
F ′ (B × R)).

This argument can be generalised to the case F ⊂ G ⊂ [0, 1], F and G finite sets with
cardinality m and n respectively, to conclude that if A = P−1

F (B) = P−1
G (B′), B ∈ B(Rm),

B′ ∈ B(Rn), then µF (A) = µG(A). So, for A ∈ CF , we can set

PW (A) := µF (A).

The set function PW is defined on the algebra

A =
⋃

F⊂[0,1] finite

CF ;
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it is finitely additive since if A ∈ CF and B ∈ CG are two disjoint sets, A∪B ∈ CF∪G and

PW (A ∪B) = µF∪G(A ∪B) = µF∪G(A) + µF∪G(B) = µF (A) + µG(B)

= PW (A) + PW (B).

Moreover, PW (R[0,1]) = 1. To extend PW to the σ–algebra F , we apply Proposition 5.2.1
and Theorem 5.2.2. Let us prove that PW is continuous at ∅. Assume by contradiction
that there are ε > 0 and a decreasing sequence (An) ⊂ A of sets whose intersection is
empty, such that

PW (An) > ε, ∀n ∈ N.

Without loss of generality, we may assume that An = P−1
Fn

(Bn) with Fn containing n
points and Bn ∈ B(Rn), and that Fn ⊂ Fn+1. Denote by πn : Rn+1 → Rn the projection
such that πn ◦ PFn+1 = PFn . Since each measure µFn ◦ P−1

Fn
is a Radon measure in Rn,

for every n ∈ N there is a compact set Kn ⊂ Bn such that PW (An \ Cn) < ε
2n , where

Cn = P−1
Fn

(Kn). By replacing Kn+1 by K̃n+1 = Kn+1∩π−1
n (Kn), we get K̃n+1 ⊂ π−1

n (K̃n).

In order to see that the K̃n are nonempty, we bound from below their measure. Setting
as before C̃n = P−1

Fn
(K̃n), we have

µFn ◦ P−1
Fn

(K̃n) = PW (C̃n) = PW (An)− PW (An \ C̃n)

≥ PW (An)− PW
( n⋃
k=1

An \ Ck
)
≥ PW (An)− PW

( n⋃
k=1

Ak \ Ck
)

≥ ε−
n∑
k=1

ε

2k
> 0.

Therefore, for any n ∈ N we can pick an element

x(n) = (x
(n)
1 , . . . , x(n)

n ) ∈ K̃n.

Since K̃n ⊂ π−1
n−1(K̃n−1), the sequence (x

(n)
1 ) is contained in K̃1, there is a subsequence

(x
(kn)
1 ) ⊂ K̃1 converging to y1 ∈ K̃1. The sequence (x

(kn)
1 , x

(kn)
2 ) is contained in K̃2, then

up to subsequences, there exists y2 such that it converges to (y1, y2) ∈ K̃2. Iterating the
procedure, and taking the diagonal sequence, we obtain a sequence (yn) such that

(y1, . . . , yn) ∈ K̃n, ∀n ∈ N.

Then
P−1
Fn

({(y1, . . . , yn)}) ⊂ C̃n ⊂ An, ∀n ∈ N,

hence

S := {ω ∈ R[0,1] : ω(tj) = yj ∀j ∈ N} ⊂
∞⋂
n=1

An

which is a contradiction, as S 6= ∅. Therefore, PW is continuous at ∅. By Proposition
5.2.1, PW is countably additive, and by Theorem 5.2.2 it has a unique extension (still
denoted by PW ) to the σ-algebra F generated by A .
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Once the Wiener measure has been defined, we give a formal definition of the Brownian
motion.

Definition 5.2.4 (Standard Brownian motion). A real valued standard Brownian motion
on [0, 1] is a stochastic process (Bt)t∈[0,1] on a probability space (Ω,F ,P) such that:

1. B0 = 0 almost surely, i.e. P–a.e.;

2. for any t, s ∈ [0, 1], s < t, the law of both random variables Bt − Bs and Bt−s is
equal to N (0, t− s);

3. for any 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn the random variables Bt0 , Bt1 − Bt0 , . . . , Btn − Btn−1

are independent.

An explicit construction of a Brownian motion is in the following proposition.

Proposition 5.2.5 (Construction and properties of Brownian motion). Given the proba-
bility space (R[0,1],F ,PW ), the family of functions Bt : R[0,1] → R defined by

Bt(ω) = ω(t), t ∈ [0, 1]

is a real valued standard Brownian motion on [0, 1].

Proof. The proof relies on the equalities

Bt(ω) = ω(t) = P{t}(ω).

First of all we notice that for any t ∈ [0, 1]

B−1
t (B(R)) = C{t}.

Then Bt is F -measurable and (Bt)t∈[0,1] is a stochastic process.
By the definition of the Wiener measure, we have

PW (B0 ∈ A) = µ{0}(P
−1
{0}(A)) = δ0(A), ∀A ∈ B(R),

and then B0 = 0, PW –almost surely. Let us now compute PW ◦B−1
t−s, for t > s. For every

Borel set A ⊂ R,

PW (Bt−s ∈ A) = PW (P−1
{t−s}(A)) = µ{t−s}(P

−1
{t−s}(A))

=
1√

2π(t− s)

∫
A
e
− x2

2(t−s)dx = N (0, t− s)(A).

On the other hand, if we define h : R2 → R, h(x, y) := y − x, then

{ω ∈ R[0,1] : Bt(ω)−Bs(ω) ∈ A} = {ω ∈ R[0,1] : ω(t)− ω(s) ∈ A}

= {ω ∈ R[0,1] : h(P{s,t}(ω)) ∈ A} = P−1
{s,t}(h

−1(A)).
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Hence

PW ({Bt −Bs ∈ A}) =µ{s,t}(P
−1
{s,t}(h

−1(A))) =
1

2π
√
s(t− s)

∫
h−1(A)

e
−x

2

2s
+

(y−x)2
2(t−s) dxdy

=
1√
2πs

∫
R

(
1√

2π(t− s)

∫
(h−1(A))x

e
− (y−x)2

2(t−s) dy

)
e−

x2

2s dx

where

(h−1(A))x = {y ∈ R : (x, y) ∈ h−1(A)} = {y ∈ R : y − x ∈ A} = A+ x.

As a consequence,

1√
2π(t− s)

∫
(h−1(A))x

e
− (y−x)2

2(t−s) dy =
1√

2π(t− s)

∫
A+x

e
− (y−x)2

2(t−s) dy

=
1√

2π(t− s)

∫
A
e
− z2

2(t−s)dz

= N (0, t− s)(A),

and therefore PW ({Bt −Bs ∈ A}) = N (0, t− s)(A).

In order to verify independence, we fix 0 < s < t and A1, A2 ∈ B(R). Then

{Bs ∈ A1} = P−1
{s}(A1) = P−1

{s,t}(A1 × R),

and

{Bt −Bs ∈ A2} = P−1
{s,t}(h

−1(A2)),

so we have

PW ({Bs ∈ A1} ∩ {Bt −Bs ∈ A2}) = PW (P−1
{s,t}((A1 × R) ∩ h−1(A2))

= µ{s,t}(P
−1
{s,t}((A1 × R) ∩ h−1(A2))

=
1

2π

1√
s(t− s)

∫
(A1×R)∩h−1(A2)

e
−x

2

2s
− (y−x)2

2(t−s) dxdy

=
1

2π

1√
s(t− s)

∫
R
e−

x2

2s

(∫
((A1×R)∩h−1(A2))x

e
− (y−x)2

2(t−s) dy

)
dx

=
1

2π

1√
s(t− s)

∫
A1

e−
x2

2s

(∫
A2+x

e
− (y−x)2

2(t−s) dy

)
dx

=
1√
2πs

∫
A1

e−
x2

2s dx
1√

2π(t− s)

∫
A2

e
− z2

2(t−s)dz

= PW ({Bs ∈ A1}) · PW ({Bt −Bs ∈ A2}).
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Now, we have a measure on (R[0,1],F ), but we are looking for a measure on a separable
Banach space. We now show how to define the measure PW on C([0, 1]); this is not
immediate because C([0, 1]) does not belong to F . To avoid this problem, the main
point is to prove that the Brownian motion (Bt) can be modified in a convenient way to
obtain a process with continuous trajectories. We prove something more, namely that the
trajectories are Hölder continuous for PW –a.e. ω ∈ R[0,1].

We need the following useful lemma. We recall that the limsup of a sequence of sets
(An) is defined by

lim sup
n→∞

An :=
⋂
n∈N

⋃
k≥n

Ak

and it is the set of points ω such that ω ∈ An for infinitely many n ∈ N.

Lemma 5.2.6 (Borel-Cantelli). Let (Ω,F ,P) be a probability space and let (An)n∈N ⊂ F
be a sequence of measurable sets. If ∑

n∈N
P(An) <∞,

then

P
(

lim sup
n→∞

An

)
= 0.

Proof. We define the sets

Bn :=
⋃
k≥n

Ak.

Then Bn+1 ⊂ Bn for every n, and setting

B :=
⋂
n∈N

Bn = lim sup
n→∞

An,

by the continuity property of measures along monotone sequences (see Remark 1.1.3)

P(B) = lim
n→∞

P(Bn).

On the other hand,

lim
n→∞

P(Bn) = lim
n→∞

P

⋃
k≥n

Ak


≤ lim
n→∞

∑
k≥n

P(Ak) = 0.
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Now we state and prove the Kolmogorov continuity theorem; we need the notion of
version of a stochastic process. Given two stochastic processes Xt, X̃t, t ∈ [0, 1] on a
probability space (Ω,F ,P), we say that X̃t is a version of Xt if

P({Xt 6= X̃t}) = 0, ∀t ∈ [0, 1].

We use also Chebychev’s inequality, whose proof is left as Exercise 5.3. For any β > 0, for
any measurable function f such that |f |β ∈ L1(Ω, µ) we have

µ({|f | ≥ λ}) ≤ 1

λβ

∫
Ω
|f |βdµ ∀λ > 0.

Moreover, we use the classsical Egoroff’s theorem, see e.g. [9, Theorem 7.5.1].

Theorem 5.2.7. Let µ be a positive finite measure on the measurable space (X,F ), and
for n ∈ N let f, fn : X → R be measurable functions such that fn(x) → f(x) for µ-a.e.
x ∈ X. Then, for very ε > 0 there is a measurable set A with µ(X \ A) < ε such that
fn → f uniformly on A.

Theorem 5.2.8 (Kolmogorov continuity Theorem). Let (Xt)t∈[0,1] be a stochastic process
on a probability space (Ω,F ,P) and assume that there exist α, β > 0, such that

E[|Xt −Xs|β] ≤ C|t− s|1+α, t, s ∈ [0, 1].

Then there exist a set A ∈ F with P(A) = 1 and a version (X̃t)t∈[0,1] such that the map

t 7→ X̃t(ω) is γ–Hölder continuous for any γ < α
β and for any ω ∈ A.

Proof. Let us define

Dn =

{
k

2n
: k = 0, . . . , 2n

}
, D =

⋃
n∈N

Dn.

We compute the measures of the sets

An =

{
max

1≤k≤2n

∣∣∣X k
2n
−X k−1

2n

∣∣∣ ≥ 1

2γn

}
;

using Chebychev’s inequality. We have

P(An) = P

(
2n⋃
k=1

{∣∣∣X k
2n
−X k−1

2n

∣∣∣ ≥ 1

2γn

})

≤
2n∑
k=1

P
({∣∣∣X k

2n
−X k−1

2n

∣∣∣ ≥ 1

2γn

})

≤
2n∑
k=1

2γnβE
[∣∣∣X k

2n
−X k−1

2n

∣∣∣β]

≤ C
2n∑
k=1

2γnβ
∣∣∣∣ k2n − k − 1

2n

∣∣∣∣1+α

= C2−n(α−γβ).
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As a consequence we obtain that the series∑
n∈N

P(An) ≤ C
∑
n∈N

2−n(α−γβ)

is convergent if γ < α
β . In this case, by the Borel-Cantelli Lemma 5.2.6, the set

A = Ω \ lim sup
n→∞

An

has full measure, P(A) = 1. By construction, for any ω ∈ A there exists N(ω) such that

max
1≤k≤2n

∣∣∣X k
2n

(ω)−X k−1
2n

(ω)
∣∣∣ ≤ 2−γn, ∀n ≥ N(ω).

We claim that for every ω ∈ A the restriction of the function t→ Xt(ω) to D is γ–Hölder
continuous, i.e.,

∃ C > 0 such that |Xt(ω)−Xs(ω)| ≤ C|t− s|γ (5.2.1)

for all t, s ∈ D . Indeed, it is enough prove that (5.2.1) holds for t, s ∈ D with |t − s| ≤
2−N(ω).

Fixed t, s ∈ D such that |t − s| ≤ 2−N(ω), there exists a unique n ≥ N(ω) such that
2−n−1 < |t − s| ≤ 2−n. We consider the sequences sk ≤ s, tk ≤ t, sk, tk ∈ D, defined by
s0 = t0 = 0, and for k ≥ 1

sk =
[2ks]

2k
, tk =

[2kt]

2k
,

where [x] is the integer part of x. Such sequences are monotone increasing, and since
t, s ∈ D , they are eventually constant. Moreover,

sk+1 − sk ≤
1

2k+1
, tk+1 − tk ≤

1

2k+1
, k ∈ N.

Then,

Xt(ω)−Xs(ω) = Xtn(ω)−Xsn(ω) +
∑
k≥n

(Xtk+1
(ω)−Xtk(ω))−

∑
k≥n

(Xsk+1
(ω)−Xsk(ω))

where the series are indeed finite sums. Hence

|Xt(ω)−Xs(ω)| ≤ 2−γn + 2
∑
k≥n

2−γ(k+1) =
2−γn

1− 2−γ
≤ 2−γ

1− 2−γ
|t− s|γ .

So (5.2.1) holds with C = 2−γ

1−2−γ , for t, s ∈ D with |t − s| ≤ 2−N(ω). Covering [0, 1] by

a finite number of intervals with length 2−N(ω), we obtain that (5.2.1) holds for every
t, s ∈ D (possibly, with a larger constant C). In particular, the mapping t 7→ Xt(ω) is
uniformly continuous on the dense set D ; therefore it admits a unique continuous extension
to the whole [0, 1] which is what we need to define X̃t(ω).
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Let us define for ω ∈ A
X̃t(ω) = lim

D3s→t
Xs(ω),

and for ω 6∈ A
X̃t(ω) = 0.

It is clear that P({Xt 6= X̃t}) = 0 if t ∈ D . For an arbitrary t ∈ [0, 1], there exists a
sequence (th) in D such that Xth converges to X̃t P–a.e. We use Egoroff’s Theorem 5.2.7,
and for any ε > 0 there exists Eε ∈ F such that P(Eε) < ε and Xth converges uniformly

to X̃t on Ω \ Eε. This implies convergence in measure, i.e. for any λ > 0

lim
h→∞

P({|Xth − X̃t| > λ}) = 0.

On the other hand, we know that

P({|Xth −Xt| > λ}) ≤ 1

λβ
E[|Xth −Xt|β] ≤ C|th − t|1+α

λβ

and then
lim
h→∞

P({|Xth −Xt| > λ}) = 0.

We deduce that X̃t = Xt P–a.e., see Exercise 5.6. Hence (X̃t) is a version of (Xt).

Our aim now is to define a Borel measure (the Wiener measure) on the Banach space
C([0, 1]) endowed as usual with the sup norm. To do this we use the Brownian motion
(Bt)t∈[0,1] on (R[0,1],F ).

Lemma 5.2.9. Let PW be the Wiener measure on (R[0,1],F ) and let (Bt)t∈[0,1] be the
Brownian motion defined in Proposition 5.2.5. Then, for any k ∈ N

E[(Bt −Bs)k] =


0 if k is odd

k!

( k2 )!2
k
2
|t− s|

k
2 if k is even.

Proof. Let us take 0 ≤ s ≤ t ≤ 1. Since the law of Bt −Bs is N (0, t− s), we get

Ik := E[(Bt −Bs)k] =
1√

2π(t− s)

∫
R
xke
− x2

2(t−s)dx.

As a consequence Ik = 0 if k is odd, whereas integrating by parts one obtains I0 = 1,
I2 = (t− s) and I2h = (2h− 1)(t− s)I2h−2 for h ≥ 2.

Lemma 5.2.9 and Theorem 5.2.8 yield that, fixed any γ < 1/2, there exists a version
(B̃t) of (Bt) such that the trajectories t 7→ B̃t(ω) are γ–Hölder continuous, in particular
they are continuous. For any t, the random variables Bt and B̃t have the same law,
PW ◦B−1

t = PW ◦ B̃−1
t . The map P : R[0,1] → Rn,

P (ω) = (B̃t1(ω), . . . , B̃tn(ω)) (5.2.2)
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is measurable for any choice of t1, . . . , tn ∈ [0, 1], and the image measure of PW under the
map P is the same as the image measure of PW under the map

ω 7→ (Bt1(ω), . . . , Btn(ω)).

Finally, for C ∈ CF , PW ◦ P−1(E) = µF (E). We leave the verification of these properties
as an exercise, see Exercise 5.5.

We recall some facts. The first one is the characterisation of the dual space (C([0, 1]))∗.
We denote by M ([0, 1]) the space of all real finite measures on [0, 1]; it is a real Banach
space with the norm ‖µ‖ = |µ|([0, 1]), see Exercise 5.4.

Theorem 5.2.10 (Riesz representation Theorem). There is a linear isometry between the
space M ([0, 1]) of finite measures and (C([0, 1]))∗, i.e. L ∈ (C([0, 1]))∗ iff there exists
µ ∈M ([0, 1]) such that

L(f) =

∫
[0.1]

f(t)µ(dt), ∀f ∈ C([0, 1]).

In addition ‖L‖ = |µ|([0, 1]).

We refer to [9, Theorem 7.4.1] for a proof.
On C([0, 1]) we define the σ–algebra C ′F for F = {t1, . . . , tn} as the family of sets

C = {ω ∈ C([0, 1]) : (ω(t1), . . . , ω(tn)) ∈ B},

where B ∈ B(Rn). We also define the algebra

A ′ =
⋃

F⊂[0,1], F finite

C ′F

and we denote by F ′ the σ–algebra generated by A ′. Using Theorem 5.2.10 and the fact
that any Dirac measure δt is in (C([0, 1]))∗, it is clear that F ′ ⊂ B(C([0, 1])); indeed, if
F = {t1, . . . , tn} and B ∈ B(Rn), we have

C :={ω ∈ C([0, 1]) : (ω(t1), . . . , ω(tn)) ∈ B}
={ω ∈ C([0, 1]) : (δt1(ω), . . . , δtn(ω)) ∈ B} ∈ E (C([0, 1]), {δt1 , . . . , δtn}).

We have also the reverse inclusion, i.e. B(C([0, 1])) ⊂ F ′; the proof is similar to the
proof of Theorem 2.1.1. Indeed, fix ω0 ∈ C([0, 1]), r > 0 and let D be the set in the
proof of the Kolmogorov continuity Theorem 5.2.8. Note that ω ∈ B(ω0, r) if and only if
‖ω − ω0‖∞ ≤ r, and by continuity this is equivalent to |ω(t) − ω0(t)| ≤ r for any t ∈ D .
Then

B(ω0, r) =
⋂
n∈N

{
ω ∈ C([0, 1]) : ω

( k
2n

)
∈
[
r − ω0

( k
2n

)
, r + ω0

( k
2n

)]
, ∀k = 0, . . . , 2n

}
.

The set in the right hand side belongs to F ′. Since C([0, 1]) is separable, as in the proof
of Theorem 2.1.1 we deduce that B(C([0, 1])) ⊂ F ′.
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Now we use the Kolmogorov continuity Theorem 5.2.8: there exists a set A ∈ F with
P(A) = 1 and a version (B̃t)t∈[0,1] such that the map t 7→ B̃t(ω) is continuous for any
ω ∈ A. We define the restricted σ–algebra

FA = {E ∩A : E ∈ F}

and the restriction PWA of PW to FA.

Proposition 5.2.11. The map B̃ : (A,FA)→ (C([0, 1]),B(C([0, 1]))) defined by

B̃(ω)(t) := B̃t(ω)

is measurable. The image measure PWA ◦ B̃−1, called the Wiener measure on C([0, 1]), has
the property that for any C ′ ∈ C ′F , C ′ = C ∩ C([0, 1]) with C ∈ CF , and

PWA ◦ B̃−1(C ′) = µF (C). (5.2.3)

Proof. We know that B(C([0, 1])) = F ′, so it is sufficient to prove that for every finite
set F = {t1, . . . , tn} ⊂ [0, 1], we have

B̃−1(C ′) ∈ FA, ∀C ′ ∈ C ′F .

Let E ∈ B(Rn) and

C ′ = {ω ∈ C([0, 1]) : (ω(t1), . . . , ω(tn)) ∈ E} = C ∩ C([0, 1]),

with C ∈ CF given by

C = {ω ∈ R[0,1] : (ω(t1), . . . , ω(tn)) ∈ E}

Since for any t ∈ [0, 1] we have PW ({Bt 6= B̃t}) = 0, we can find At1 , . . . , Atn ∈ F such
that PW (Ati) = 1 for any i = 1, . . . , n and B̃ti = Bti in Ati . Then

B̃−1(C) = {ω ∈ A : (B̃t1(ω), . . . , B̃tn(ω)) ∈ E}

= A ∩
n⋂
i=1

Ati ∩ {ω ∈ R[0,1] : (ω(t1), . . . , ω(tn)) ∈ E}

= A ∩
n⋂
i=1

Ati ∩ C.

Since
⋂n
i=1Ati ∩ C ∈ F , we deduce B̃−1(C ′) ∈ FA and then B̃ is measurable. The last

assertion follows from the fact that

(PWA ◦ B̃−1)(C ′) = PW
(
A ∩

n⋂
i=1

Ati ∩ C
)

= PW (C) = µF (C).
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5.3 Exercises

Exercise 5.1. Use Corollary 5.1.4 to prove that two random variables X and Y on a
probability space (Ω,F ,P) are independent if and only if P ◦ (X,Y )−1 = (P ◦X−1)⊗ (P ◦
Y −1).

Exercise 5.2. Prove Proposition 5.2.1.

Exercise 5.3. Prove Chebychev’s inequality: if β > 0 and f is a measurable function such
that |f |β ∈ L1(Ω, µ), we have for any λ > 0

µ({|f | ≥ λ}) ≤ 1

λβ

∫
Ω
|f |βdµ.

Exercise 5.4. Prove that the vector space M ([0, 1]) with norm given by the total variation
is a Banach space.

Exercise 5.5. Prove that the map P : R[0,1] → Rn, defined by (5.2.2), is measurable.
Prove that PW ◦ P−1 = PW ◦ T−1 with

T (ω) = (ω(t1), . . . , ω(tn)) = (Bt1(ω), . . . , Btn(ω)).

Prove in addition that if C ∈ CF , then

(PW ◦ P−1)(C) = µF (C).

Exercise 5.6. Let (Xn) be a sequence of random variables on a probability space (Ω,F ,P)
that converge in measure to X and to Y . Prove that X = Y , P–a.e.



Lecture 6

The classical Wiener space

In this Lecture we present the classical Wiener space, which is the archetype of the struc-
ture we are describing. Indeed, any triple (X, γ,H) (where X is a separable Banach
space, γ is a Gaussian measure and H is the Cameron-Martin space) is called an abstract
Wiener space. In the classical Wiener space the Banach space is that of continuous paths,
X = C([0, 1]), and all the objects involved can be described explicitly. The Gaussian
measure is the Wiener measure γW defined in Lecture 5, the covariance operator is the
integral operator with kernel min{x, y} on [0, 1]2 and both the Cameron-Martin space H
and X∗γ are spaces of functions defined on [0, 1].

6.1 The classical Wiener space

We start by considering the measure space (X,B(X), γW ) where X = C([0, 1]), B(X) is
the Borel σ–algebra on X and γW = PW ◦B̃−1 is the measure defined in Proposition 5.2.11.

We give the following approximation result for measures in terms of Dirac measures.
For every real measure µ ∈M ([0, 1]) and n ∈ N we set

µn = µ({1})δ1 +
2n−1∑
i=0

µ

([ i
2n
,
i+ 1

2n

))
δ i+1

2n
. (6.1.1)

Lemma 6.1.1. The following statements hold:

(i) if µ, ν ∈ M ([0, 1]) are two finite measures and (µn), (νn) are two sequences of
measure weakly convergent to µ and ν respectively, then µn⊗ νn weakly converges to
µ⊗ ν;

(ii) for every µ ∈M ([0, 1]) the sequence (µn) defined in (6.1.1) converges weakly to µ;

Proof. (i) The statement is trivial for functions of the type ϕ(x, y) = ϕ1(x)ϕ2(y) with
ϕ1, ϕ2 ∈ C([0, 1]). Since the linear span of such functions is dense in C([0, 1]2) by the
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Stone–Weierstrass Theorem, the conclusion follows.
(ii) Let us fix f ∈ C([0, 1]). Then

∫
[0,1]

f(x)µn(dx)−
∫

[0,1]
f(x)µ(dx) =

2n−1∑
i=0

∫[
i

2n
, i+1
2n

) (f( i+ 1

2n

)
− f(x)

)
µ(dx).

By the uniform continuity of f , for every ε > 0 there is n0 > 0 such that for n > n0 we
have |f( i+1

2n ) − f(x)| < ε for every x ∈ [i2−n, (i + 1)2−n] and for every i = 0, . . . , 2n − 1,
whence for n > n0

∣∣∣2n−1∑
i=0

∫[
i

2n
, i+1
2n

) (f( i+ 1

2n

)
− f(x)

)
µ(dx)

∣∣∣ < ε|µ|([0, 1])

and µn(f)→ µ(f).

Proposition 6.1.2. The characteristic function of the Wiener measure γW is

γ̂W (µ) = exp
{
−1

2

∫
[0,1]2

min{x, y}(µ⊗ µ)(d(x, y))
}
, µ ∈M ([0, 1]).

So, γW is a Gaussian measure with mean zero and covariance operator

BγW (µ, ν) =

∫
[0,1]2

min{t, s}(µ⊗ ν)(d(t, s)), µ, ν ∈M ([0, 1]). (6.1.2)

Proof. We start by considering a linear combination of two Dirac measures

µ = αδs + βδt

with α, β ∈ R, s < t ∈ [0, 1]. Then

γ̂W (µ) =

∫
X

exp{iαδs(f) + iβδt(f)}γW (df) =

∫
X

exp{iαf(s) + iβf(t)}γW (df).

Since γW = PWA ◦ B̃−1 with PW (A) = 1 and B̃ is a version of the Brownian motion which

is continuous on A, noticing that (B̃t)t∈[0,1] and (Bt)t∈[0,1] have the same image measure,
we obtain

γ̂W (µ) =

∫
A

exp{iαB̃(ω)(s) + iβB̃(ω)(t)}PW (dω) =

∫
A

exp{iαB̃s(ω) + iβB̃t(ω)}PW (dω)

=

∫
R[0,1]

exp{iαB̃s(ω) + iβB̃t(ω)}PW (dω) = +

∫
R[0,1]

exp{iαBs(ω) + iβBt(ω)}PW (dω)

=

∫
R[0,1]

exp{i(α+ β)Bs(ω) + iβ(Bt(ω)−Bs(ω)}PW (dω).
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Since Bs and Bt −Bs are independent, we may write

γ̂W (µ) =

∫
R[0,1]

exp{i(α+ β)Bs(ω) + iβ(Bt(ω)−Bs(ω)}PW (dω)

=

∫
R[0,1]

exp{i(α+ β)Bs(ω)}PW (dω) ·
∫
R[0,1]

exp{iβ(Bt(ω)−Bs(ω)}PW (dω)

=

∫
R

exp{i(α+ β)x}N (0, s)(dx) ·
∫
R

exp{iβy}N (0, t− s)(dy)

= exp

{
−1

2
(α+ β)2s

}
exp

{
−1

2
β2(t− s)

}
= exp

{
−1

2

(
(α2 + 2αβ)s+ β2t

)}
.

We now compute the integral∫
[0,1]2

min{x, y}(µ⊗ µ)(d(x, y)) =

∫
[0,1]

ϕ(x)µ(dx) = αϕ(s) + βϕ(t),

where ϕ(x) =
∫

[0,1] min{x, y}µ(dy). We have

ϕ(s) =

∫
[0,1]

min{s, y}µ(dy) =

∫
[0,s]

yµ(dy) + s

∫
(s,1]

µ(dy) = αs+ βs

ϕ(t) =

∫
[0,1]

min{t, y}µ(dy) =

∫
[0,t]

yµ(dy) + t

∫
(t,1]

µ(dy) = αs+ βt,

whence ∫
[0,1]2

min{x, y}(µ⊗ µ)(d(x, y)) = (α2 + 2αβ)s+ β2t.

So, the assertion of the theorem holds if µ is a linear combination of two Dirac measures.

Let us show by induction that the same assertion holds true if µ is a linear combination
of a finite number of Dirac measures.

For 0 ≤ t1 < t2 < . . . < tn ≤ 1 we define the matrix

Qt1,...,tn =


t1 t1 . . . t1 t1
t1 t2 . . . t2 t2
...

...
...

...
...

t1 t2 . . . tn−1 tn−1

t1 t2 . . . tn−1 tn

 .

For α ∈ Rn, α = (α1, . . . , αn)

µ :=

n∑
j=1

αjδtj ,

one has ∫
[0,1]2

min{x, y}(µ⊗ µ)(d(x, y)) = Qt1,...,tnα · α.
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We are now going to show by induction that

γ̂W (µ) = exp
{
− 1

2
Qt1,...,tnα · α

}
. (6.1.3)

This is immediate for n = 1. Assume that it is true for n. Let 0 ≤ t1 < t2 < . . . < tn <
tn+1 ≤ 1,

µ :=

n+1∑
j=1

αjδtj ,

Then, by the induction hypothesis and using the independence of Btn+1−Btn with respect
to {Bs; 0 ≤ s ≤ tn}, we obtain

γ̂W (µ) =

∫
R[0,1]

exp
{
i

n+1∑
j=1

αjBtj (ω)
}
PW (dω)

=

∫
R[0,1]

exp
{
i
n−1∑
j=1

αjBtj (ω) + (αn + αn+1)Btn(ω)
}
PW (dω)·

·
∫
R[0,1]

exp
{
αn+1(Btn+1(ω)−Btn(ω))

}
PW (dω)

= exp
{
− 1

2
Qt1,...,tnα̃ · α̃−

1

2
α2
n+1(tn+1 − tn)

}
= exp

{
− 1

2
Qt1,...,tn+1α · α,

}
where we have set α̃ = (α1, . . . , αn−1, αn + αn+1). In the general case we conclude by
using Lemma 6.1.1. Indeed, if µn is the approximation of µ defined in (6.1.1), then for
any f ∈ X,

lim
n→+∞

µn(f) = lim
n→+∞

∫
[0,1]

f(x)µn(dx) =

∫
[0,1]

f(x)µ(dx) = µ(f).

Hence exp{iµn(f)} converges to exp{iµ(f)} for any f ∈ X, so by the Lebesgue Dominated
Convergence Theorem

γ̂W (µ) =

∫
X

exp{iµ(f)}γW (df) = lim
n→+∞

∫
X

exp{iµn(f)}γW (df)

= lim
n→+∞

exp

{
−1

2

∫
[0,1]2

min{x, y}(µn ⊗ µn)(d(x, y))

}

= exp

{
−1

2

∫
[0,1]2

min{x, y}(µ⊗ µ)(d(x, y))

}
.

Then we conclude applying Theorem 2.2.4.
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We notice that the space

C0([0, 1]) := {f ∈ C([0, 1]) : f(0) = 0} = δ−1
0 ({0})

is a closed subspace of C([0, 1]). Since

γ̂W (δ0) = exp

{
−1

2

∫
[0,1]2

min{x, y}(δ0 ⊗ δ0)(d(x, y))

}
= 1,

γW ◦ δ−1
0 = N (0, 0) = δ0, and so

γW (C0([0, 1])) = (γW ◦ δ−1
0 )({0}) = 1.

Then γW is degenerate and it is concentrated on C0([0, 1]).

6.2 The Cameron–Martin space

In order to determine the Cameron–Martin space of (C([0, 1]), γW ), we use the embedding
ι : C([0, 1])→ L2(0, 1), ι(f) = f , which is a continuous injection since

‖ι(f)‖L2(0,1) ≤ ‖f‖∞.

If we consider the image measure γ̃W := γW ◦ ι−1 on L2(0, 1), the Cameron–Martin spaces
on C([0, 1]) and on L2(0, 1) are the same in the sense of Proposition 3.1.10. The fact that
L2(0, 1) is a Hilbert space allows us to use the results of Section 4.2.

By using the identification (L2(0, 1))∗ = L2(0, 1), the characteristic function of the
Gaussian measure γ̃W is

̂̃γW (g) =

∫
L2(0,1)

exp
{
i〈f, g〉L2(0,1)

}
γ̃W (df) =

∫
C([0,1])

exp{i〈ι(f), g〉L2(0,1)} γW (df).

Let us compute 〈ι(f), g〉L2(0,1). If we denote by ι∗ : L2(0, 1) →M ([0, 1]) the adjoint of ι,
then

〈ι(f), g〉L2(0,1) = ι∗(g)(f). (6.2.1)

Since ι(f)(x) = f(x), (6.2.1) yields∫ 1

0
f(x)g(x)dx =

∫
[0,1]

f(x)ι∗(g)(dx), ∀f ∈ C([0, 1]).

Hence ι∗(g) = gλ1, where λ1 is the Lebesgue measure on [0, 1]. Therefore, according to
Proposition 6.1.2,

̂̃γW (g) = γ̂W (ι∗g) = exp

{
−1

2

∫
[0,1]2

min{x, y}g(x)g(y) d(x, y)

}
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so that γ̃W is a Gaussian measure with covariance

Bγ̃W (f, g) =

∫
[0,1]2

min{x, y}f(x)g(y)d(x, y) =

∫ 1

0
Qf(y)g(y)dy,

where

Qf(y) =

∫ 1

0
min{x, y}f(x)dx

is the covariance operator Q : L2(0, 1)→ L2(0, 1) introduced in Section 4.2.

Theorem 6.2.1. The Cameron–Martin space H of γ̃W on (L2(0, 1),B(L2(0, 1))) is

H1
0 ([0, 1]) := {f ∈ L2(0, 1) : f ′ ∈ L2(0, 1) and f(0) = 0}.

Proof. As the Cameron-Martin space is the range of Q1/2, see Theorem 4.2.7, we find the
eigenvalues and eigenvectors of Q, i.e., we look for all λ ∈ R and f ∈ L2(0, 1) such that
Qf = λf . Equality Qf = λf is equivalent to

λf(x) =

∫ 1

0
min{x, y}f(y)dy =

∫ x

0
yf(y)dy + x

∫ 1

x
f(y)dy (6.2.2)

for a.e. x ∈ [0, 1]. If (6.2.2) holds, f is weakly differentiable and

λf ′(x) =

∫ 1

x
f(y)dy.

For λ = 0, we get immediately f ≡ 0. For λ 6= 0 we get that f ′ is weakly differentiable
and

λf ′′(x) = −f(x) a.e.

Moreover, the continuous version of f vanishes at 0 and the continuous version of f ′

vanishes at 1. We have proved that if f is an eigenvector of Q with eigenvalue λ, then f
is the solution of the following problem on (0, 1):

λf ′′ + f = 0,
f(0) = 0,
f ′(1) = 0.

(6.2.3)

On the other hand, if f is the solution of problem (6.2.3), integrating between x and 1

λf ′(x) =

∫ 1

x
f(y) dy,

whence, integrating again between 0 and x

λf(x) =

∫ x

0

∫ 1

t
f(y) dy dt =

∫ 1

0
1l(0,x](t)

∫ 1

0
1l(t,1](y)f(y) dy dt

=

∫ 1

0
f(y)

∫ 1

0
1l(0,x](t)1l(t,1](y)dt dy =

∫ 1

0
f(y)

∫ 1

0
1l(t,1](x)1l(t,1](y)dt dy

=

∫ 1

0
min{x, y}f(y) dy = Qf(x).
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We leave as an exercise, see Exercise 6.2, to prove that if λ is an eigenvalue, then there
exists k ∈ N such that λ = λk, where

λk =
1

π2
(
k + 1

2

)2 , k ∈ N (6.2.4)

and Qek = λkek, ‖ek‖L2(0,1) = 1 if and only if

ek(x) =
√

2 sin
( x√

λk

)
=
√

2 sin
(2k + 1

2
πx
)
. (6.2.5)

Let us now take f ∈ L2(0, 1) and write

f =
∞∑
k=1

fkek, fk = 〈f, ek〉L2(0,1) (6.2.6)

with ek given by (6.2.5). Applying (4.2.10), we see that f ∈ H if and only if

∞∑
k=1

f2
kλ
−1
k = π2

∞∑
k=1

f2
k

(
2k + 1

2

)2

<∞.

This condition allows us to define the function

g(x) =
√

2
∞∑
k=1

fk√
λk

cos

(
x√
λk

)
= π
√

2
∞∑
k=1

fk
2k + 1

2
cos

(
xπ
(2k + 1

2

))

and to obtain that g ∈ L2(0, 1) is the weak derivative of f . Indeed, for any ϕ ∈ C∞c ((0, 1)),

∫ 1

0
f(x)ϕ′(x)dx =

∞∑
k=1

fk
√

2

∫ 1

0
sin

(
s√
λk

)
ϕ′(x)dx

= −
∞∑
k=1

fk
√

2√
λk

∫ 1

0
cos

(
x√
λk

)
ϕ(x)dx = −

∫ 1

0
g(x)ϕ(x)dx.

In conclusion f ∈ H1(0, 1) and, by (6.2.6), its continuous version vanishes at 0, whence
f ∈ H1

0 ([0, 1]).

Finally, from the equality

|f |H = ‖Q−1/2f‖X ,

we immediately get |f |H = ‖f ′‖L2(0,1).

Remark 6.2.2. We have used the notation H1
0 ([0, 1]) to characterise the Cameron–Martin

space; we point out that this space is not the closure of C∞c (0, 1) in H1(0, 1).
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6.3 The reproducing kernel

In this section we determine the reproducing kernel, both for X = C([0, 1]) and for X =
L2(0, 1). To do this, we need to introduce an important tool coming from probability, the
stochastic Itô integral.

Let (Ω,F ,P) be a probability space and let (Wt)t∈[0,1] be a Brownian motion, i.e., a
stochastic process on (Ω,F ,P) satisfying the conditions of Definition 5.2.4.

If f is a simple function, i.e.,

f(t) =
n−1∑
i=0

ci1l[ti,ti+1)(t)

with ci ∈ R, 0 = t0 < . . . < tn = 1, we define the random variable on Ω∫ 1

0
f(t)dWt(ω) :=

n−1∑
i=0

ci
(
Wti+1(ω)−Wti(ω)

)
. (6.3.1)

We claim that

E

[(∫ 1

0
f(t)dWt

)2
]

=

∫ 1

0
|f(x)|2dx. (6.3.2)

Indeed, we have

E
[( ∫ 1

0
f(t)dWt

)2]
=

n−1∑
i,j=0

cicjE[(Wti+1 −Wti)(Wtj+1 −Wtj )]

=

n−1∑
i=0

c2
iE[(Wti+1 −Wti)

2] + 2

n−1∑
i=1

∑
j<i

cicjE[(Wtj+1 −Wtj )(Wti+1 −Wti)]

=
n−1∑
i=0

c2
iE[|Wti+1−ti |2] + 2

n−1∑
i=1

∑
j<i

cicjE[Wtj+1 −Wtj ] · E[Wti+1 −Wti ]

=

n−1∑
i=0

c2
i (ti+1 − ti) =

∫ 1

0
|f(x)|2dx,

where we have used the fact that Wti+1 −Wti is independent of Wtj+1 −Wtj if j < i and
the fact that Wti+i−Wti has the same image measure as Wti+1−ti , given by N (0, ti+1−ti).

For the next Theorem, we refer to [3].

Theorem 6.3.1 (Itô Integral). There exists a unique continuous map IΩ : L2(0, 1) →
L2(Ω,P) such that

E[|IΩ(f)|2] =

∫ 1

0
|f(x)|2dx, ∀f ∈ L2(0, 1) (6.3.3)

and such that

IΩ(f) =

∫ 1

0
f(t)dWt

if f is a simple function.
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Proof. Let S ([0, 1]) be the linear subspace of L2(0, 1) consisting of the simple functions.
The map IΩ : S ([0, 1])→ L2(Ω,P),

IΩ(f)(ω) :=

∫ 1

0
f(t)dWt(ω)

is a linear operator, defined on a dense subset of L2(0, 1). Since it is continuous in the
L2(0, 1) topology by (6.3.2), it has a unique continuous extension to L2(0, 1).

The map defined in Theorem 6.3.1 is called the Itô integral of f with respect to the
Brownian motion; such procedure can be performed also using different stochastic pro-
cesses and more general classes of functions f . Identity (6.3.3) is called Itô isometry and
the Itô integral is denoted by

IΩ(f) =

∫ 1

0
f(t)dWt, f ∈ L2(0, 1).

In order to apply Theorem 6.3.1, we need to define Brownian motions on the probability
spaces (C([0, 1]),B(C([0, 1])), γW ) and (L2(0, 1),B(L2(0, 1)), γ̃W ). We leave as an exercise
(see Exercise 6.3) the verification that the evaluation map Wt : C([0, 1])→ R defined by

Wt(f) := f(t), (6.3.4)

is indeed a standard Brownian motion on C([0, 1]).
In the next Lemma we define the Brownian motion on L2(0, 1) using the embedding

ι : C([0, 1])→ L2(0, 1).

Lemma 6.3.2. The space C([0, 1]) belongs to B(L2(0, 1)). As a consequence the maps

W̃t : L2(0, 1)→ R defined by

W̃t(f) =


Wt(ω) if f = ι(ω)

0 otherwise
(6.3.5)

define a stochastic process on L2(0, 1) and such process is a Brownian motion.

Proof. In order to see that C([0, 1]) is a Borel set in L2(0, 1), for a fixed p ∈ [1,∞] and for
any m,n ∈ N and r1, r2, s1, s2 ∈ [0, 1]∩Q with r1 < r2, s1 < s2, |r1−r2| ≤ 1

n , |s1−s2| ≤ 1
n ,

| r1+r2
2 − s1+s2

2 | ≤ 1
n define the set

Bp,n,m,r1,r2,s1,s2 :=
{
f ∈ Lp(0, 1) :

∣∣∣ 1

r2 − r1

∫ r2

r1

f(t)dt− 1

s2 − s1

∫ s2

s1

f(t)dt
∣∣∣ ≤ 1

m

}
.

It is enough to notice that for any 1 ≤ p ≤ ∞ the set Bp,n,m,r1,r2,s1,s2 is Borel in L2(0, 1)
and the space C([0, 1]) is a countable union of Borel sets,

C([0, 1]) =
⋂
m∈N

⋃
n∈N

⋂
r1, r2, s1, s2 ∈ [0, 1] ∩Q

r1 < r2, s1 < s2

|r1 − r2| ≤ 1
n , |s1 − s2| ≤ 1

n∣∣∣ r1+r2
2 − s1+s2

2

∣∣∣ ≤ 1
n

Bp,n,m,r1,r2,s1,s2 .
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Hence, the function defined in (6.3.5) is measurable. The fact that W̃t is a Brownian
motion readly follows by the fact that Wt is a Brownian motion and γ̃W = γW ◦ ι−1.

We pass now to the characterisation of the reproducing kernels X∗
γW

and X∗
γ̃W

.

Proposition 6.3.3. Let us consider the Gaussian measures γW and γ̃W on C([0, 1]) and
on L2(0, 1), respectively. Then

X∗γW = IC([0,1])(L
2(0, 1))

and
X∗γ̃W = IL2(0,1)(L

2(0, 1)).

Proof. Let us consider the simple function

g(x) = α1l[0,s)(x) + β1l[0,t) = (α+ β)1l[0,s)(x) + β1l[s,t)(x),

s < t ∈ [0, 1]. Let (Wt) be the Brownian motion defined in (6.3.4). Then by (6.3.1)

IC([0,1])(g) =

∫ 1

0
g(t)dWt = (α+ β)Ws + β(Wt −Ws) = αWs + βWt.

Therefore,
IC([0,1])(g)(f) = αf(s) + βf(t)

for γW –a.e. f ∈ C([0, 1]). On the other hand, setting

µ = αδs + βδt,

since j(µ)(f) = αf(s) + βf(t) for any f ∈ C([0, 1]), we obtain IC([0,1])(g) = j(µ) γW –a.e.
Moreover, by (6.3.3)

‖g‖2L2(0,1) = E
[(
IC([0,1])(g)

)2
]

= ‖IC([0,1])(g)‖2L2(C([0,1]),γW )

= ‖j(µ)‖2L2(C([0,1]),γW ).

For any simple function g ∈ S ([0, 1])

g(x) =
n∑
i=1

ci1l[0,ti)(x),

a similar computation yields ‖g‖L2(0,1) = ‖j(µ)‖L2(C([0,1]),γW ) with

µ =

n∑
i=1

ciδti ,

and IC([0,1])(g) = j(µ) γW –a.e.. Approximating any g ∈ L2(0, 1) by a sequence of simple

functions gn, IC([0,1])(gn) converges to IC([0,1])(g) in L2(C([0, 1]), γW ) by the Itô isometry
(6.3.3). Since IC([0,1])(gn) ∈ j(M ([0, 1])) for every n ∈ N, we have IC([0,1])(g) ∈ X∗

γW
.
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This proves that IC([0,1])(L
2(0, 1)) ⊂ X∗

γW
.

For the reverse inclusion, we use Lemma 6.1.1. Let us take µ ∈M ([0, 1]) and let (µn)
be the approximating sequence defined by (6.1.1). Then γW –a.e. j(µn) = IC([0,1])(gn),
where

gn(x) =µ({1}) +
2n−1∑
i=0

µ

([ i
2n
,
i+ 1

2n

))
1l[0, i+1

2n )(x)

=µ({1}) +
2n−1∑
i=0

µ

([ i
2n
,
i+ 1

2n

)) i∑
j=0

1l[ j
2n
, j+1
2n )(x)

=
2n−1∑
j=0

µ({1})1l[ j
2n
, j+1
2n )(x) +

2n−1∑
j=0

2n−1∑
i=j

µ

([ i
2n
,
i+ 1

2n

))
1l[ j

2n
, j+1
2n )(x)

=

2n−1∑
j=0

cn,j1l[ j
2n
, j+1
2n )(x), (6.3.6)

where

cn,j = µ({1}) +
2n−1∑
i=j

µ

([ i
2n
,
i+ 1

2n

))
= µ

([ j
2n
, 1
])

.

The functions j(µn) converge to j(µ) in L2(C([0, 1]), γW ) since

‖j(µn)− j(µ)‖2L2(C([0,1]),γW ) = ‖j(µn − µ)‖2L2(C([0,1]),γW ) = BγW (µn − µ, µn − µ)

=

∫
[0,1]2

min{x, y}
(
(µn − µ)⊗ (µn − µ)

)
(d(x, y))

=

∫
[0,1]2

min{x, y}(µn ⊗ µn)(d(x, y))− 2

∫
[0,1]2

min{x, y}(µn ⊗ µ)(d(x, y))

+

∫
[0,1]2

min{x, y}(µ⊗ µ)(d(x, y)).

As µn converges to µ weakly, µn ⊗ µ and µn ⊗ µn converge to µ⊗ µ weakly, we obtain

lim
n→+∞

‖j(µn)− j(µ)‖2L2(C([0,1]),γW ) = 0.

Hence j(µ) is the limit in L2(C([0, 1]), γW ) of j(µn) = IC([0,1])(gn), whence j(M ([0, 1])) ⊂
IC([0,1])(L

2(0, 1)). Hence X∗
γW
⊂ IC([0,1])(L

2(0, 1)), and this concludes the proof of the

equality X∗
γW

= IC([0,1])(L
2(0, 1)).

We now prove equality X∗
γ̃W

= IL2(0,1)(L
2(0, 1)). For this purpose, let us define J :

L2(0, 1)→ L2(0, 1)

J(f)(s) :=

∫ 1

s
f(τ)dτ.
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If f = 1l[0,t), then J(1l[0,t))(s) = ht(s) = (t− s)1l[0,t)(s). On the other hand

j(f)(g) = j(1l[0,t))(g) =

∫ t

0
g(τ)dτ.

We claim that IL2(0,1)(J(1l[0,t))) = j(1l[0,t)). In order to prove that, we approximate ht
using the simple functions

hn(s) =

n−1∑
i=0

t
n− i− 1

n
1l

[ i
n
t,

(i+1)
n

t)
(s).

Since hn converges to ht in L2(0, 1), IL2(0,1)(hn) converges to IL2(0,1)(ht) in L2(L2(0, 1), γ̃W )
thanks to (6.3.3). Let us consider now ω ∈ C0([0, 1]) and g = ι(ω); then

IL2(0,1)(hn)(g) =

n−1∑
i=0

∫ t

0
t
n− i− 1

n
1l

[ it
n
,
(i+1)t
n

)
(s)dW̃s(g)

=
n−1∑
i=0

t
n− i− 1

n

(
W̃ (i+1)t

n

(g)− W̃ it
n

(g)
)

=
n−1∑
i=0

t
n− i− 1

n

(
W (i+1)t

n

(ω)−W it
n

(ω)
)

=

n−1∑
i=0

t
n− i− 1

n

(
ω
((i+ 1)t

n

)
− ω

( it
n

))
=

n−1∑
i=1

ω
( it
n

) t
n
.

As a consequence,

lim
n→∞

IL2(0,1)(hn)(g) =

∫ t

0
g(τ)dτ, ∀g ∈ ι(C0([0, 1])).

Since γW (C0([0, 1])) = 1, we can conclude that IL2(0,1)(ht)(g) =
∫ t

0 g(τ)dτ for γ̃W –a.e.
g ∈ L2(0, 1).

Let us now show the equality X∗
γ̃W

= IL2(0,1)(L
2(0, 1)). From what we have proved, it

follows
X∗γ̃W = j(L2(0, 1)) ⊂ IL2(0,1)(L

2(0, 1)).

On the other hand, we have that C1
c (0, 1) is dense both in L2(0, 1) and J(L2(0, 1)). Then

IL2(0,1)(L
2(0, 1)) = IL2(0,1)(C

1
c (0, 1)) ⊂ IL2(0,1)(J(L2(0, 1))) = j(L2(0, 1)) = X∗γ̃W .

Remark 6.3.4. By Proposition 3.1.2, a function f ∈ C([0, 1]) belongs to the Cameron–
Martin space H if and only if it belongs to the range of RγW , namely if and only if
f = RγW (IC([0,1])(g)) for some g ∈ L2(0, 1). In this case, by (3.1.4) we have

|f |H = ‖IC([0,1])(g)‖L2(C([0,1]),γW ),
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and by the Itô isometry (6.3.3)

|f |H = ‖g‖L2(0,1).

The same argument holds true for f ∈ L2(0, 1).

We close this lecture by characterising the spaces

RγW (j(M ([0, 1])))

and

Rγ̃W (j(L2(0, 1))) = Q(L2(0, 1)).

The latter is easier to describe. We have indeed the following result.

Proposition 6.3.5. Let γ̃W be the Wiener measure on L2(0, 1). Then

Q(L2(0, 1)) = {u ∈ H1
0 ([0, 1]) ∩H2(0, 1) : u′(1) = 0}

and for any f ∈ L2(0, 1), u = Qf is the solution of the problem on (0, 1)
u′′ = −f
u(0) = 0,
u′(1) = 0.

(6.3.7)

Proof. If u = Qf , then

u(x) = Qf(x) =

∫ 1

0
min{x, y}f(y)dy.

Then u is weakly differentiable and

u′(x) =

∫ 1

x
f(y)dy.

Hence u′ admits a continuous version such that u′(1) = 0; u′ is also a.e. differentiable with

u′′(x) = −f(x).

On the other hand, arguing as in the proof of Proposition 6.2.1, if u is a solution of
(6.3.7), integrating twice we obtain

u(x) =

∫ 1

0
min{x, y}f(y)dy = Qf(x),

and this completes the proof.

To prove a similar result in the case of γW on C([0, 1]), we need the following lemma.
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Lemma 6.3.6. Let v ∈ L2(0, 1) be such that v′ = µ ∈M ([0, 1]) in the sense of distribu-
tions, i.e., ∫ 1

0
v(x)ϕ′(x)dx = −

∫
[0,1]

ϕ(x)µ(dx), ∀ϕ ∈ C1
c (0, 1).

Then there exists c ∈ R such that for a.e. x ∈ (0, 1)

v(x) = µ((0, x]) + c. (6.3.8)

Proof. Let us set w(x) = µ((0, x]). We claim that w′ = µ is the sense of distributions.
Indeed, for any ϕ ∈ C1

c (0, 1), by the Fubini Theorem 1.1.17∫ 1

0
w(x)ϕ′(x)dx =

∫ 1

0
µ((0, x])ϕ′(x)dx =

∫ 1

0

(∫
(0,1)

1l(0,x](y)µ(dy)

)
ϕ′(x)dx

=

∫
(0,1)

(∫ 1

0
1l(0,x](y)ϕ′(x) dx

)
µ(dy) = −

∫
(0,1)

ϕ(y)µ(dy).

As a consequence, the weak derivative of v − w is zero and the conclusion holds.

Definition 6.3.7. Let v ∈ L2(0, 1) be such that v′ ∈M ([0, 1]) in the sense of distributions.
Then, writing v(x) = µ((0, x]) + c for a.e x ∈ (0, 1) as in (6.3.8), we set

v(1−) := c+ µ((0, 1)).

We close this lecture with the following proposition.

Proposition 6.3.8. Let γW be the Wiener measure on C([0, 1]). Then

RγW (j(M ([0, 1]))) =
{
u ∈ H1

0 ([0, 1]) :∃µ ∈M ([0, 1]) s.t. u′′ = −µ on (0, 1)

in the sense of distributions, u′(1−) = µ({1})
}

and u = RγW (j(µ)) if and only if u is the solution of the following problem on (0, 1)
u′′ = −µ,
u(0) = 0,
u′(1−) = µ({1}).

(6.3.9)

Proof. Let u = RγW (j(µ)). Then for any ν ∈M ([0, 1]) we have

ν(u) = ν(RγW (j(µ))) =

∫
C([0,1])

j(µ)(f)j(ν)(f)γW (df)

=

∫
C([0,1])

∫
[0,1]

f(x)µ(dx)

∫
[0,1]

f(y)ν(dy)γW (df)

=

∫
[0,1]2

(∫
C([0,1])

Wx(f)Wy(f)γW (df)

)
(µ⊗ ν)(d(x, y))

=

∫
[0,1]2

min{x, y}(µ⊗ ν)(d(x, y)),
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where we have used the fact that Wt is a standard Brownian motion. Indeed, since if
x < y, Wx and Wy −Wx are independent,∫
C([0,1])

Wx(f)Wy(f)γW (df) =

∫
C([0,1])

Wx(f)
(
Wy(f)−Wx(f)

)
γW (df)+

+

∫
C([0,1])

Wx(f)2γW (df)

=

∫
C([0,1])

Wx(f)γW (df) ·
∫
C([0,1])

(
Wy(f)−Wx(f)

)
γW (df)+

+

∫
C([0,1])

Wx(f)2γW (df) = x.

Then

u(y) = RγW (j(µ))(y) =

∫
[0,1]

min{x, y}µ(dx). (6.3.10)

We claim that for a.e. y ∈ (0, 1)

u′(y) = µ((y, 1]) = −µ((0, y]) + µ((0, 1]) (6.3.11)

and that u′ ∈ L2(0, 1). Indeed, for any ϕ ∈ C1
c (0, 1),∫ 1

0
u(x)ϕ′(x)dx =

∫
[0,1]

∫ 1

0
min{x, y}ϕ′(x)dxµ(dy)

=−
∫

[0,1]

∫ y

0
ϕ(x)dxµ(dy) = −

∫ 1

0
ϕ(x)

∫
[0,1]

1l(0,y)(x)µ(dy) dx

=−
∫ 1

0
ϕ(x)

∫
[0,1]

1l(x,1](y)µ(dy) dx = −
∫ 1

0
ϕ(x)µ((x, 1]) dx.

It is readily verified that u′(x) = µ((x, 1]) belongs to L2(0, 1); in addition u′′ = −µ on
(0, 1) in the sense of distributions. Indeed for any ϕ ∈ C1

c (0, 1)∫ 1

0
u′(x)ϕ′(x)dx =

∫
[0,1]

∫ 1

0
1l(0,y)(x)ϕ′(x)dxµ(dy)

=

∫
[0,1]

ϕ(y)µ(dy) =

∫
(0,1)

ϕ(y)µ(dy),

where the last equality follows from the fact that ϕ(0) = ϕ(1) = 0. Comparing (6.3.11)
with (6.3.8) in Lemma 6.3.6, we obtain

lim
y→1−

u′(y) = µ({1}).

On the other hand, if u is a solution of (6.3.9), then since u′′ = −µ, by (6.3.8) in
Lemma 6.3.6 we have for a.e. x ∈ (0, 1)

u′(x) = −µ((0, x]) + c = µ((x, 1))− µ((0, 1)) + c.
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Then u′(1−) = µ({1}) if and only if c = µ({1})+µ((0, 1)), and in this case u′(x) = µ((x, 1])
for a.e. x ∈ (0, 1). Integrating u′ between 0 and x, we get

u(x) =

∫ x

0
µ((t, 1])dt =

∫ 1

0
1l(0,x)(t)µ((t, 1])dt =

∫ 1

0

∫
[0,1]

1l(0,x)(t)1l(t,1](y)µ(dy) dt

=

∫
[0,1]

∫ 1

0
1l(t,1](x)1l(t,1](y)dt µ(dy) =

∫
[0,1]

min{x, y}µ(dy),

and then u = RγW (j(µ)). This completes the proof.

6.4 Exercises

Exercise 6.1. Let µ ∈M ([0, 1]) and let µn be the sequence defined by (6.1.1); prove that
|µn|([0, 1]) ≤ |µ|([0, 1]).

Exercise 6.2. Verify that the eigenvalues of Q in Theorem 6.2.1 are given by (6.2.4) and
that the eigenfunctions with unit norm are given by (6.2.5).

Exercise 6.3. Prove that the stochastic processes defined in (6.3.4) are standard Brownian
motions, i.e., they satisfy Definition 5.2.4.

Exercise 6.4. Prove that the function gn in formula (6.3.6) is given by

gn(x) = µ

([ [2nx]

2n
, 1
])

,

where [2nx] is the integer part of 2nx. Prove that if µ ∈ M ([0, 1]), j(µ) = IC([0,1])(g)
where

g(x) = µ([x, 1]), for a.e. x ∈ [0, 1].

Exercise 6.5. Prove that for any µ ∈M ([0, 1]), the function

u(y) =

∫
[0,1]

min{x, y}µ(dx), y ∈ [0, 1],

is continuous.



Lecture 7

Finite dimensional approximations

In this Lecture we present some techniques that allow to get infinite dimensional results
through finite dimensional arguments and suitable limiting procedures. They rely on
factorising X as the direct sum of a finite dimensional subspace F and a topological
complement XF . The finite dimensional space F is a subspace of the Cameron-Martin
space H. To define the projection onto F , we use an othonormal basis of H, so that we
get at the same time an orthogonal decomposition H = F ⊕ F⊥ of H. Throughout this
Lecture, X is a separable Banach space endowed with a centred Gaussian measure γ.

7.1 Cylindrical functions

In analogy to cylindrical sets discussed in Section 2.1, cylindrical functions play an impor-
tant role in the infinite dimensional Gaussian analysis.

Definition 7.1.1 (Cylindrical functions). We say that ϕ : X → R is a cylindrical func-
tion if there are n ∈ N, `1, . . . , `n ∈ X∗ and a function ψ : Rn → R such that ϕ(x) =
ψ(`1(x), . . . , `n(x)) for all x ∈ X. For k ∈ N, we write ϕ ∈ FCkb (X) (resp. ϕ ∈ FC∞b (X)),
and we say that ϕ is a cylindrical k times (resp. infinitely many times) boundedly differ-
entiable function, if, with the above notation, ψ ∈ Ckb (Rn) (resp. ψ ∈ C∞b (Rn)).

We fix now an orthonormal basis {ĥi : i ∈ N} of X∗γ . By Lemma 3.1.8, we may

assume that each ĥi belongs to j(X∗), i.e., ĥi = j(`i) with `i ∈ X∗. We recall that the set
{hi : i ∈ N}, with hi = Rγ ĥi, is an orthonormal basis of H.

We need a preliminary result; let us denote by

N = {B ∈ E (X) : γ(B) = 0}

the family of Borel sets of null measure. We recall that by Theorem 2.1.1 E (X) = B(X).

Proposition 7.1.2. The following equality holds:

E (X) = σ(E (X, {`i : i ∈ N}) ∪N ),

79
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where E (X, {`i : i ∈ N}) ∪N = {F = E ∪ B : E ∈ E (X, {`i : i ∈ N}), B ∈ N }. In
addition, for any E ∈ E (X) and ε > 0 there exist F ∈ E (X, {`i : i ∈ N}) and B ∈ N
with γ(E4(F ∪B) < ε.

Proof. The inclusion E (X) ⊃ σ(E (X, {`i : i ∈ N}) ∪N ) is trivial, so let us prove the
reverse inclusion. Let x∗ ∈ X∗ and let x∗n be a finite linear combination of elements of
{`i : i ∈ N} such that j(x∗n) → j(x∗) in L2(X, γ) and j(x∗n) → j(x∗) a.e. Then there
exists N ∈ N such that 1lX\N j(x

∗
n) → 1lX\Nj(x

∗) pointwise. The function 1lX\Nj(x
∗
n) is

σ(E (X, {`i}i∈N) ∪N )–measurable for all n ∈ N, and therefore 1lX\N j(x
∗) is σ(E (X, {`i :

i ∈ N}) ∪ N )–measurable. The E (X)–measurability of j(x∗) implies that 1lNj(x
∗) is

also σ(E (X, {`i : i ∈ N}) ∪ N )–measurable, hence j(x∗) = 1lX\Nj(x
∗) + 1lNj(x

∗) is
σ(E (X, {`i : i ∈ N}) ∪N )–measurable. In conclusion, x∗ is σ(E (X, {`i : i ∈ N}) ∪N )–
measurable too. Since this holds for all x∗ ∈ X∗, we obtain the desired inclusion.

For the last assertion, notice that the Carathéodory extension of the restriction of γ
to E (X, {`i : i ∈ N}) ∪N is γ again.

We define

Pnx =

n∑
i=1

ĥi(x)hi, n ∈ N, x ∈ X. (7.1.1)

Note that every Pn is a projection, since by (2.3.6) ĥi(hl) = δil. Moreover, if x ∈ H, then
ĥi(x) = [x, hi]H so that Pnx is just a natural extension to X of the orthogonal projection
of H onto span {h1, . . . , hn}.

We state (without proof) a deep result on finite dimensional approximations.

Theorem 7.1.3. For γ-a.e. x ∈ X, lim
n→∞

Pnx = x.

The proof of theorem 7.1.3 may be the subject of one of the projects of Phase 2.
However, it is easy if X is a Hilbert space, γ = N (0, Q), and we choose as usual an
orthonormal basis {ei : i ∈ N} of X consisting of eigenvectors of Q, Qek = λkek. Let us

first assume that Q is nondegenerate, i.e. λk > 0 for any k ∈ N. Then {hi = λ
1/2
i ei, i ∈ N}

is an orthonormal basis of H and we have ĥi(x) = 〈x, ei〉/λ1/2
i for every x ∈ X. Indeed,

for every x ∈ H,

ĥi(x)hi = [x, hi]Hhi = 〈Q−1/2x,Q−1/2Q1/2ei〉Q1/2ei = 〈x, ei〉ei. (7.1.2)

Since for every x ∈ X we have x =
∑∞

k=1〈x, ek〉ek and the partial sums of this series are
in H, the space H is dense in X. Therefore, equality (7.1.2) holds for every x ∈ X and
Pnx is the orthogonal (in X) projection of x onto span {e1, . . . , en} = span {h1, . . . , hn},
which goes to x as n→∞ for every x ∈ X. Let now Q be degenerate and set

X1 = span{ek : λk > 0}, X2 = X⊥1 .

We can then define γ1 on X1 as

γ1 =
⊗
λk>0

N (0, λk)

and γ2 = δ0 on X2. A direct computation shows that γ and γ1 ⊗ γ2 have the same
covariance operator, and then they are equal.
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7.2 Some more notions from Probability Theory

In this section we recall some further notions of probability theory, in particular conditional
expectation. We use the notation of Lecture 5.

Let us introduce the notion of conditional expectation.

Theorem 7.2.1. Given a probability space (Ω,F ,P), a sub-σ-algebra G ⊂ F and X ∈
L1(Ω,F ,P), there exists a unique a random variable Y ∈ L1(Ω,G ,P) such that∫

A
Y dP =

∫
A
XdP, ∀A ∈ G . (7.2.1)

Such random variable is called expectation of X conditioned by G , and it is denoted by
Y = E(X|G ). Moreover, |E(X|G )| ≤ E(|X| |G ).

Proof. The map B 7→
∫
BX dP, B ∈ G , defines a measure that is absolutely continuous

with respect to the restriction of P to G . The assertions then follow from the Radon-
Nikodym Theorem 1.1.11.

Remark 7.2.2. Using approximations by simple functions, we have that (7.2.1) implies∫
Ω
gXdP =

∫
Ω
g E(X|G )dP

for any bounded G –measurable functions g : Ω→ R.

We list some useful properties of conditional expectation. The proofs are easy conse-
quences of the definition and are left as an exercise, see Exercise 7.3.

Proposition 7.2.3. The conditional expectation satisfies the following properties.

1. If G = {∅,Ω}, then E(X|G ) = E[X].

2. E[E(X|G )] = E[X].

3. For any X,Y and α, β ∈ R, E(αX + βY |G ) = αE(X|G ) + βE(Y |G ).

4. If X ≤ Y , then E(X|G ) ≤ E(Y |G ); in particular, if X ≥ 0, then E(X|G ) ≥ 0.

5. If H ⊂ G is a sub-σ-algebra of G , then

E(E(X|G )|H ) = E(X|H ).

6. If X is G -measurable, then E(X|G ) = X.

7. If X,Y,X · Y ∈ L1(Ω,F ,P) and X is G -measurable, then

E(X · Y |G ) = X · E(Y |G ).

8. If X is independent of G , then E(X|G ) = E[X].
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The following result allows to handle conditional expectations in Lp spaces, 1 ≤ p <∞.

Theorem 7.2.4 (Jensen). Let (Ω,F ,P) be a probability space, let G ⊂ F be a sub-σ-
algebra, let X ∈ L1(Ω,F ,P) be a real random variable, and let ϕ : R→ R be a convex C1

function such that ϕ(X) ∈ L1(Ω,F ,P). Then,

E(ϕ ◦X|G ) ≥ ϕ ◦ E(X|G ). (7.2.2)

Proof. As ϕ is convex, we have that for any x, y ∈ R

ϕ(x) ≥ ϕ(y) + ϕ′(y)(x− y).

We use this inequality with x = X and y = E(X|G ) and we obtain

ϕ(X) ≥ ϕ(E(X|G )) + ϕ′(E(X|G ))(X − E(X|G )). (7.2.3)

Since ϕ(E(X|G )) is G –measurable, by property 6 of Proposition 7.2.3 we have that
E
(
E(ϕ(X)|G )|G

)
= E(ϕ(X)|G ). In the same way, E(X|G ) is G –measurable and then

E(X − E(X|G )|G ) = 0. Since also ϕ′(E(X|G )) is G –measurable, by property 7 of Propo-
sition 7.2.3 we also have

E
(
ϕ′(E(X|G ))

(
X − E(X|G )

)∣∣∣G) = ϕ′(E(X|G )) · E
(
X − E(X|G )

∣∣G ) = 0.

Then, taking conditional expectation in (7.2.3), we have

E(ϕ(X)|G ) ≥E(ϕ(E(X|G ))|G ) + E
(
ϕ′(E(X|G ))(X − E(X|G ))

∣∣∣G) = ϕ(E(X|G )).

Corollary 7.2.5. Let X ∈ Lp(Ω,F ,P), 1 ≤ p ≤ ∞, be a real random variable. Then,
its conditional expectation E(X|G ) given by Theorem 7.2.1 belongs to Lp(Ω,F ,P) as well,
and ‖E(X,G )‖Lp(Ω,F ,P) ≤ ‖X‖Lp(Ω,F ,P).

Proof. Let us first consider the case 1 ≤ p <∞: Theorem 7.2.4 with ϕ(x) = |x|p yields∫
Ω
|E(X|G )|p dP ≤

∫
Ω
E(|X|p|G ) dP =

∫
Ω
|X|p dP. (7.2.4)

The case p =∞ follows by 4. of Proposition 7.2.3.

Notice that the properties of the conditional expectation listed in Proposition 7.2.3
hold also in Lp(X, γ), 1 ≤ p <∞.
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7.3 Factorisation of the Gaussian measure

In this section we describe an important decomposition of γ as the product of two Gaussian
measures on subspaces. The projections onto finite dimensional subspaces generate a
canonical decomposition of the Gaussian measure as follows. Let F ⊂ Rγ(j(X∗)) be an
n–dimensional subspace and let us denote by PF the projection onto X with image F
(which is given by Pn of (7.1.1) with a suitable choice of an orthonormal basis of H).
Define the measure γF = γ ◦ P−1

F and notice that γF (F ) = 1 since P−1
F (F ) = X. For any

ζ ∈ X∗

γ̂F (ζ) =

∫
X

exp{iζ(PF (x))} γ(dx) =

∫
X

exp{iP ∗F ζ(x)} γ(dx)

= exp

{
−1

2
Bγ(P ∗F ζ, P

∗
F ζ)

}
,

hence γF is a centred Gaussian measure by Corollary 2.2.7(i), with

BγF (ζ1, ζ2) =Bγ(P ∗F ζ1, P
∗
F ζ2) =

∫
X
P ∗F ζ1(x)P ∗F ζ2(x)γ(dx)

=

∫
X
ζ1(PFx)ζ2(PFx) γ(dx) =

∫
X
ζ1(z)ζ2(z) γF (dz)

=

∫
F
ζ1(z)ζ2(z) γF (dz) = 〈ζ1, ζ2〉L2(F,γF ), (7.3.1)

for any ζ1, ζ2 ∈ X∗. In the same way we define the measure γ⊥F = γ ◦ (I − PF )−1 and
notice that γ⊥F (XF ) = 1 where XF := kerPF . This measure is again a centred Gaussian
measure with

Bγ⊥F
(ζ1, ζ2) =Bγ((I − PF )∗ζ1, (I − PF )∗ζ2) =

∫
X

(I − PF )∗ζ1(x)(I − PF )∗ζ2(x)γ(dx)

=

∫
X
ζ1((I − PF )x)ζ2((I − PF )x)γ(dx) =

∫
XF

ζ1(y)ζ2(y)γ⊥F (dy)

= 〈ζ1, ζ2〉L2(XF ,γ
⊥
F ), (7.3.2)

for any ζ1, ζ2 ∈ X∗. The explicit computations of BγF and Bγ⊥F
imply that the Cameron–

Martin spaces of γF and γ⊥F are respectively equal to F and F⊥, the last being the
orthogonal complement of F in H.

Since γ is centred, we have that j(f)(x) = f(x) for any f ∈ X∗. To simplify the
notation, we shall write f instead of j(f) also when considered as an element of X∗γ ; in
this way we may think to X∗ as a subset of X∗γ . Let us assume that F = span{h1, . . . , hn}
with h1, . . . , hn orthonormal and such that hk ∈ Rγ(X∗). In this way we may use the
explicit expression for PF given by (7.1.1). We can state and prove the following result.

Lemma 7.3.1. For any f ∈ X∗, we have

PF (Rγ(f)) = Rγ(P ∗F f), (I − PF )(Rγf) = Rγ((I − PF )∗f).
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As a consequence

|Rγ(f)|2H = ‖P ∗F f‖2L2(F,γF ) + ‖(I − PF )∗f‖2
L2(XF ,γ

⊥
F )
. (7.3.3)

Proof. We know that for any g ∈ X∗, by (7.1.1) and Remark 2.3.7

g(PF (Rγ(f))) =

n∑
k=1

ĥk(Rγ(f))g(hk) =

n∑
k=1

〈f, ĥk〉L2(X,γ)g(hk).

On the other hand, we also have

P ∗F f(x) = f(PFx) =

n∑
k=1

ĥk(x)f(hk) =

n∑
k=1

〈f, ĥk〉L2(X,γ)ĥk(x).

Hence for any g ∈ X∗

g(Rγ(P ∗F f)) =g

(
Rγ

( n∑
k=1

〈f, ĥk〉L2(X,γ)ĥk

))

=g

(
n∑
k=1

〈f, ĥk〉L2(X,γ)hk

)
=

n∑
k=1

〈f, ĥk〉L2(X,γ)g(hk),

and then PF (Rγ(f)) = Rγ(P ∗F f). In addition

(I − PF )Rγ(f) = Rγ(f)− PF (Rγ(f)) = Rγ(f)−Rγ(P ∗F f)Rγ((I − P ∗F )f).

Since H = F ⊕ F⊥, for f ∈ X∗ we have

|Rγf |2H =|PFRγf |2H + |(I − PF )Rγf |2H
=‖P ∗F f‖2L2(F,γF ) + ‖(I − PF )∗f‖2

L2(XF ,γ
⊥
F )
.

We have the following result.

Proposition 7.3.2. Let γ̃F the restriction of γF to B(F ) and γ̃⊥F the restriction of γ⊥F to
B(XF ). Then equality γ̃F ⊗ γ̃⊥F = γ holds.

Proof. We use the fact that X = F ⊕XF and then for any ξ ∈ X∗

̂γ̃F ⊗ γ̃⊥F (ξ) =

∫
F×XF

exp{iξ(z + y)}γ̃F ⊗ γ̃⊥F (d(z, y))

=

∫
F

exp{iξ(z)}γF (dz) ·
∫
XF

exp{iξ(y)}γ⊥F (dy)

= exp

{
−1

2

(
BγF (ξ, ξ) +Bγ⊥F

(ξ, ξ)
)}

.
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Taking into account (7.3.1) and (7.3.2), we obtain that

BγF (ξ, ξ) +Bγ⊥F
(ξ, ξ) =

∫
F
ξ(z)2γF (dz) +

∫
XF

ξ(y)2γ⊥F (dy)

=

∫
X

(
ξ(PFx)2 + ξ((I − PF )x)2

)
γ(dx)

=‖P ∗F ξ‖2L2(F,γF ) + ‖(I − PF )∗ξ‖2
L2(XF ,γ

⊥
F )

=|Rγ(ξ)|2H = Bγ(ξ, ξ),

where we have used identity (7.3.3).

As a consequence, by the Fubini theorem, setting for every A ∈ B(X) and z ∈ F (as
in Remark 1.1.16) Az = {y ∈ XF : (z, y) ∈ A}, we have Az ∈ B(XF ); in the same way,
setting, for any y ∈ XF , Ay = {z ∈ F : (z, y) ∈ A}, Ay ∈ B(F ) and we have

γ(A) =

∫
F
γ⊥F (Az) γF (dz) =

∫
XF

γF (Ay) γ⊥F (dy).

7.4 Cylindrical approximations

Now we are ready to study the approximation of a function via cylindrical ones, taking
advantage of the tools just presented.

We fix an orthonormal basis {hk, k ∈ N} of H, hk = Rγ ĥk with ĥk ∈ j(X∗) for all
k ∈ N, see Lemma 3.1.8. For every f ∈ Lp(X, γ), n ∈ N, we define Enf as the conditional
expectation of f with respect to the σ-algebra Σn generated by the random variables
ĥ1, . . . , ĥn. Using Proposition 7.3.2, we can explicitly characterise the expectation of a
function f ∈ Lp(X, γ) conditioned to Σn.

Proposition 7.4.1. Let 1 ≤ p ≤ ∞. For every f ∈ Lp(X, γ) and n ∈ N we have

(Enf)(x) =

∫
X
f(Pnx+ (I − Pn)y)γ(dy), x ∈ X. (7.4.1)

Proof. Let us define

fn(x) =

∫
X
f(Pnx+ (I − Pn)y)γ(dy), n ∈ N, x ∈ X.

Using the factorisation γ = γ̃F ⊗ γ̃⊥F , we may also write

fn(x) =

∫
XF

f(Pnx+ y)γ̃⊥F (dy).
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Since for any B ∈ Σn, 1lB(x) = 1lB(Pnx), we have∫
B
f(x)γ(dx) =

∫
X

1lB(Pnx)f(Pnx+ (I − Pn)x)γ(dx)

=

∫
F×XF

1lB(z)f(z + y)γ̃F ⊗ γ̃⊥F (d(z, y))

=

∫
F

1lB(z)
(∫

XF

f(z + y)γ̃⊥F (dy)
)
γ̃F (dz)

=

∫
F

1lB(z)
(∫

X
f(z + y)γ⊥F (dy)

)
γ̃F (dz)

=

∫
F

1lB(z)
(∫

X
f(z + (I − Pn)y)γ(dy)

)
γ̃F (dz)

=

∫
X

1lB(z)
(∫

X
f(z + (I − Pn)y)γ(dy)

)
γF (dz)

=

∫
X

1lB(Pnx)
(∫

X
f(Pnx+ (I − Pn)y)γ(dy)

)
γ(dx)

=

∫
X

1lB(x)fn(x)γ(dx).

By Theorem 7.2.1 we deduce that fn = E(f |Σn).

Let us come back to the space R∞ described in Subsection 4.1. Through R∞, we give
a description of E (X).

Lemma 7.4.2. A set E ⊂ X belongs to E (X) if and only if there are B ∈ B(R∞) and a
sequence (fn)n∈N ⊂ X∗ such that

E =
{
x ∈ X : f(x) := (fn(x)) ∈ B

}
. (7.4.2)

Proof. For every fixed sequence (fn) ⊂ X∗ the sets of the form (7.4.2) are a σ-algebra, see
Exercise 7.5. Then, the family of the sets as in (7.4.2) are in turn a σ-algebra (let us call
it F ) and the cylinders belong to F , whence E (X) ⊂ F .

On the other hand, for any fixed sequence f = (fn) ⊂ X∗, the family Gf consisting
of all the Borel subsets B ⊂ R∞ such that the set E described in (7.4.2) belongs to
E (X) contains all the cylinders in R∞, hence Gf ⊃ E (R∞). But, since the coordinate
functions in R∞ are continuous and separate the points, from Theorem 2.1.1 it follows
that B(R∞) = E (R∞). Therefore, the family of sets E ⊂ X given by (7.4.2) with B ∈ Gf
is contained in E (X) for every f as above. Then E (X) ⊃ F and the proof is complete.

Lemma 7.4.2 easily implies further useful approximation results.

Lemma 7.4.3. For every A ∈ E (X) and ε > 0 there are a cylinder with compact base
C and a compact set B ⊂ R∞ such that γ(C4A) < ε and the set E defined via (7.4.2)
verifies E ⊂ A and γ(A \ E) < ε.
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Proof. Let A be as in (7.4.2). For every ε > 0 there is a cylinder C0 such that γ(A4C0) <
ε/2: for instance, define Bk = {y ∈ R∞ : yj = fj(x), x ∈ A, j ≤ k} and Ck = f−1(Bk),
and take C0 = Ck with k large enough. Since C0 = P−1(D0) for some D0 ∈ B(Rn) and
a linear continuous operator P : X → Rn, it suffices to take a compact set K ⊂ D0 such
that γ ◦ P−1(D0 \K) < ε/2 and C = P−1(K).

By Proposition 1.1.6 the measure γ ◦ f−1 is Radon on R∞, hence for every ε > 0
there is a compact set K ⊂ B such that γ ◦ f−1(B \ K) < ε and it suffices to choose
E = f−1(K).

Proposition 7.4.4. For every 1 ≤ p <∞ and f ∈ Lp(X, γ) the sequence Enf converges
to f in Lp(X, γ) and γ-a.e. in X.

Proof. Let us fix f ∈ Lp(X, γ). We know that for any ε > 0 there exists a simple function
sε,

sε =
m∑
i=1

ci1lAi , Ai ∈ B(X), ci ∈ R \ {0},

such that ‖f − sε‖Lp(X,γ) < ε. By Proposition 7.1.2, for any i = 1, . . . ,m there exists

Ãi ∈ E (X, {`i}i∈N) with γ(Ai∆Ãi) = 0. Here `i ∈ X∗ is such that j(`i) = ĥi for any
i ∈ N. Since E (X, {`i}i∈N) is the σ–algebra generated by the algebra{

E (X,Fn) : n ∈ N, Fn = {`1, . . . , `n}
}
,

for any i = 1, . . . ,m there exists ni and Ci ∈ E (X,Fni) with γ(Ãi∆Ci) ≤ εp

mp|ci|p . The
choice of the sets Ci implies that, defining

s̃ε =

m∑
i=1

ci1lCi ,

we have

‖sε − s̃ε‖Lp(X,γ) ≤
m∑
i=1

|ci|‖1lAi − 1lCi‖Lp(X,γ)

=
m∑
i=1

|ci|γ(Ai∆Ci)
p = ε.

Let n ≥ max{ni : i = 1, . . . ,m}. Since s̃ε is E (X,Fn)–measurable, by property 6 of
Proposition 7.2.3 we have Ens̃ε = s̃ε and then

‖f − Enf‖Lp(X,γ) ≤‖f − sε‖Lp(X,γ) + ‖sε − s̃ε‖Lp(X,γ)+

+ ‖s̃ε − Ensε‖Lp(X,γ) + ‖Ensε − Enf‖Lp(X,γ)

≤‖f − sε‖Lp(X,γ) + ‖sε − s̃ε‖Lp(X,γ)+

+ ‖En(s̃ε − sε)‖Lp(X,γ) + ‖En(sε − f)‖Lp(X,γ)

≤2‖f − sε‖Lp(X,γ) + 2‖sε − s̃ε‖Lp(X,γ) < 4ε,



88

where we have used the contractivity property of the conditional expectation. The proof
is then completed.

As a consequence of the above results, we have the following approximation theorem.
Notice that the conditional expectations Enf of a function f is invariant under translations
along kerPn, hence it can be identified with a function defined on F = PnX setting
fn(y) = Enf(x), y ∈ F, y = Pnx.

Theorem 7.4.5. For every 1 ≤ p <∞ the space FC∞b (X) is dense in Lp(X, γ).

Proof. Fix p and f ∈ Lp(X, γ). Assume first that f ∈ L∞(X, γ) (this hypothesis will be
removed later). Set

fn(ξ) =

∫
X
f
( n∑
j=1

ξjhj + (I − Pn)y
)
γ(dy), ξ ∈ Rn,

and notice that fn ∈ Lp(Rn, γ ◦ P−1
n ). Given ε > 0, fix n ∈ N such that

‖f − fn‖Lp(X,γ) < ε.

Since fn ∈ Lp(Rn, γ ◦ P−1
n ), there exists g ∈ C∞b (Rn) such that

‖fn − g‖Lp(Rn,γ◦P−1)
n

< ε.

Each fn can be approximated in Lp(Rn, γ ◦ P−1
n ) by a sequence (ψn,j) of functions

in C∞b (Rn), e.g. by convolution. Defining the FC∞b (X) functions gn.j(x) = ψn,j(Pnx),
it is easily checked that the diagonal sequence gn,n converges to f in Lp(X, γ). In order
to remove the assumption that f is bounded, given any f ∈ Lp(X, γ), just consider a
sequence of truncations fk = max{−k,min{k, f}}, k ∈ N, and proceed as before.

7.5 Exercises

Exercise 7.1. Let X be a separable Banach space endowed with a centred Gaussian
measure γ. Prove that for any choice h1, . . . , hd ∈ H, the map P : X → Rd, P (x) =
(ĥ1(x), . . . , ĥd(x)) is a Gaussian random variable with law γ ◦ P−1 = N (0, Q), Qi,j =
[hi, hj ]H .

Exercise 7.2. Let ϕ : Rd → R be a convex function. Prove that there are two sequences
(an) ⊂ Rd and (bn) ⊂ R such that

ϕ(x) = sup
n∈N
{an · x+ bn}.

Use this fact to prove Theorem 7.2.4 for any convex function ϕ : R→ R.

Exercise 7.3. Prove the properties of conditional expectation stated in Proposition 7.2.3.
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Exercise 7.4. Prove that if Ω = (0, 1)2 with F = B((0, 1)2) and P = λ2 the Lebesgue
measure in Ω, then by considering G = B((0, 1))× (0, 1)

E(X|G )(x, y) =

∫ 1

0
X(x, t)dλ1(t) ∀ y ∈ (0, 1).

Exercise 7.5. Prove that for every fixed sequence (fn) ⊂ X∗ the family of sets defined
in (7.4.2) is a σ-algebra.

Exercise 7.6. Prove that if ϕ ∈ C∞(X) has compact support in an infinite dimensional
Banach space then ϕ ≡ 0.
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Lecture 8

Zero-One law and Wiener chaos de-
composition

In this Lecture we introduce the Hermite polynomials, which provide an orthonormal basis
in L2(X, γ). Accordingly, L2(X, γ) is decomposed as the Hilbert sum of the (mutually
orthogonal) subspaces Xk generated by the polynomials of degree k ∈ N, see Proposition
8.1.9. Knowing explicitly an orthonormal basis in this not elementary setting is a real
luxury! The term chaos has been introduced by Wiener in [28] and the structure that
we discuss here is usually called Wiener chaos. Of course, the Hermite polynomials are
used in several proofs, including that of the zero-one law. The expression “zero-one law”
is used in different probabilistic contexts, where the final statement is that a certain event
has probability either 0 or 1. In our case we show that every measurable subspace has
measure either 0 or 1.

We work as usual in a separable Banach space X endowed with a centred Gaussian
measure γ. The symbols Rγ , X

∗
γ , H have the usual meaning.

8.1 Hermite polynomials

As first step, we introduce the Hermite polynomials and we present their main properties.
We shall encounter them in many occasions; further properties will be presented when
needed.

8.1.1 Hermite polynomials in finite dimension

To start with, we introduce the one dimensional Hermite polynomials.

Definition 8.1.1. The sequence of Hermite polynomials in R is defined by

Hk(x) =
(−1)k√
k!

exp{x2/2} d
k

dxk
exp{−x2/2}, k ∈ N ∪ {0}, x ∈ R. (8.1.1)
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Then, H0(x) ≡ 1, H1(x) = x, H2(x) = (x2 − 1)/
√

2, H3(x) = (x3 − 3x)/
√

6, etc.
Some properties of Hermite polynomials are listed below. Their proofs are easy, and left
as exercises, see Exercise 8.1.

Lemma 8.1.2. For every k ∈ N, Hk is a polynomial of degree k, with positive leading
coefficient. Moreover, for every x ∈ R, (i) H ′k(x) =

√
kHk−1(x) = xHk(x)−

√
k + 1Hk+1(x),

(ii) H ′′k (x)− xH ′k(x) = −kHk(x).

(8.1.2)

Note that formula (ii) says thatHk is an eigenfunction of the one dimensional Ornstein–
Uhlenbeck operator D2 − xD, with eigenvalue −k. This operator will play an important
role in the next lectures.

Proposition 8.1.3. The set of the Hermite polynomials is an orthonormal Hilbert basis
in L2(R, γ1).

Proof. We introduce the auxiliary analytic function

F : R2 → R, F (t, x) := e−t
2/2+tx.

Since

F (x, t) =

∞∑
k=0

1

k!

(
− t

2

2
+ tx

)k
,

for every x ∈ R the Taylor expansion of F with respect to t, centred at t = 0, converges
for every t ∈ R and we write it as

F (t, x) = ex
2/2e−(t−x)2/2 = ex

2/2
∞∑
n=0

tn

n!

∂n

∂tn
e−(t−x)2/2

∣∣∣∣
t=0

=
∞∑
n=0

tn

n!
ex

2/2(−1)n
dn

dxn
e−x

2/2 =
∞∑
n=0

tn√
n!
Hn(x).

So, for t, s ∈ R we have

F (t, x)F (s, x) = e−(t2+s2)/2+(t+s)x =
∞∑

n,m=0

tn√
n!

sm√
m!
Hn(x)Hm(x).

Integrating with respect to x in R and recalling that
∫
R e

λxγ1(dx) = eλ
2/2 for every λ ∈ R

we get ∫
R
F (t, x)F (s, x) γ1(dx) = e−(t2+s2)/2

∫
R
e(t+s)xγ1(dx) = ets =

∞∑
n=0

tnsn

n!
,
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as well as ∫
R
F (t, x)F (s, x) γ1(dx) =

∞∑
n,m=0

tn√
n!

sm√
m!

∫
R
Hn(x)Hm(x) γ1(dx).

Comparing the series gives, for every n, m ∈ N ∪ {0},∫
R
Hn(x)Hm(x) γ1(dx) = δn,m,

which shows that the set of the Hermite polynomials is orthonormal.
Let now f ∈ L2(R, γ1) be orthogonal to all the Hermite polynomials. Since the linear

span of {Hk : k ≤ n} is the set of all polynomials of degree ≤ n, f is orthogonal to all
powers xn. Then, all the derivatives of the holomorphic function

g(z) =

∫
R

exp{ixz}f(x) dγ1(x)

vanish at z = 0, showing that g ≡ 0. For z = t ∈ R, g(t) is nothing but (a multiple of)
the Fourier transform of x 7→ f(x)e−x

2/2, which therefore vanishes a.e. So, f(x) = 0 a.e.,
and the proof is complete.

Next, we define d-dimensional Hermite polynomials.

Definition 8.1.4. If α = (α1, . . . , αd) ∈ (N∪ {0})d is a multiindex, we define the polyno-
mial Hα by

Hα(x) = Hα1(x1) · · ·Hαd(xd), x = (x1, . . . , xd) ∈ Rd. (8.1.3)

Proposition 8.1.5. The system of Hermite polynomials is an orthonormal Hilbert basis in
L2(Rd, γd). Moreover, for every multiindex α = (α1, . . . , αd) the following equality holds,

∆Hα(x)− 〈x,∇Hα(x)〉 = −
( d∑
j=1

αj

)
Hα(x). (8.1.4)

Proof. Since γd is the product measure of d copies of γ1, and every Hα is a product of
one dimensional Hermite polynomials, Proposition 8.1.3 yields 〈Hα, Hβ〉L2(Rd,γd) = 1 if
α = β and 〈Hα, Hβ〉L2(Rd,γd) = 0 if α 6= β. Completeness may be shown by recurrence
on d. By Proposition 8.1.3 the statement holds for d = 1. Assume that the statement
holds for d = n − 1, and let f ∈ L2(Rn, γn) be orthogonal to all Hermite polynomials in
Rn. The Hermite polynomials in Rn are all the functions of the form Hα(x1, . . . , xn) =
Hk(x1)Hβ(x2, . . . , xn) with k ∈ N ∪ {0} and β ∈ (N ∪ {0})n−1. So, for every k ∈ N ∪ {0}
and β ∈ (N ∪ {0})n−1 we have

0 = 〈f,Hα〉L2(Rn,γn) =

∫
R

(
Hk(x1)

∫
Rn−1

f(x1, y)Hβ(y)γn−1(dy)

)
γ1(dx1).

Then, the function g(x1) =
∫
Rn−1 f(x1, y)Hβ(y)γn−1(dy) is orthogonal in L2(R, γ1) to all

Hk. By Proposition 8.1.3 it vanishes for a.e. x1, which means that for a.e. x1 ∈ R the
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function f(x1, ·) is orthogonal, in L2(Rn−1, γn−1), to all Hermite polynomials Hβ. By the
recurrence assumption, f(x1, y) vanishes for a.e. y ∈ Rn−1.

For d = 1 equality (8.1.4) has already been stated in Lemma 8.1.2. For d ≥ 2 we have

DjHα(x) = H ′αj (xj)
∏
h6=j

Hαh(xh)

∆Hα(x) =
d∑
j=1

H ′′αj (xj)
∏
h6=j

Hαh(xh) =
d∑
j=1

[
xjH

′
αj (xj)− αjHαj (xj)

]∏
h6=j

Hαh(xh)

=
d∑
j=1

xjDjHα(x)−
( d∑
j=1

αj

)
Hα(x) = 〈x,∇Hα(x)〉 −

( d∑
j=1

αj

)
Hα(x).

Let us denote by Xk the linear span of all Hermite polynomials of degree k. It is a
finite dimensional subspace of L2(Rd, γd), hence it is closed. For f ∈ L2(Rd, γd), we denote
by Ik(f) the orthogonal projection of f on Xk, given by

Ik(f) =
∑
|α|=k

〈f,Hα〉Hα. (8.1.5)

We recall that if α = (α1, . . . , αn) then |α| = α1 + . . . + αn, so that the degree of Hα is
|α|. By Proposition 8.1.5 we have

f =

∞∑
k=0

Ik(f), (8.1.6)

where the series converges in L2(Rd, γd).

8.1.2 The infinite dimensional case

Let us define Hermite polynomials in infinite dimension.
Let us fix an orthonormal basis {ĥj : j ∈ N} of X∗γ with ĥj = `j ∈ X∗ so that

{hj : j ∈ N} is an orthonormal basis of H. We introduce the set Λ of multi-indices
α ∈ (N ∪ {0})N, α = (αj), with finite length |α| =

∑∞
j=1 αj < ∞. Λ is just the set of all

N ∪ {0}-valued sequences, that are eventually 0.

Definition 8.1.6. (Hermite polynomials) For every α ∈ Λ, α = (αj), we set

Hα(x) =
∞∏
j=1

Hαj (ĥj(x)), x ∈ X. (8.1.7)

Note that only a finite number of terms in the above product are different from 1.
So, every Hα is a smooth function with polynomial growth at infinity, namely |Hα(x)| ≤
C(1 + ‖x‖|α|). Therefore, Hα ∈ Lp(X, γ) for every 1 ≤ p <∞.
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Theorem 8.1.7. The set {Hα : α ∈ Λ} is an orthonormal basis of L2(X, γ).

Proof. Let us first show the orthogonality. Let α, β be in Λ, and let d ∈ N be such that
αj = βj = 0 for every j > d. We have (by Exercise 7.1)∫

X
HαHβ dγ =

∫
X

d∏
j=1

Hαj (ĥj(x))Hβj (ĥj(x)) γ(dx)

=

∫
Rd

d∏
j=1

Hαj (ξj)Hβj (ξj)γd(dξ)

which is equal to 1 if αj = βj for every j (namely, if α = β), otherwise it vanishes. The
statement follows.

Next, let us prove that the linear span of the Hα with α ∈ Λ is dense in L2(X, γ).
By Theorem 7.4.5, the cylindrical functions of the type f(x) = ϕ(ĥ1(x), . . . , ĥd(x)) with
d ∈ N and ϕ ∈ Cb(Rd, γd) are dense in L2(X, γ). So, it is sufficient to approximate such
functions. To this aim, we recall that the linear span of the Hermite polynomials in Rd is
dense in L2(Rd, γd), by Proposition 8.1.5; more precisely the sequence

n∑
k=0

I
(d)
k (ϕ) =

n∑
k=0

∑
α∈(N∪{0})d, |α|=k

〈ϕ,Hα〉L2(Rd,γd)Hα

converges to ϕ in L2(Rd, γd) as n→∞. Set

fn(x) :=

n∑
k=0

∑
α∈(N∪{0})d, |α|=k

〈ϕ,Hα〉L2(Rd,γd)Hα(ĥ1(x), . . . , ĥd(x)), n ∈ N, x ∈ X.

Since γ ◦ (ĥ1, . . . , ĥd)
−1 is the standard Gaussian measure γd in Rd,

‖f − fn‖L2(X,γ) =
∥∥∥ϕ− n∑

k=0

I
(d)
k (ϕ)

∥∥∥
L2(Rd,γd)

, n ∈ N,

so that fn → f in L2(X, γ).

Definition 8.1.8. For every k ∈ N ∪ {0} we set

Xk = span{Hα : α ∈ Λ, |α| = k},

where the closure is in L2(X, γ).

For k = 0, X0 is the subset of L2(X, γ) consisting of constant functions. In contrast
with the case X = Rd, for any fixed length k ∈ N there are infinitely many Hermite
polynomials Hα with |α| = k, so that Xk is infinite dimensional. For k = 1, X1 is the
closure of the linear span of the functions ĥj , j ∈ N, that are the Hermite polynomials Hα

with |α| = 1. Therefore, it coincides with X∗γ .
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Proposition 8.1.9. (The Wiener Chaos decomposition)

L2(X, γ) =
⊕

k∈N∪{0}

Xk.

Proof. Since 〈Hα, Hβ〉L2(X,γ) = 0 for α 6= β, the subspaces Xk are mutually orthogonal.
Moreover, they span L2(X, γ) by Theorem 8.1.7.

As in finite dimension, we denote by Ik the orthogonal projection onto Xk. So,

Ik(f) =
∑

α∈Λ, |α|=k

〈f,Hα〉L2(X,γ)Hα, f ∈ L2(X, γ), (8.1.8)

f =
∞∑
k=0

Ik(f), f ∈ L2(X, γ), (8.1.9)

where the series converge in L2(X, γ).

8.2 The zero-one law

We start this section by presenting an important technical notion that we need later, that
of completion of a σ-algebra.

Definition 8.2.1. Let F be a σ-algebra of subsets of X and let γ be a measure on (X,F ).
The completion of F is the family

Fγ =
{
E ⊂ X : ∃B1, B2 ∈ F such that B1 ⊂ E ⊂ B2, γ(B2 \B1) = 0

}
.

We leave as an exercise to verify that Fγ is a σ-algebra. The measure γ is extended
to Fγ in the natural way. From now on, unless otherwise specified, a set E ⊂ X is called
measurable if it belongs to the completed σ-algebra B(X)γ = E (X)γ . The main result of
this section is the following.

Theorem 8.2.2. If V is a measurable affine subspace of X (1), then γ(V ) ∈ {0, 1}.

We need some preliminary results.

Proposition 8.2.3. If A ∈ B(X)γ is such that γ(A + h) = γ(A) for all h ∈ H, then
γ(A) ∈ {0, 1}.

Proof. Let {hj}j∈N be an orthonormal basis of H. Then, for every n ∈ N the function

F (t1, . . . , tn) = γ(A− t1h1 + . . .− tnhn) =

∫
A

exp
{ n∑
j=1

tj ĥj(x)− 1

2

n∑
j=1

t2j

}
γ(dx)

(1)By measurable affine subspace we mean a set V = V0 + x0, with V0 measurable (linear) subspace and
x0 ∈ X.
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is constant. Therefore, for all α1, . . . , αn not all 0 we get

∂α1+...+αnF

∂tα1
1 . . . ∂tαnn

(0, . . . , 0) = 0.

Arguing as in the proof of Proposition 8.1.3 we get

∂α1+...+αn

∂tα1
1 . . . ∂tαnn

exp
{ n∑
j=1

tj ĥj(x)− 1

2

n∑
j=1

t2j

}∣∣∣
t1=···=tn=0

= Hα1(ĥ1(x)) · . . . ·Hαn(ĥn(x))

(where Hαj are the 1-dimensional Hermite polynomials), whence∫
X
Hα1(ĥ1(x)) · . . . ·Hαn(ĥn(x))1lA(x)γ(dx) = 0.

It follows that the function 1lA is orthogonal to all nonconstant Hermite polynomials and
then by Theorem 8.1.7 it is constant, i.e., either 1lA = 0 or 1lA = 1 a.e.

Corollary 8.2.4. If A ∈ B(X)γ is such that γ(A \ (A + h)) = 0 for every h ∈ H, then
γ(A) ∈ {0, 1}.

Proof. Since if h ∈ H also −h ∈ H, we deduce that γ(A \ (A− h)) = 0 for all h ∈ H and
then by Theorem 3.1.5 γ((A+ h) \A) = 0. In conclusion

γ(A+ h) = γ(A), ∀h ∈ H

and we conclude by applying Proposition 8.2.3.

Corollary 8.2.5. If f is a measurable function such that f(x + h) = f(x) a.e., for all
h ∈ H, then there exists c ∈ R such that f(x) = c for a.e. x ∈ X.

Proof. By Proposition 8.2.3, for every t ∈ R either γ({x ∈ X : f(x) < t}) = 1 or
γ({x ∈ X : f(x) < t}) = 0. Since the function t 7→ γ({x ∈ X : f(x) < t}) is increasing,
there exists exactly one c ∈ R such that γ({x ∈ X : f(x) < t}) = 0 for all t ≤ c and
γ({x ∈ X : f(x) < t}) = 1 for all t > c. Then,

γ({x ∈ X : f(x) = c}) = lim
n→∞

γ
({
x ∈ X : c− 1

n
≤ f(x) < c+

1

n

})
= 1.

Now we prove our main theorem.

Proof. of Theorem 8.2.2 Let us assume first that V is a linear subspace. If γ(V ) = 0 there
is nothing to prove. If γ(V ) > 0, then there exists A,B ∈ B(X) with A ⊂ V ⊂ B and
γ(B \A) = 0. By Proposition 3.1.6, there exists r > 0 such that

BH(0, r) ⊂ A−A ⊂ V − V = V,

and then H ⊂ V . Hence V + h = V for every h ∈ H and by Proposition 8.2.3, γ(V ) = 1.
Let now V be an affine subspace. Then, there is x0 such that V0 = V + x0 is a

vector subspace, hence, applying the result for V0 to the measure γx0 we obtain γ(V ) =
γx0(V + x0) = γx0(V0) ∈ {0, 1}.
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8.3 Measurable linear functionals

In this section we give the notion of measurable linear functionals and we prove that such
functions are just the elements of X∗γ .

Definition 8.3.1 (Measurable linear functionals). We say that f : X → R is a measurable
linear functional or γ–measurable linear functional if there exist a measurable subspace
V ⊂ X with γ(V ) = 1 and a γ-measurable function f0 : X → R such that f0 is linear on
V and f = f0 γ-a.e.

In the above definition f = f0 γ-a.e., so we may modify any measurable linear func-
tional on a negligible set in such a way that the modification is still mesurable, as the
σ-algebra B(X) has been completed, it is defined everywhere on a full-measure subspace
V and it is linear on V . This will be always done in what follows. As by Theorem 3.1.9(ii),
which is easily checked to hold for all measurable subspaces and not only for Borel mea-
surable subspaces, the Cameron-Martin space H is contained in V , all measurable linear
functionals will be defined everywhere and linear on H.

Example 8.3.2. Let us exhibit two simple examples of measurable linear functionals
which are not continuous, except trivial cases.

(i) Let f : R∞ → R be the functional defined by

f(x) =
∞∑
k=1

ckxk

where (ck) ∈ `2. Here, as usual R∞ is endowed with a countable product of standard
1-dimensional Gaussian measure, see (4.1.1). Indeed, the series defining f converges
γ-a.e. in R∞. If {k : c6 = 0} =∞, only the restriction of f to R∞c is continuous.

(ii) Let X be a Hilbert space endowed with the Gaussian measure γ = N (0, Q), where
Q is a selfadjoint positive trace-class operator with eigenvalues {λk : k ∈ N}. Let
{ek : k ∈ N} be an orthonormal basis of eigenvectors of Q in X with Qek = λkek
for all k ∈ N. Fix a sequence (ck) ⊂ R such that the series

∑
k c

2
kλk is convergent

and define the functional

f(x) =
∞∑
k=1

ck〈x, ek〉X .

Then, f is a measurable linear functional on X which is not continuous if (ck) /∈ `2,
see Exercise 8.4.

We shall call proper measurable linear functionals the measurable linear functionals
that are linear on X.

Proposition 8.3.3. Let f be a measurable linear functional and let V be a full measure
subspace such that f is linear on V . If X \ V 6= ∅ then there is a modification of f on the
γ-negligible set X \ V which is proper.
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Proof. If V is a complemented subspace, just put f = 0 on the complementary space.
If not, we use the existence of a vector (or Hamel) basis in X, i.e., an infinite (indeed,
uncountable) linearly independent set of generators, see [12, Theorem 1.4.5]. Notice that
the existence of such a basis is equivalent to the axiom of choice or Zorn Lemma. Fix a
Hamel basis of V , say B = {eα : α ∈ A} for a suitable set if indices A. Then, complete
B in order to get a basis of X and extend f|V setting f = 0 on the added generators.
The extension of f|V is different from f on a γ-negligible set and is linear on the whole of
X.

The first result on the measurable linear functionals is the following.

Proposition 8.3.4. If f : X → R is a measurable linear functional, then its restriction
to H is continuous with respect to the norm of H.

Proof. Setting Vn = {f ≤ n}, n ∈ N, since X = ∪nVn, there is n0 ∈ N such that
γ(Vn0) > 0. By Lemma 3.1.6 there is r > 0 such that BH(0, r) ⊂ Vn0 − Vn0 , and therefore

sup
h∈BH(0,r)

|f(h)| ≤ 2n0.

For the statement of Proposition 8.3.4 to be meaningful, f has to be defined every-
where on the subspace V in definition 8.3.1, because H is negligible. Nevertheless, proper
functionals are uniquely determined by their values on H.

Lemma 8.3.5. Let f be a proper measurable linear functional. If f ∈ X∗γ then

f(h) = [Rγf, h]H =

∫
X
f(x)ĥ(x) γ(dx), ∀h ∈ H. (8.3.1)

Proof. The second equality is nothing but the definition of inner product in H. In order
to prove the first one, consider a sequence (fn) ⊂ X∗ converging to f in L2(X, γ) and fix
h ∈ H. By (2.3.6), writing as usual h = Rγ ĥ, we have

fn(h) = fn(Rγ ĥ) =

∫
X
fn(x)ĥ(x) γ(dx).

The right hand side converges to the right hand side of (8.3.1), hence (up to a subsequence
that we do not relabel) fn → f a.e. Then

L = {x ∈ X : f(x) = lim
n→∞

fn(x)}

is a measurable linear subspace of full measure, hence L contains H thanks to Proposition
3.1.9(ii). Therefore, f(h) = limn→∞ fn(h) and this is true for all h ∈ H.

Corollary 8.3.6. If (fn) is a sequence of proper measurable linear functionals converging
to 0 in measure, then their restrictions fn|H converge to 0 uniformly on the bounded subsets
of H.
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Proof. Let us first show that the convergence in measure defined in (1.1.4) implies the
convergence in L2(X, γ). Indeed, if fn → 0 in measure then

exp
{
− 1

2
‖fn‖2L2(X,γ)

}
= γ̂(fn)→ 1,

whence ‖fn‖L2(X,γ) → 0. Therefore, by Lemma 8.3.5

|fn(h)| ≤
∫
X
|fn(x)||ĥ(x)| γ(dx) ≤ ‖fn‖L2(X,γ)|h|H , ∀h ∈ H.

To show that the sequence (fn|H) converges uniformly on the bounded sets, it is enough
to consider the unit ball:

sup
h∈H,|h|H≤1

|fn|H(h)| ≤ ‖fn‖L2(X,γ) → 0.

Proposition 8.3.7. If f and g are two measurable linear functionals, then either γ({f =
g}) = 1 or γ({f = g}) = 0. We have γ({f = g}) = 1 if and only if f = g on H.

Proof. According to Proposition 8.3.3, we may assume that f and g are proper; then
L = {f = g} is a measurable vector space. By Theorem 8.2.2 either γ(L) = 0, or γ(L) = 1.
If γ(L) = 1 then H ⊂ L by Proposition 3.1.9(ii) and then f = g on H. Conversely, if
f = g in H then the measurable function ϕ := f − g verifies ϕ(x + h) = ϕ(x) for every
h ∈ H. By Corollary 8.2.5 ϕ = c a.e., but as ϕ is linear, c = 0.

Notice that, as a consequence of Proposition 8.3.7, if a measurable linear functional
vanishes on a dense subspace of H then it vanishes a.e. Indeed, any measurable linear func-
tional is continuous on H, hence if it vanishes on a dense set then it vanishes everywhere
in H.

Theorem 8.3.8. The following conditions are equivalent.

(i) f ∈ X∗γ .

(ii) There is a sequence (fn)n∈N ⊂ X∗ that converges to f in measure.

(iii) f is a measurable linear functional.

Proof. (i) =⇒ (ii) is obvious.
(ii) =⇒ (iii) If (fn) ⊂ X∗ converges to f in measure, then (up to subsequences that
we do not relabel) fn → f a.e. and therefore defining

V = {x ∈ X : ∃ lim
n→∞

fn(x)},

V is a measurable subspace and γ(V ) = 1, hence we may define also the functional

f0(x) = lim
n→∞

fn(x), x ∈ V.
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V and f0 satisfy the conditions of Definition 8.3.1 and therefore f is a measurable linear
functional.
(iii) =⇒ (i) Let f be a measurable linear functional; then by Proposition 8.3.4 its
restriction to H is linear and continuous with respect to the norm of H. By Riesz-Frechet
Representation Theorem, there exists g ∈ X∗γ such that

f(h) = [Rγg, h]H , ∀h ∈ H.

By (3.1.7) [Rγg, h]H = g(h), and then f = g on H. By the implications (i)=⇒(ii) and
(ii)=⇒(iii) we know that g is a measurable linear functional, and then by Proposition 8.3.7
we deduce that f = g γ–a.e. and then f ∈ X∗γ .

8.4 Exercises

Exercise 8.1. Prove the equalities (8.1.2).

Exercise 8.2. Verify that the family Fγ introduced in Definition 8.2.1 is a σ-algebra.
Prove also that the measure γ, extended to Fγ by γ(E) = γ(B1) = γ(B2) for E,B1, B2

as in Definition 8.2.1, is still a measure.

Exercise 8.3. Prove that if A is a measurable set such that A+rhj = A up to γ-negligible
sets with r ∈ Q and {hj : j ∈ N} an orthonormal basis of H, then γ(A) ∈ {0, 1}.
Hint: Use the continuity of the map h 7→ γ(A+ h) in H.

Exercise 8.4. Prove that the functionals f defined in Example 8.3.2 enjoy the stated
properties.
Hint: For the case (ii), prove that f ∈ L2(X, γ).
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Lecture 9

Sobolev Spaces I

9.1 The finite dimensional case

We consider here the standard Gaussian measure γd = N (0, Id) in Rd. As in the case of
the Lebesgue measure λd, for 1 ≤ p < ∞ there are several equivalent definitions of the
Sobolev space W 1,p(Rd, γd). It may be defined as the set of the functions in Lp(Rd, γd)
having weak derivatives Dif , i = 1, . . . , d in Lp(Rd, γd), or as the completion of a set of
smooth functions in the Sobolev norm,

‖f‖W 1,p(Rd,γd) :=

(∫
Rd
|f |pdγd

)1/p

+

(∫
Rd
|∇f |pdγd

)1/p

. (9.1.1)

Such approaches are equivalent. We will follow the second one, which is easily extendable
to the infinite dimensional case, and in the infinite dimensional case seems to be the
simplest one. To begin with, we exhibit an integration formula for functions in C1

b (Rd), the
space of bounded continuously differentiable functions with bounded first order derivatives.

Lemma 9.1.1. For every f ∈ C1
b (Rd) and for every i = 1, . . . , d we have∫

Rd

∂f

∂xi
(x) γd(dx) =

∫
Rd
xif(x) γd(dx). (9.1.2)

The proof is left as an exercise. Applying Lemma 9.1.1 to the product fg we get the
integration by parts formula∫

Rd
f
∂g

∂xi
dγd = −

∫
Rd
g
∂f

∂xi
dγd +

∫
Rd
f(x)g(x)xi γd(dx), f, g ∈ C1

b (Rd), (9.1.3)

which is the starting point of the theory of Sobolev spaces.

We recall the definition of a closable operator, and of the closure of a closable operator.
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Definition 9.1.2. Let E, F be Banach spaces and let L : D(L) ⊂ E → F be a linear
operator. L is called closable (in E) if there exists a linear operator L : D(L) ⊂ E → F
whose graph is the closure of the graph of L in E × F . Equivalently, L is closable if

(xn) ⊂ D(L), lim
n→∞

xn = 0 in E, lim
n→∞

Lxn = z in F =⇒ z = 0. (9.1.4)

If L is closable, the domain of the closure L of L is the set

D(L) =
{
x ∈ E : ∃(xn) ⊂ D(L), lim

n→∞
xn = x, Lxn converges in F

}
and for x ∈ D(L) we have

Lx = lim
n→∞

Lxn,

for every sequence (xn) ⊂ D(L) such that limn→∞ xn = x. Condition (9.1.4) guarantees
that limn→∞ Lxn is independent of the sequence (xn). Since L is a closed operator, its
domain is a Banach space with the graph norm x 7→ ‖x‖E + ‖Lx‖F .

For every 1 ≤ p <∞ we set as usual p′ = p/(p− 1) if 1 < p <∞, p′ =∞ if p = 1.

Lemma 9.1.3. For any 1 ≤ p < ∞, the operator ∇ : D(∇) = C1
b (Rd) → Lp(Rd, γd;Rd)

is closable in Lp(Rd, γd).

Proof. Let fn ∈ C1
b (Rd) be such that fn → 0 in Lp(Rd, γd) and ∇fn → G = (g1, . . . gd) in

Lp(Rd, γd;Rd). For every i = 1, . . . , d and ϕ ∈ C1
c (Rd) we have

lim
n→∞

∫
Rd

∂fn
∂xi

ϕdγd =

∫
Rd
giϕdγd,

since ∫
Rd

∣∣∣(∂fn
∂xi
− gi

)
ϕ
∣∣∣ dγd ≤ ‖∂fn/∂xi − gi‖Lp(Rd,γd)‖ϕ‖Lp′ (Rd,γd).

On the other hand,∫
Rd

∂fn
∂xi

ϕdγd = −
∫
Rd
fn
∂ϕ

∂xi
dγd +

∫
Rd
xifn(x)ϕ(x) γd(dx), n ∈ N,

so that, since fn → 0 in Lp(Rd, γd) and the functions x 7→ ∂ϕ/∂xi(x), x 7→ xiϕ(x) are
bounded,

lim
n→∞

∫
Rd

∂fn
∂xi

ϕdγd = 0.

So, ∫
Rd
gi ϕdγd = 0, ϕ ∈ C1

c (Rd)

which implies gi = 0 a.e.

Lemma 9.1.3 allows to define the Sobolev spaces of order 1, as follows.
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Definition 9.1.4. For every 1 ≤ p < ∞, W 1,p(Rd, γd) is the domain of the closure of
∇ : C1

b (Rd) → Lp(Rd, γd;Rd) in Lp(Rd, γd;Rd) (still denoted by ∇). Therefore, f ∈
Lp(Rd, γd) belongs to W 1,p(Rd, γd) iff there exists a sequence of functions fn ∈ C1

b (Rd)
such that fn → f in Lp(Rd, γd) and ∇fn converges in Lp(Rd, γd;Rd), and in this case,
∇f = limn→∞∇fn. Moreover we set ∂f/∂xi(x) := ∇f(x) · ei, i = 1, . . . d.

W 1,p(Rd, γd) is a Banach space with the graph norm

‖f‖W 1,p(Rd,γd) := ‖f‖Lp(Rd,γd) + ‖∇f‖Lp(Rd,γd;Rd)

=

(∫
Rd
|f |pdγd

)1/p

+

(∫
Rd
|∇f |pdγd

)1/p

.

(9.1.5)

One could give a more abstract definition of the Sobolev spaces, as the completion
of C1

b (Rd) in the norm (9.1.1). Since the norm (9.1.1) is stronger than the Lp norm,
every element of the completion may be identified in an obvious way with an element f
of Lp(Rd, γd). However, to define ∇f we need to know that for any sequence (fn) of C1

b

functions such that fn → f in Lp(Rd, γd) and ∇fn is a Cauchy sequence in Lp(Rd, γd;Rd),
the sequence of gradients (∇fn) converges to the same limit in Lp(Rd, γd;Rd). In other
words, we need Lemma 9.1.3.

Several properties of the spaces W 1,p(Rd, γd) follow easily.

Proposition 9.1.5. Let 1 < p <∞. Then

(i) the integration formula (9.1.2) holds for every f ∈W 1,p(X, γd), i = 1, . . . , d;

(ii) if θ ∈ C1
b (Rd) and f ∈ W 1,p(Rd, γd), then θ ◦ f ∈ W 1,p(Rd, γd), and ∇(θ ◦ f) =

(θ′ ◦ f)∇f ;

(iii) if f ∈ W 1,p(Rd, γd), g ∈ W 1,q(Rd, γd) with 1/p + 1/q = 1/s ≤ 1, then fg ∈
W 1,s(Rd, γd) and

∇(fg) = g∇f + f∇g;

(iv) W 1,p(Rd, γd) is reflexive;

(v) if fn → f in Lp(Rd, γd) and supn∈N ‖fn‖W 1,p(Rd,γd) <∞, then f ∈W 1,p(Rd, γd).

Proof. Statement (i) follows just approximating f by a sequence of functions belonging to
C1
b (Rd), using (9.1.2) for every approximating function fn and letting n→∞.

Statement (ii) follows approximating θ◦f by θ◦fn, if fn ∈ C1
b (Rd) is such that fn → f

in Lp(Rd, γd) and ∇fn → ∇f in Lp(Rd, γd;Rd).
Statement (iii) follows easily from the definition, approximating fg by fngn if fn ∈

C1
b (Rd) are such that fn → f in Lp(Rd, γd), ∇fn → ∇f in Lp(Rd, γd;Rd), gn → g, in

Lq(Rd, γd), ∇gn → ∇g in Lq(Rd, γd;Rd).
The proof of (iv) is similar to the standard proof of the reflexivity of W 1,p(Rd, λd).

The mapping u 7→ Tu = (u,∇u) is an isometry from W 1,p(Rd, γd) to the product space
E := Lp(Rd, γd)× Lp(Rd, γd;Rd), which implies that the range of T is closed in E. Now,
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Lp(Rd, γd) and Lp(Rd, γd;Rd) are reflexive so that E is reflexive, and T (W 1,p(Rd, γd)) is
reflexive too. Being isometric to a reflexive space, W 1,p(Rd, γd) is reflexive.

As a consequence of reflexivity, if a sequence (fn) is bounded in W 1,p(Rd, γd) a subse-
quence fnk converges weakly to an element g of W 1,p(Rd, γd) as k → ∞. Since fnk → f
in Lp(Rd, γd), f = g and statement (v) is proved.

Note that the argument of the proof of (ii) works as well for p = 1, and statement
(ii) is in fact true also for p = 1. Even statement (i) holds for p = 1, but the fact that
x 7→ xif(x) ∈ L1(Rd, γd) for every f ∈ W 1,1(Rd, γd) is not obvious, and will not be
considered in these lectures.

Instead, W 1,1(Rd, γd) is not reflexive, and statement (v) does not hold for p = 1 (see
Exercise 9.2).

The next characterisation is useful to recognise whether a given function belongs to
W 1,p(Rd, γd). We recall that Lploc(R

d) (resp. W 1,p
loc (Rd)) is the space of all (equivalence

classes of) functions f such that the restriction of f to any ball B belongs to Lp(B, λd)
(resp. W 1,p(B, λd)). Equivalently, f ∈ Lploc(R

d) (resp. f ∈ W 1,p
loc (Rd)) if fθ ∈ Lp(Rd, λd)

(resp. fθ ∈W 1,p(Rd, λd)) for every θ ∈ C∞c (Rd). For f ∈W 1,p
loc (Rd) we denote by Dif the

weak derivative of f with respect to xi, i = 1, . . . d.

Proposition 9.1.6. For every 1 ≤ p <∞,

W 1,p(Rd, γd) =
{
f ∈W 1,p

loc (Rd) : f, Dif ∈ Lp(Rd, γd), i = 1, . . . d
}
.

Moreover, for every f ∈ W 1,p(Rd, γd) and i = 1, . . . , d, ∂f/∂xi coincides with the weak
derivative Dif .

Proof. Let f ∈ W 1,p(Rd, γd). Then for every g ∈ C1
c (Rd), (9.1.3) still holds: indeed, it is

sufficient to approximate f by a sequence of functions belonging to C1
b (Rd), to use (9.1.3)

for every approximating function fn, and to let n→∞.

This implies that ∂f/∂xi is equal to the weak derivative Dif . Indeed, for every ϕ ∈
C∞c (Rd), setting g(x) = ϕ(x)e|x|

2/2(2π)d/2, (9.1.3) yields∫
Rd
f
∂ϕ

∂xi
dx =

∫
Rd
f

(
∂g

∂xi
− xig

)
dγd = −

∫
Rd

∂f

∂xi
g dγd = −

∫
Rd

∂f

∂xi
ϕdx.

So, ∂f/∂xi = Dif , for every i = 1, . . . , d. Since Lp(Rd, γd) ⊂ Lploc(R
d), the inclusion

W 1,p(Rd, γd) ⊂ {f ∈W 1,p
loc (Rd) : f, Dif ∈ Lp(Rd, γd), i = 1, . . . d} is proved.

Conversely, let f ∈ W 1,p
loc (Rd) be such that f , Dif ∈ Lp(Rd, γd) for i = 1, . . . d. Fix

any function θ ∈ C∞c (Rd) such that θ ≡ 1 in B(0, 1) and θ ≡ 0 outside B(0, 2). For every
n ∈ N, we define

fn(x) := θ(x/n)f(x), x ∈ Rd.

Each fn belongs to W 1,p(Rd, γd), because the restriction of f to B(0, 2n) may be approx-
imated by a sequence (ϕk) of C1 functions in W 1,p(B(0, 2n), λd), and the sequence (uk)
defined by uk(x) = θ(x/n)ϕk(x) for |x| ≤ 2n, uk(x) = 0 for |x| ≥ 2n is contained in
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C1
b (Rd), it is a Cauchy sequence in the norm (9.1.5), and it converges to fn in Lp(Rd, γd)

since∫
Rd
|uk − fn|pdγd =

∫
B(0,2n)

|θ(x/n)(f(x)− ϕk(x))|pγd(dx) ≤ ‖θ‖∞
(2π)d/2

∫
B(0,2n)

|f − ϕk|pdx.

In its turn, the sequence (fn) converges to f in Lp(Rd, γd), by the Dominated Convergence
Theorem. Moreover, for every i = 1, . . . , d we have ∂fn/∂xi(x) = n−1Diθ(x/n)f(x) +
θ(x/n)Dif(x), so that ∂fn/∂xi converges to Dif in Lp(Rd, γd), still by the Dominated
Convergence Theorem. Therefore, f ∈W 1,p(Rd, γd).

By Proposition 9.1.6, if a C1 function f is such that f , Dif belong to Lp(Rd, γd)
for every i = 1, . . . , d, then f ∈ W 1,p(Rd, γd). In particular, all polynomials belong to
W 1,p(Rd, γd), for every 1 ≤ p <∞.

9.2 The Bochner integral

We only need the first notions of the theory of integration for Banach space valued func-
tions. We refer to the books [8], [29, Ch. V] for a detailed treatment.

Let (Ω,F ) be a measurable space and let µ : F → [0,∞) be a positive finite measure.
We shall define integrals and Lp spaces of Y -valued functions, where Y is any separable
real Banach space, with norm ‖ · ‖Y .

In the following sections, Ω will be a Banach space X endowed with a Gaussian mea-
sure, and Y will be either X or the Cameron–Martin space H. However, the definitions
and the basic properties are the same for a Gaussian measure and for a general positive
finite measure.

As in the scalar valued case, the simple functions are functions of the type

F (x) =
n∑
i=1

1lΓi(x)yi, x ∈ Ω,

with n ∈ N, Γi ∈ F , yi ∈ Y for every i = 1, . . . , n and Γi ∩ Γj = ∅ for i 6= j. In this case,
the integral of F is defined by ∫

Ω
F (x)µ(dx) :=

n∑
i=1

µ(Γi)yi. (9.2.1)

It is easily seen that the integral is linear, namely for every α, β ∈ R and for every couple
of simple functions F1, F2∫

Ω
(αF1(x) + βF2(x))µ(dx) = α

∫
Ω
F1(x)µ(dx) + β

∫
X
F2(x)µ(dx) (9.2.2)

and it satisfies ∥∥∥∥∫
Ω
F (x)γ(dx)

∥∥∥∥
Y

≤
∫

Ω
‖F (x)‖Y γ(dx), (9.2.3)

for every simple function F (notice that x 7→ ‖F (x)‖Y is a simple real valued function).
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Definition 9.2.1. A function F : Ω → Y is called strongly measurable if there exists
a sequence of simple functions (Fn) such that limn→∞ ‖F (x) − Fn(x)‖Y = 0, for µ-a.e.
x ∈ Ω.

Notice that if Y is separable then this notion coincides with the general notion of
measurable function given in Definition 1.1.7, see [27, Proposition I.1.9]. If Y = R, see
Exercise 9.3. Also, notice that if F is strongly measurable, then ‖F (·)‖Y is a real valued
measurable function. The following theorem is a consequence of an important result is
due to Pettis (e.g. [8, Thm. II.2]).

Theorem 9.2.2. A function F : Ω → Y is strongly measurable if and only if for every
f ∈ Y ∗ the composition f ◦ F : Ω→ R, x 7→ f(F (x)), is measurable.

As a consequence, if Y is a separable Hilbert space and {yk : k ∈ N} is an orthonormal
basis of Y , then F : Ω→ Y is strongly measurable if and only if the real valued functions
x 7→ 〈F (x), yk〉Y are measurable.

Definition 9.2.3. A strongly measurable function F : Ω→ Y is called Bochner integrable
if there exists a sequence of simple functions (Fn) such that

lim
n→∞

∫
Ω
‖F (x)− Fn(x)‖Y µ(dx) = 0.

In this case, the sequence
∫

Ω Fndµ is a Cauchy sequence in Y by estimate (9.2.3), and we
define ∫

Ω
F (x)µ(dx) := lim

n→∞

∫
Ω
Fn(x)µ(dx)

(of course, the above limit is independent of the defining sequence (Fn)). The following
result is known as the Bochner Theorem.

Proposition 9.2.4. A measurable function F : Ω→ Y is Bochner integrable if and only
if ∫

Ω
‖F (x)‖Y µ(dx) <∞.

Proof. If F is integrable, for every sequence of simple functions (Fn) in Definition 9.2.3
we have ∫

Ω
‖F (x)‖Y µ(dx) ≤

∫
Ω
‖F (x)− Fn(x)‖Y µ(dx) +

∫
Ω
‖Fn(x)‖Y µ(dx),

which is finite for n large enough.
To prove the converse, if

∫
Ω ‖F (x)‖Y µ(dx) <∞ we construct a sequence of simple func-

tions (Fn) that converge pointwise to F and such that limn→∞
∫

Ω ‖F (x)−Fn(x)‖Y µ(dx) =
0.

Let {yk : k ∈ N} be a dense subset of Y . Set

θn(x) := min{‖F (x)− yk‖Y : k = 1, . . . , n},
kn(x) := min{k ≤ n : θn(x) = ‖F (x)− yk‖Y },
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and
Fn(x) := ykn(x), x ∈ X.

Then every θn is a real valued measurable function. This implies that Fn is a simple
function, because it takes the values y1, . . . yn, and for every k = 1, . . . , n, F−1

n (yk) is the
measurable set Γk = {x ∈ Ω : θn(x) = ‖F (x)− yk‖Y }.

For every x the sequence ‖Fn(x) − F (x)‖Y decreases monotonically to 0 as n → ∞.
Moreover, for every n ∈ N,

‖Fn(x)− F (x)‖Y ≤ ‖y1 − F (x)‖Y ≤ ‖y1‖Y + ‖F (x)‖Y , x ∈ X. (9.2.4)

By the Dominated Convergence Theorem (recall that µ is a finite measure) or else, by the
Monotone Convergence Theorem,

lim
n→∞

∫
Ω
‖Fn(x)− F (x)‖Y µ(dx) = 0.

If F : Ω → Y is integrable, for every E ∈ F the function 1lEF is integrable, and we
set ∫

E
F (x)µ(dx) =

∫
Ω

1lE(x)F (x)µ(dx).

The Bochner integral is linear with respect to F , namely for every α, β ∈ R and for every
integrable F1, F2, (9.2.2) holds. Moreover, it enjoys the following properties.

Proposition 9.2.5. Let F : Ω→ Y be a Bochner integrable function. Then

(i) ‖
∫

Ω F (x)µ(dx)‖Y ≤
∫

Ω ‖F (x)‖Y µ(dx);

(ii) limµ(E)→0

∫
E F (x)µ(dx) = 0;

(iii) If (En) is a sequence of pairwise disjoint measurable sets in Ω and E = ∪n∈NEn,
then ∫

E
F (x)µ(dx) =

∑
n∈N

∫
En

F (x)µ(dx);

(iv) For every f ∈ Y ∗, the real valued function x 7→ f(F (x)) is in L1(Ω, µ), and

f

(∫
Ω
F (x)µ(dx)

)
=

∫
Ω
f(F (x))µ(dx). (9.2.5)

Proof. (i) Let (Fn) be a sequence of simple functions as in Definition 9.2.3. By (9.2.3) for
every n ∈ N we have ‖

∫
Ω Fn(x)µ(dx)‖Y ≤

∫
Ω ‖Fn(x)‖Y µ(dx). Then,∥∥∥∥∫

Ω
F (x)µ(dx)

∥∥∥∥
Y

=

∥∥∥∥ lim
n→∞

∫
Ω
Fn(x)µ(dx)

∥∥∥∥
Y

≤ lim sup
n→∞

∫
Ω
‖Fn(x)‖Y µ(dx)

≤ lim
n→∞

∫
Ω
‖Fn(x)− F (x)‖Y µ(dx) +

∫
Ω
‖F (x)‖Y µ(dx)

=

∫
Ω
‖F (x)‖Y µ(dx).
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Statement (ii) means: for every ε > 0 there exists δ > 0 such that µ(E) ≤ δ implies
‖
∫
E F (x)µ(dx)‖Y ≤ ε. Since limµ(E)→0

∫
E ‖F (x)‖Y µ(dx) = 0, statement (ii) is a conse-

quence of (i).

Let us prove statement (iii). Since, for every n,∥∥∥∥∫
En

F (x)µ(dx)

∥∥∥∥
Y

≤
∫
En

‖F (x)‖Y µ(dx),

the series
∑

n∈N
∫
En
F (x)µ(dx) converges in Y , and its norm does not exceed∫

Ω
‖F (x)‖Y µ(dx).

Since the Bochner integral is finitely additive,∥∥∥∥∫
E
F (x)µ(dx)−

m∑
n=1

∫
En

F (x)µ(dx)

∥∥∥∥
Y

=

∥∥∥∥∫
∪∞n=m+1En

F (x)µ(dx)

∥∥∥∥
Y

where limm→∞ µ(∪∞n=m+1En) = 0. By statement (ii), the right-hand side vanishes as
m→∞, and statement (iii) follows.

Let us prove statement (iv). Note that (9.2.5) holds obviously for simple functions.
Let (Fn) be the sequence of functions in the proof of Proposition 9.2.4. Then,

f

(∫
Ω
F (x)µ(dx)

)
= f

(
lim
n→∞

∫
Ω
Fn(x)µ(dx)

)
= lim

n→∞
f

(∫
Ω
Fn(x)µ(dx)

)
= lim

n→∞

∫
Ω
f(Fn(x))µ(dx).

On the other hand, the sequence (f(Fn(x))) converges pointwise to f(F (x)), and by (9.2.4)

|f(Fn(x))| ≤ ‖f‖Y ∗‖Fn(x)‖Y ≤ ‖f‖Y ∗(‖Fn(x)− F (x)‖Y + ‖F (x)‖Y )

≤ ‖f‖Y ∗(‖y1‖Y + 2‖F (x)‖Y ).

By the Dominated Convergence Theorem,

lim
n→∞

∫
Ω
f(Fn(x))µ(dx) =

∫
Ω
f(F (x))µ(dx),

and the statement follows.

Remark 9.2.6. As a consequence of (iv), if Y is a separable Hilbert space and {yk : k ∈
N} is an orthonormal basis of Y , for every Bochner integrable F : Ω→ Y the real valued
functions x 7→ 〈F (x), yk〉Y belong to L1(Ω, µ), and we have∫

Ω
F (x)µ(dx) =

∞∑
k=1

∫
Ω
〈F (x), yk〉Y µ(dx) yk.
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The Lp spaces of Y -valued functions are defined as in the scalar case. Namely, for every
1 ≤ p < ∞, Lp(Ω, µ;Y ) is the space of the (equivalence classes) of Bochner integrable
functions F : Ω→ Y such that

‖F‖Lp(Ω,µ;Y ) :=

(∫
X
‖F (x)‖pY µ(dx)

)1/p

<∞.

The proof that Lp(Ω, µ;Y ) is a Banach space with the above norm is the same as in the
real valued case. If p = 2 and Y is a Hilbert space, Lp(Ω, µ;Y ) is a Hilbert space with the
scalar product

〈F,G〉L2(Ω,µ;Y ) :=

∫
Ω
〈F (x), G(x)〉Y µ(dx).

As usual, we define

L∞(Ω, µ;Y ) :=
{
F : Ω→ Y measurable s.t. ‖F‖L∞(Ω,µ;Y ) <∞

}
,

where
‖F‖L∞(Ω,µ;Y ) := inf

{
M > 0 : µ({x : ‖F (x)‖Y > M}) = 0

}
.

Notice that if Y is a separable Hilbert space, which is our setting, the space Lp(Ω, µ;Y )
is reflexive for 1 < p <∞, see [8, Section IV.1].

The first example of Bochner integral that we met in these lectures was the mean a of
a Gaussian measure γ on a separable Banach space X. By Proposition 2.3.3, there exists
a unique a ∈ X such that aγ(f) = f(a), for every f ∈ X∗. Since γ is a Borel measure,
every continuous F : X → X is measurable; in particular F (x) := x is measurable,
hence strongly measurable. By the Fernique Theorem and Proposition 9.2.4 it belongs to
Lp(X, γ;X) for every 1 ≤ p <∞, and we have

a =

∫
X
x γ(dx).

Indeed, for every f ∈ X∗, we have

f

(∫
X
x γ(dx)

)
=

∫
X
f(x) γ(dx) = aγ(f),

by (9.2.5). Therefore, a =
∫
X x γ(dx).

9.3 The infinite dimensional case

9.3.1 Differentiable functions

Definition 9.3.1. Let X, Y be normed spaces. Let x ∈ X and let Ω be a neighbourhood of
x. A function f : Ω→ Y is called (Fréchet) differentiable at x if there exists ` ∈ L(X,Y )
such that

‖f(x+ h)− f(x)− `(h)‖Y = o(‖h‖X) as h→ 0 in X.

In this case, ` is unique, and we set f ′(x) := `.
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Several properties of differentiable functions may be proved as in the case X = Rn,
Y = Rm. First, if f is differentiable at x it is continuous at x. Moreover, for every v ∈ X
the directional derivative

∂f

∂v
(x) := Y − lim

t→0

f(x+ tv)− f(x)

t

exists and is equal to f ′(x)(v).

If Y = R and f : X → R is differentiable at x, f ′(x) is an element of X∗. In particular,
if f ∈ X∗ then f is differentiable at every x and f ′ is constant, with f ′(x)(v) = f(v) for
every x, v ∈ X. If f ∈ FC1

b (X), f(x) = ϕ(`1(x), . . . , `n(x)) with `k ∈ X∗, ϕ ∈ C1
b (Rn), f

is differentiable at every x and

f ′(x)(v) =

n∑
k=1

∂ϕ

∂ξk
((`1(x), . . . , `n(x))`k(v), x, v ∈ X.

If f is differentiable at x for every x in a neighbourhood of x, it may happen that the
function X → L(X,Y ), x 7→ f ′(x) is differentiable at x, too. In this case, the derivative
is denoted by f ′′(x), and it is an element of L(X,L(X,Y )). The higher order derivatives
are defined recursively, in the same way.

If f : X → R is twice differentiable at x, f ′′(x) is an element of L(X,X∗), which is
canonically identified with the space of the continuous bilinear forms L(2)(X): indeed, if
v ∈ L(X,X∗), the function X2 → R, (x, y) 7→ v(x)(y), is linear both with respect to x
and with respect to y and it is continuous, so that it is a bilinear form; conversely every
bilinear continuous form a : X2 → R gives rise to the element v ∈ L(X,X∗) defined by
v(x)(y) = a(x, y). Moreover,

‖v‖L(X,X∗) = sup
x 6=0, y 6=0

|v(x)(y)|
‖x‖X ‖y‖X

= sup
x 6=0, y 6=0

|a(x, y)|
‖x‖X ‖y‖X

= ‖a‖L(2)(X).

Similarly, if f : X → R is k times differentiable at x, f (k)(x) is identified with an element
of the space L(k)(X) of the continuous k-linear forms.

Definition 9.3.2. Let k ∈ N. We denote by Ckb (X) the set of bounded and k times
continuously differentiable functions f : X → R, with bounded ‖f (j)‖L(j)(X) for every
j = 1, . . . , k. It is normed by

‖f‖Ckb (X) =
k∑
j=0

sup
x∈X
‖f (j)(x)‖L(j)(X),

where we set f (0)(x) = f(x). Moreover we set

C∞b (X) =
⋂
k∈N

Ckb (X).
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If X is a Hilbert space and f : X → R is differentiable at x, there exists a unique
y ∈ X such that f ′(x)(x) = 〈x, y〉, for every x ∈ X. We set

∇f(x) := y.

From now on, X is a separable Banach space endowed with a norm ‖ · ‖ and with a
Gaussian centred non degenerate measure γ, and H is its Cameron-Martin space defined
in Lecture 3.

Definition 9.3.3. A function f : X → R is called H-differentiable at x ∈ X if there exists
`0 ∈ H∗ such that

|f(x+ h)− f(x)− `0(h)| = o(|h|H) as h→ 0 in H.

If f is H-differentiable at x, the operator `0 in the definition is called H-derivative of
f at x, and there exists a unique y ∈ H such that `0(h) = [h, y]H for every h ∈ H. We set

∇Hf(x) := y.

Definition 9.3.3 differs from 9.3.1 in that the increments are taken only in H.

Lemma 9.3.4. If f is differentiable at x, then it is H-differentiable at x, with H-derivative
given by h 7→ f ′(x)(h) for every h ∈ H. Moreover, we have

∇Hf(x) = Rγf
′(x). (9.3.1)

Proof. Setting ` = f ′(x) we have

lim
|h|H→0

|f(x+ h)− f(x)− `(h)|
|h|H

= lim
|h|H→0

|f(x+ h)− f(x)− `(h)|
‖h‖

‖h‖
|h|H

= 0,

because H is continuously embedded in X so that the ratio ‖h‖/|h|H is bounded by a
constant independent of h. This proves the first assertion. To prove (9.3.1), we recall
that for every ϕ ∈ X∗ we have ϕ(h) = [Rγϕ, h]H for each h ∈ H; in particular, taking
ϕ = f ′(x) we obtain f ′(x)(h) = [Rγf

′(x), h]H = [∇Hf(x), h]H for each h ∈ H, and
therefore ∇Hf(x) = Rγf

′(x).

If f is just H-differentiable at x, the directional derivative ∂f
∂v (x) exists for every v ∈ H,

and it is given by [∇Hf(x), v]H . Fixed any orthonormal basis {hn : n ∈ N} of H, we set

∂if(x) :=
∂f

∂hi
(x), i ∈ N.

So, we have

∇Hf(x) =
∞∑
i=1

∂if(x)hi, (9.3.2)

where the series converges in H.
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We warn the reader that if X is a Hilbert space and f is differentiable at x, the gradient
and the H-gradient of f at x do not coincide in general. If γ = N (0, Q), identifying X∗

with X as usual, Lemma 9.3.4 implies that ∇Hf(x) = Q∇f(x).
We recall that if γ is non degenerate, then Q is positive definite. Fixed any orthonormal

basis {ej : j ∈ N} of X consisting of eigenvectors of Q, Qej = λjej , then a canonical
orthonormal basis of H is {hj : j ∈ N}, with hj =

√
λjej , and we have

∂jf(x) =
√
λj
∂f

∂ej
(x), j ∈ N.

9.3.2 Sobolev spaces of order 1

As in finite dimension, the starting point to define the Sobolev spaces is an integration
formula for C1

b functions.

Proposition 9.3.5. For every f ∈ C1
b (X) and h ∈ H we have∫

X

∂f

∂h
dγ =

∫
X
f ĥ dγ. (9.3.3)

Consequently, for every f , g ∈ C1
b (X) and h ∈ H we have∫

X

∂f

∂h
g dγ = −

∫
X

∂g

∂h
f dγ +

∫
X
f g ĥ dγ. (9.3.4)

Proof. By the Cameron–Martin Theorem 3.1.5, for every t ∈ R we have∫
X
f(x+ th) γ(dx) =

∫
X
f(x)etĥ(x)−t2|h|2H/2γ(dx),

so that, for 0 < |t| ≤ 1,∫
X

f(x+ th)− f(x)

t
γ(dx) =

∫
X
f(x)

etĥ(x)−t2|h|2H/2 − 1

t
γ(dx).

As t → 0, the integral in the left-hand side converges to
∫
X ∂f/∂h dγ, by the Dominated

Convergence Theorem. Concerning the right-hand side, (etĥ(x)−t2|h|2H/2 − 1)/t→ ĥ(x) for
every x ∈ X. For |t| ≤ 1, we estimate∣∣∣∣etĥ(x)−t2|h|2H/2 − 1

t

∣∣∣∣ =

∣∣∣∣e−t2|h|2H/2(etĥ(x) − 1)

t
+
e−t

2|h|2H/2 − 1

t

∣∣∣∣
≤ |ĥ(x)|e|ĥ(x)||+ sup

0<t≤1

∣∣∣∣e−t2|h|2H/2 − 1

t

∣∣∣∣,
where the function x 7→ |ĥ(x)|e|ĥ(x)| belongs to L1(X, γ) since ĥ is a Gaussian random
variable. So, applying the Dominated Convergence Theorem we get the statement.
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Notice that formula (9.3.3) is a natural extension of (9.1.2) to the infinite dimensional
case. In (Rd, γd) the equality H = Rd holds, and for every h ∈ Rd we have ĥ(x) = h · x =
[h, x]H .

We proceed as in finite dimension to define the Sobolev spaces of order 1. Next step
is to prove that some gradient operator, defined on a set of good enough functions, is
closable in Lp(X, γ). In our general setting the only available gradient is ∇H . We shall
use the following lemma, whose proof is left as an exercise, being a consequence of the
results of Lecture 7.

Lemma 9.3.6. Let ψ ∈ L1(X, γ) be such that∫
X
ψ ϕdγ = 0, ϕ ∈ FC1

b (X).

Then ψ = 0 a.e.

Proposition 9.3.7. For every 1 ≤ p < ∞, the operator ∇H : D(∇H) = FC1
b (X) →

Lp(X, γ;H) is closable as an operator from Lp(X, γ) to Lp(X, γ;H).

Proof. Let 1 < p <∞. Let fn ∈ FC1
b (X) be such that fn → 0 in Lp(X, γ) and ∇Hfn → G

in Lp(X, γ;H). For every h ∈ H and ϕ ∈ FC1
b (X) we have

lim
n→∞

∫
X

∂fn
∂h

ϕdγ =

∫
X

[G(x), h]Hϕ(x) γ(dx),

since ∫
X
|(∂fn/∂h− [G(x), h]H)ϕ| dγ ≤ |h|pH

(∫
X
|∇Hfn −G|pHdγ

)1/p

‖ϕ‖Lp′ (X,γ).

On the other hand,∫
X

∂fn
∂h

ϕdγ = −
∫
X
fn
∂ϕ

∂h
dγ +

∫
X
fnϕĥ dγ, n ∈ N,

so that, since fn → 0 in Lp(X, γ) and ∂ϕ/∂h, ĥϕ ∈ Lp′(X, γ),

lim
n→∞

∫
X

∂fn
∂h

ϕdγ = 0.

So, ∫
X

[G(x), h]Hϕ(x) γ(dx) = 0, ϕ ∈ FC1
b (X), (9.3.5)

and by Lemma 9.3.6, [G(x), h]H = 0 a.e. Fix any orthonormal basis {hk : k ∈ N} of H.
Then

⋃
k∈N{x : [G(x), hk]H 6= 0} is negligible so that G(x) = 0 a.e.

Let now p = 1. The above procedure does not work, since ĥϕ /∈ L∞(X, γ) in general,
although it belongs to Lq(X, γ) for every q > 1. Let (fn) be a sequence in FC1

b (X), fn → 0
in L1(X, γ), ∇Hfn → G in L1(X, γ;H). We want to show that G = 0.
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Without loss of generality we may assume that fn → 0, ∇Hfn → G a.e., and that there
exists g ∈ L1(X, γ) such that |∇Hfn|H ≤ g a.e. for any n ∈ N (just take a subsequence
which we do not relabel such that

∑
n ‖fn‖L1(X,γ) <∞ and set g =

∑
n |fn|).

Let θ ∈ C1
b (R) be such that θ(0) = 0, θ′(0) = 1. Then θ ◦ fn → θ(0) = 0 a.e., and

therefore in Lp(X, γ) for all 1 ≤ p <∞, because θ is bounded. Also

∇H(θ ◦ fn) = (θ′ ◦ fn)∇Hfn → θ′(0)G = G

a.e. and therefore in L1(X, γ;H) by the Dominated Convergence Theorem. These conver-
gences imply that the proof of G = 0 can be carried out in the same way as for 1 < p <∞.
Indeed, for any h ∈ H, using the integration by parts formula (9.3.4), for every n we have∫

X

∂(θ ◦ fn)

∂h
ϕdγ =

∫
X

(θ ◦ fn)[ĥϕ− ∂ϕ

∂h
] dγ.

Letting n→∞, we obtain∫
X

[G(x), h]Hϕdγ = 0, ϕ ∈ FC1
b (X).

The proof of Proposition 9.3.7 for p = 1 is more complicated than the proof of Lemma
9.1.3, where we could use compactly supported functions ϕ.

Remark 9.3.8. Note that in the proof of Proposition 9.3.7 we proved that for every
h ∈ H the linear operator ∂h : D(∂h) = FC1

b (X) → Lp(X, γ) is closable as an operator
from Lp(X, γ) to Lp(X, γ;H).

We are now ready to define the Sobolev spaces of order 1 and the generalized H-
gradients.

Definition 9.3.9. For every 1 ≤ p < ∞, W 1,p(X, γ) is the domain of the closure of
∇H : FC1

b (X) → Lp(X, γ;H) in Lp(X, γ) (still denoted by ∇H). Therefore, an element
f ∈ Lp(X, γ) belongs to W 1,p(X, γ) iff there exists a sequence of functions fn ∈ FC1

b (X)
such that fn → f in Lp(X, γ) and ∇Hfn converges in Lp(X, γ;H), and in this case,
∇Hf = limn→∞∇Hfn.

W 1,p(X, γ) is a Banach space with the graph norm

‖f‖W 1,p := ‖f‖Lp(X,γ) + ‖∇Hf‖Lp(X,γ;H) =

(∫
X
|f |pdγ

)1/p

+

(∫
X
|∇Hf |pHdγ

)1/p

.

(9.3.6)
For p = 2, W 1,2(X, γ) is a Hilbert space with the natural inner product

〈f, g〉W 1,2 :=

∫
X
f g dγ +

∫
X

[∇Hf,∇Hg]Hdγ,

which gives an equivalent norm.
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For every fixed orthonormal basis {hj : j ∈ N} of H, and for every f ∈ W 1,p(X, γ),
we set

∂jf(x) := [∇Hf(x), hj ]H , j ∈ N.

More generally, for every h ∈ H we set

∂hf(x) := [∇Hf(x), h]H .

By definition,∫
X
|∇Hf |pHdγ =

∫
X

( ∞∑
j=1

[∇Hf, hj ]2H
)p/2

dγ =

∫
X

( ∞∑
j=1

(∂jf)2

)p/2
dγ.

Moreover, if fn ∈ FC1
b (X) is such that fn → f in Lp(X, γ) and ∇Hfn converges in

Lp(X, γ;H), then

lim
n→∞

[∇Hfn, hj ]H = lim
n→∞

∂jfn = ∂jf, in Lp(X, γ).

As in finite dimension, several properties of the spaces W 1,p(X, γ) follow easily.

Proposition 9.3.10. Let 1 < p <∞. Then

(i) the integration formula (9.3.3) holds for every f ∈W 1,p(X, γ), h ∈ H;

(ii) if θ ∈ C1
b (X;R) and f ∈ W 1,p(X, γ), then θ ◦ f ∈ W 1,p(X, γ), and ∇H(θ ◦ f) =

(θ′ ◦ f)∇Hf ;

(iii) if f ∈ W 1,p(X, γ), g ∈ W 1,q(X, γ) with 1/p + 1/q = 1/s ≤ 1, then fg ∈ W 1,s(X, γ)
and

∇H(fg) = ∇Hf g + f∇Hg;

(iv) W 1,p(X, γ) is reflexive;

(v) if fn → f in Lp(X, γ) and supn∈N ‖fn‖W 1,p(X,γ) <∞, then f ∈W 1,p(X, γ).

Proof. The proof is just a rephrasing of the proof of Proposition 9.1.5.
Statement (i) follows approximating f by a sequence of functions belonging to FC1

b (X),
using (9.3.3) for every approximating function fn and letting n→∞.

Statement (ii) follows approximating θ ◦ f by θ ◦ fn, if (fn) ⊂ FC1
b (X) is such that

fn → f in Lp(X, γ) and ∇Hfn → ∇Hf in Lp(X, γ;H).
Statement (iii) follows from the definition, approximating fg by fngn if (fn), (gn) ⊂

FC1
b (X), are such that fn → f in Lp(X, γ), ∇Hfn → ∇Hf in Lp(X, γ;H), gn → g in

Lp
′
(X, γ), ∇Hgn → ∇Hg in Lp

′
(X, γ;H). Then limn→∞ fngn = fg in Ls(X, γ), and the

sequence (∇H(fngn)) converges to g∇Hf + f∇Hg in Ls(X, γ;H).
Let us prove (iv). The mapping u 7→ Tu = (u,∇Hu) is an isometry from W 1,p(X, γ)

to the product space E := Lp(X, γ) × Lp(X, γ;H), which implies that the range of T
is closed in E. Now, Lp(X, γ) and Lp(X, γ;H) are reflexive (e.g. [8, Ch. IV]) so that
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E is reflexive, and T (W 1,p(X, γ)) is reflexive too. Being isometric to a reflexive space,
W 1,p(X, γ) is reflexive.

As a consequence of reflexivity, if a sequence (fn) is bounded in W 1,p(X, γ) a subse-
quence fnk converges weakly to an element g of W 1,p(X, γ) as k → ∞. Since fnk → f in
Lp(X, γ), f = g and statement (v) is proved.

As in finite dimension, statement (ii) holds as well for p = 1.

Remark 9.3.11. Let X be a Hilbert space and let γ = N (0, Q) with Q > 0. For every
f ∈ FC1

b (X) we have ∇Hf(x) = Q∇f(x), so that

|∇Hf(x)|2H = 〈Q−1/2Q∇f(x), Q−1/2Q∇f(x)〉 = ‖Q1/2∇f(x)‖2,

and

‖f‖W 1,p(X,γ) = ‖f‖Lp(X,γ) +

(∫
X
‖Q1/2∇f(x)‖pdγ

)1/p

.

Fixed any orthonormal basis {ej : j ∈ N} of X consisting of eigenvectors of Q, Qej = λjej ,
then a canonical basis of H is {hj : j ∈ N}, with hj =

√
λjej , ∂jf(x) =

√
λj∂f/∂ej , and

‖f‖W 1,p(X,γ) = ‖f‖Lp(X,γ) +

(∫
X

( ∞∑
j=1

λj

(
∂f

∂ej

)2)p/2
dγ

)1/p

.

One can consider Sobolev spaces W̃ 1,p(X, γ) defined as in Definition 9.3.9, with the
gradient∇ replacing theH-gradient∇H . Namely, the proof of Proposition 9.3.7 yields that
the operator ∇ : FC1

b (X) → Lp(X, γ;X) is closable; we define W̃ 1,p(X, γ) as the domain
of its closure, still denoted by ∇. This choice looks even simpler and more natural; the
norm in W̃ 1,p is the graph norm of ∇ and it is given by

‖f‖
W̃ 1,p(X,γ)

:=

(∫
X
|f |pdγ

)1/p

+

(∫
X
‖∇f‖pdγ

)1/p

=

(∫
X
|f |pdγ

)1/p

+

(∫
X

( ∞∑
j=1

(
∂f

∂ej

)2)1/p

dγ

)1/p

.

(9.3.7)

Since limk→∞ λk = 0, our Sobolev space W 1,p(X, γ) strictly contains W̃ 1,p(X, γ), and the

embedding W̃ 1,p(X, γ) ⊂W 1,p(X, γ) is continuous.

9.4 Exercises

Exercise 9.1. Prove Lemma 9.1.1.

Exercise 9.2. (i) Prove that statement (v) of Proposition 9.1.5 is false for p = 1, d = 1.
(Hint: use Proposition 9.1.6, and the sequence (fn) defined by fn(x) = 0 for x ≤ 0,
fn(x) = nx for 0 ≤ x ≤ 1/n, fn(x) = 1 for x ≥ 1/n).
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(ii) Using (i), prove that W 1,1(R, γ1) is not reflexive.

Exercise 9.3. Let (Ω,F ) be a measurable space, and let µ be a positive finite measure
in Ω. Prove that a function f : Ω→ R is measurable if and only if it is the pointwise a.e.
limit of a sequence of simple functions.

Exercise 9.4. Prove Lemma 9.3.6.
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Lecture 10

Sobolev Spaces II

In this Lecture we go on in the description of the Sobolev spaces W 1,p(X, γ), and we define
the Sobolev spaces W 2,p(X, γ). We give approximation results through the cylindrical
functions Enf , and we introduce the divergence of vector fields; formally, the divergence
operator is the adjoint of the H-gradient. We use the notation of Lecture 9. So, X is a
separable Banach space endowed with a centred nondegenerate Gaussian measure γ, and
if {hj : j ∈ N} ⊂ Rγ(X∗) is an orthonormal basis of the Cameron-Martin space H, then
for every f ∈W 1,p(X, γ) we denote by ∂jf(x) = [∇Hf(x), hj ]H the generalised derivative
of f in the direction hj .

10.1 Further properties of W 1,p spaces

Let f ∈ W 1,p(X, γ), 1 < p < ∞. For every h ∈ H, ∂hf plays the role of weak derivative
of f in the h direction. Indeed, by Proposition 9.3.10, for every f ∈ W 1,p(X, γ) and
ϕ ∈ C1

b (X), applying formula (9.3.3) to the product fϕ we get∫
X

(∂hϕ)f dγ = −
∫
X
ϕ(∂hf) dγ +

∫
X
ϕf ĥ dγ.

The Sobolev spaces may be defined through the weak derivatives. Given f ∈ Lp(X, γ)
and h ∈ H, a function g ∈ L1(X, γ) is called weak derivative of f in the direction of h if∫

X
(∂hϕ)f dγ = −

∫
X
ϕg dγ +

∫
X
ϕf ĥ dγ, ∀ϕ ∈ C1

b (X).

The weak derivative is unique, because if
∫
X ϕg dγ = 0 for every ϕ ∈ C1

b (X), then g = 0
a.e. by Lemma 9.3.6.

We set

G1,p(X, γ) =
{
f ∈ Lp(X, γ) : ∃Ψ ∈ Lp(X, γ;H) such that for each h ∈ H,

[Ψ(·), h]H is the weak derivative of f in the direction h
}
.

121
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If f ∈ G1,p(X, γ) and Ψ is the function in the definition, we set

DHf := Ψ, ‖f‖G1,p(X,γ) = ‖f‖Lp(X,γ) + ‖Ψ‖Lp(X,γ;H).

Theorem 10.1.1. For every p > 1, G1,p(X, γ) = W 1,p(X, γ) and DHf = ∇Hf for every
f ∈W 1,p(X, γ).

The proof may be found e.g. in [3, Cor. 5.4.7].
Let us come back to the approximation by conditional expectations introduced in

Subsection 7.4. We already know that if f ∈ Lp(X, γ) then Enf → f in Lp(X, γ) as
n→∞.

Proposition 10.1.2. Let 1 ≤ p < ∞ and let f ∈ W 1,p(X, γ). Then, Enf ∈ W 1,p(X, γ)
for all n ∈ N and:

(i) for every j ∈ N

∂j(Enf) =

{
En(∂jf) if j ≤ n,
0 if j > n;

(10.1.1)

(ii) ‖Enf‖W 1,p(X,γ) ≤ ‖f‖W 1,p(X,γ);

(iii) lim
n→∞

Enf = f in W 1,p(X, γ).

Proof. Let f ∈ FC1
b (X). Since Pnx =

∑n
i=1 ĥi(x)hi and ∂ĥi

∂hj
(x) = δij for every x, for every

y ∈ X the function x 7→ f(Pnx+ (I − Pn)y) has directional derivatives along all hj , that

vanish for j > n and are equal to ∂f
∂hj

(Pnx+ (I − Pn)y) for j ≤ n.

Since x 7→ ∂f
∂hj

(Pnx+ (I −Pn)y) is continuous and bounded by a constant independent of

y, for j ≤ n we get

∂jEnf(x) =
∂

∂hj

∫
X
f(Pnx+ (I − Pn)y)γ(dy) =

∫
X

∂f

∂hj
(Pnx+ (I − Pn)y)γ(dy).

In other words, (i) holds, and it yields

∇HEnf(x) =

∫
X
Pn∇Hf(Pnx+ (I − Pn)y)γ(dy), ∀x ∈ X. (10.1.2)

So we have

‖∇HEnf −∇Hf‖pLp(X,γ;H) =

∫
X

∣∣∣∣∫
X

(Pn∇Hf(Pnx+ (I − Pn)y)−∇Hf(x))γ(dy)

∣∣∣∣p
H

γ(dx)

≤
∫
X

∫
X
|Pn∇Hf(Pnx+ (I − Pn)y)−∇Hf(x)|pH γ(dy)γ(dx).

Notice that

lim
n→+∞

|Pn∇Hf(Pnx+ (I − Pn)y)−∇Hf(x)|H = 0, γ ⊗ γ − a.e. (x, y).
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Indeed, recalling that ‖Pn‖L(H) ≤ 1,

|Pn∇Hf(Pnx+ (I − Pn)y)−∇Hf(x)|H

≤
∣∣∣Pn(∇Hf(Pnx+ (I − Pn)y)−∇Hf(x)

)∣∣∣
H
z + |Pn∇Hf(x)−∇Hf(x)|H

≤ |∇Hf(Pnx+ (I − Pn)y)−∇Hf(x)|H + |(Pn − I)∇Hf(x)|H

and the first summand vanishes as n→ +∞ for γ ⊗ γ–a.e. (x, y) since by Theorem 7.1.3

lim
n→+∞

Pnx+ (I − Pn)y = x

for γ ⊗ γ-a.e. (x, y) and ∇Hf is continuous; the second addendum goes to 0 as n → ∞
for every x ∈ X. Moreover,

|Pn∇Hf(Pnx+ (I − Pn)y)−∇Hf(x)|H ≤ 2 sup
z∈X
|∇Hf(z)|H .

By the Dominated Convergence Theorem,

lim
n→+∞

∇HEnf = ∇Hf

in Lp(X, γ;H), and taking into account Proposition 7.4.4,

lim
n→+∞

Enf = f

in W 1,p(X, γ). So, f satisfies (iii). Moreover,

‖∇HEnf‖pLp(X,γ;H) =

∫
X

∣∣∣∣∫
X
Pn∇Hf(Pnx+ (I − Pn)y)γ(dy)

∣∣∣∣p
H

γ(dx)

≤
∫
X

∫
X
|Pn∇Hf(Pnx+ (I − Pn)y)|pH γ(dy)γ(dx)

≤
∫
X

∫
X
|∇Hf(Pnx+ (I − Pn)y)|pHγ(dy)γ(dx)

=

∫
X
|∇Hf(x)|pHγ(dx) (10.1.3)

where the last equality follows from Proposition 7.3.2.
Estimate (10.1.3) and (7.2.4) yield (ii) for f ∈ FC1

b (X).
Let now f ∈ W 1,p(X, γ), and let (fk) ⊂ FC1

b (X) be a sequence converging to f in
W 1,p(X, γ). By estimate (7.2.4) , for every n ∈ N the sequence (Enfk)k converges to
Enf in Lp(X, γ), and by (ii) (Enfk)k is a Cauchy sequence in W 1,p(X, γ). Therefore,
Enf ∈W 1,p(X, γ) and

∇HEnf = lim
k→+∞

∇HEnfk

in Lp(X, γ;H) so that

‖∇HEnf‖Lp(X,γ;H) = lim
k→+∞

‖∇HEnfk‖Lp(X,γ;H) ≤ lim
k→+∞

‖∇Hfk‖Lp(X,γ;H)

=‖∇Hf‖Lp(X,γ;H).
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Therefore (ii) holds for every f ∈W 1,p(X, γ) and then (iii) follows from (ii) and from the
density of FC1

b (X) in W 1,p(X, γ).

(i) follows as well and in fact we have

∇HEnf = En(Pn∇Hf) ∀n ∈ N,

where the right-hand side has to be understood as a Bochner H-valued integral. Indeed,
by (10.1.2) we have

∇HEnfk(x) =

∫
X
Pn∇Hfk(Pnx+ (I − Pn)y)γ(dy)

for every k ∈ N. The left hand side converges to ∇HEnf in Lp(X, γ;H) as k → +∞. The
right hand side converges to EnPn∇Hf as k → +∞ since∫

X

∣∣∣∣∫
X
Pn∇H(fk − f)(Pnx+ (I − Pn)y)γ(dy)

∣∣∣∣p
H

γ(dx)

≤
∫
X

∫
X
|∇H(fk − f)(Pnx+ (I − Pn)y)|pH γ(dy)γ(dx)

=

∫
X
|∇H(fk − f)(x)|pHγ(dx)

by Proposition 7.3.2.

Regular Lp cylindrical functions with Lp gradient are in W 1,p(X, γ), see Exercise 10.2.
The simplest nontrivial examples of Sobolev functions are the elements of X∗γ .

Lemma 10.1.3. X∗γ ⊂ W 1,p(X, γ) for every p ∈ [1,+∞), and ∇H ĥ = h (constant) for

every ĥ ∈ X∗γ .

Proof. Fix 1 ≤ p < ∞. For every ĥ ∈ X∗γ , there exists `n ∈ X∗ such that limn→∞ `n = ĥ
in L2(X, γ). For every n, m ∈ N we have

‖`n−`m‖pLp(X,γ) =

∫
R
|ξ|pN (0, ‖`n−`m‖2L2(X,γ))(dξ) =

∫
R
|τ |pN (0, 1) (dτ)‖`n−`m‖pL2(X,γ)

so that (`n) is a Cauchy sequence in Lp(X, γ). Its L2-limit ĥ coincides with its Lp-limit,
if p 6= 2.

As `n is in X∗, ∇H`n is constant and it coincides with Rγ`n, see (9.3.1). Since

limn→∞ `n = ĥ in L2(X, γ) and Rγ is an isometry from X∗γ to H, H − limn→∞Rγ`n =

Rγ ĥ = h. Therefore,∫
X
|∇H`n − h|pHdγ = |Rγ`n − h|pH → 0 as n→∞.

It follows that ĥ ∈W 1,p(X, γ) and ∇H ĥ = h.
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An important example of Sobolev functions is given by Lipschitz functions. Since a
Lipschitz function is continuous, it is Borel measurable.

Proposition 10.1.4. If f : X → R is Lipschitz continuous, then f ∈W 1,p(X, γ) for any
1 ≤ p < +∞.

Proof. Let L > 0 be such that

|f(x)− f(y)| ≤ L‖x− y‖ ∀ x, y ∈ X.

Since |f(x)| ≤ |f(0)|+L‖x‖, by Theorem 2.3.1 (Fernique) f ∈ Lp(X, γ) for any 1 ≤ p <∞.
Let us consider the conditional expectation Enf .
Let us notice that

Enf(x) = vn(ĥ1(x), . . . , ĥn(x)),

with vn : Rn → R an L1–Lipschitz function since

|vn(z + η)− vn(z)| =

∣∣∣∣∣Enf(
n∑
i=1

zihi +
n∑
i=1

ηihi

)
− Enf

( n∑
i=1

zihi

)∣∣∣∣∣
≤
∫
X

∣∣∣f( n∑
i=1

zihi +
n∑
i=1

ηihi

)
+ (I − Pn)y

)
− f

( n∑
i=1

zihi + (I − Pn)y
)∣∣∣γ(dy)

≤L1

∣∣∣∣∣
n∑
i=1

ηihi

∣∣∣∣∣
H

= L1|η|Rn ,

where we have used (3.1.3), ‖h‖ ≤ c|h|H for h ∈ H, and we have set L1 := cL. By the
Rademacher Theorem, vn is differentiable λn–a.e. in Rn and |∇vn(z)|Rn ≤ L1 for a.e.
z ∈ Rn. Hence vn ∈W 1,1

loc (Rn), and∫
Rn
|∇vn(z)|pRnγn(dz) ≤ Lp1.

We use now the map Tn : X → Rn, Tn(x) = (ĥ1(x), . . . , ĥn(x)). If x ∈ X is a point such
that vn is differentiable at Tn(x), then

∂hEnf(x) =


0 if h ∈ F⊥n

∇vn(Tn(x)) · Tn(h) if h ∈ Fn,

where Fn = span{h1, . . . , hn} As a consequence, we can write

|∇HEnf(x)|2H =

∞∑
i=1

|∂iEnf(x)|2 =

n∑
i=1

|∂iEnf(x)|2 = |∇vn(Tn(x))|2Rn .

We claim that for γ–a.e. x vn is differentiable at Tn(x). Indeed, let A ⊂ Rn be such that
λn(A) = 0 and vn is differentiable at any point in Rn \A. Since γn � λn, γn(A) = 0 and
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then γ(T−1
n (A)) = 0 because γ ◦ T−1

n = γn, see Exercise 2.4. Hence vn is differentiable at
any point Tn(x), where x ∈ X \ T−1

n (A).
We know that Enf → f in Lp(X, γ) and we have∫

X
|∇HEnf(x)|pHγ(dx) =

∫
X
|∇vn(Tnx)|pRnγ(dx) =

∫
Rn
|∇vn(z)|pRnγn(dz) ≤ Lp1.

By Proposition 9.3.10(v) f ∈ W 1,p(X, γ) for every 1 < p < ∞ and by inclusion f ∈
W 1,1(X, γ).

Further properties of W 1,p functions are presented in Exercises 10.3, 10.4, 10.5.

10.2 Sobolev spaces of H-valued functions

We recall the definition of Hilbert–Schmidt operators, see e.g. [11, §XI.6] for more infor-
mation.

Definition 10.2.1. Let H1, H2 be separable Hilbert spaces. A linear operator A ∈
L(H1, H2) is called a Hilbert–Schmidt operator if there exists an orthonormal basis {hj :
j ∈ N} of H1 such that

∞∑
j=1

‖Ahj‖2H2
<∞. (10.2.1)

If A is a Hilbert–Schmidt operator and {ej : j ∈ N} is any orthonormal basis of H1,
{yj : j ∈ N} is any orthonormal basis of H2, then

‖Aej‖2H2
=
∞∑
k=1

〈Aej , yk〉2H2
=
∞∑
k=1

〈ej , A∗yk〉2H2

so that
∞∑
j=1

‖Aej‖2H2
=
∞∑
j=1

∞∑
k=1

〈ej , A∗yk〉2H2
=
∞∑
k=1

∞∑
j=1

〈ej , A∗yk〉2H2
=
∞∑
k=1

‖A∗yk‖2H1
.

So, the convergence of the series (10.2.1) and the value of its sum are independent of the
basis of H1. We denote by H(H1, H2) the space of the Hilbert–Schmidt operators from
H1 to H2, and we set

‖A‖H(H1,H2) =

( ∞∑
j=1

‖Ahj‖2H2

)1/2

,

for every orthonormal basis {hj : j ∈ N} of H1. Notice that if H1 = Rn, H2 = Rm, the
Hilbert–Schmidt norm of any linear operator coincides with the Euclidean norm of the
associated matrix.

The norm (10.2.1) comes from the inner product

〈A,B〉H(H1,H2) =
∞∑
j=1

〈Ahj , Bhj〉H2 ,
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where for every couple of Hilbert–Schmidt operators A, B, the series on the right-hand side
converges for every orthonormal basis {hj : j ∈ N} of H1, and its value is independent of
the basis. The space H(H1, H2) is a separable Hilbert space with the above inner product.

If H1 = H2 = H, where H is the Cameron–Martin space of (X, γ), we set H :=
H(H,H).

It is useful to generalise the notion of Sobolev space to H-valued functions. To this
aim, we define the cylindrical E-valued functions as follows, where E is any normed space.

Definition 10.2.2. For k ∈ N we define FCkb (X,E) (respectively, FC∞b (X,E)) as the
linear span of the functions x 7→ v(x)y, with v ∈ FCkb (X) (respectively, v ∈ FC∞b (X)) and
y ∈ E.

Therefore, every element of FCkb (X,E) may be written as

v(x) =
n∑
j=1

vj(x)yj (10.2.2)

for some n ∈ N, and vj ∈ FCkb (X), yj ∈ E. Such functions are Fréchet differentiable
at every x ∈ X, with v′(x) ∈ L(X,E) given by v′(x)(h) =

∑n
j=1 vkj

′(x)(h)yj for every
h ∈ X.

Similarly to the scalar case, we introduce the notion of H-differentiable function.

Definition 10.2.3. A function v : X → E is called H-differentiable at x ∈ X if there
exists L ∈ L(H,E) such that

‖v(x+ h)− v(x)− L(h)‖E = o(|h|H) as h→ 0 in H.

In this case we set L =: DHv(x).

If v ∈ FC1
b (X,E) is given by v(·) = ψ(·)y with ψ ∈ FC1

b (X) and y ∈ E, then v is
H-differentiable at every x ∈ X, and

DHv(x)(h) = [∇Hψ(x), h]H y.

In particular, if E = H and {hj : j ∈ N} is any orthonormal basis of H we have

|DHv(x)(hj)|2H ≤ |[∇Hψ(x), hj ]
2
H |y|2H

so that DHv(x) is a Hilbert–Schmidt operator, and we have

|DHv(x)|2H =
∞∑
j=1

|DHv(x)(hj)|2 =
∞∑
j=1

[∇Hψ(x), hj ]
2
H |y|2H

= |∇Hψ(x)|2H |y|2H .

Moreover, x 7→ ∇Hψ(x) is continuous and bounded. In addition, the operator J : H → H,

(Jk)(h) := [k, h]Hy, k, h ∈ H
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is bounded since

|Jk|2H =
∞∑
j=1

|[k, hj ]Hy|2H = |k|2H |y|2H .

Then x 7→ DHv(x) = J(∇Hψ(x)) is continuous and bounded from X to H. In particular,
it belongs to Lp(X, γ;H) for every 1 ≤ p <∞.

The procedure to define Sobolev spaces of H-valued functions is similar to the proce-
dure for scalar functions. Namely, we show that the operator DH , seen as an unbounded
operator from Lp(X, γ;H) to Lp(X, γ;H) with domain FC1

b (X,H), is closable.

Lemma 10.2.4. For every 1 ≤ p < ∞, the operator DH : FC1
b (X,H) → Lp(X, γ;H) is

closable in Lp(X, γ;H).

Proof. Let v(·) = ψ(·)y, with ψ ∈ FC1
b (X), y ∈ H, and let h, k ∈ H. Then

∇H [v(·), h]H = [y, h]H∇Hψ(·),

and

[∇H [v(·), h]Hk]H = [y, h]H [∇Hψ(·), k]H = [[∇Hψ(·), k]Hy, h]H

= [DH(ψ(·)y)(k), h]H = [(DHv(·))?h, k]k.

As this holds for all k ∈ H one obtains

∇H [v(·), h]H = (DHψ(·))?h, h ∈ H. (10.2.3)

Taking linear combinations one obtains (10.2.3) for all v ∈ FC1
b (X;H).

Let (vn) be a sequence in FC1
b (X;H), vn → 0 in Lp(X, γ;H), DHvn → Φ in Lp(X, γ;H),

and let h ∈ H. Then [vn(·), h]H → 0 in Lp(X, γ), and (10.2.3) implies

∇H [vn(·), h]H = (DHvn(·))?(h)→ Φ(·)?(h)

in Lp(X, γ;H). Indeed∫
X
|∇H [vn(x), h]H − Φ(x)?(h)|pHγ(dx) =

∫
X
|(DHvn(x))?(h)− Φ(x)?(h)|pHγ(dx)

≤ |h|pH
∫
X
‖(DHvn(x))? − Φ(x)?‖p

L(H)γ(dx)

≤ |h|pH
∫
X
‖(DHvn(x))? − Φ(x)?‖p

H(H)γ(dx),

where we have used the relations

‖A‖L(H) ≤ ‖A‖H(H), ‖A?‖H(H) = ‖A‖H(H).

Since ∇H is closable as an operator from Lp(X, γ) to Lp(X, γ;H), by Proposition 9.3.7
one obtains Φ(·)?h = 0. As this holds for all h ∈ H, and H is separable, one concludes
that Φ(x)? = 0 for a.e. x ∈ X, and therefore Φ = 0.
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Definition 10.2.5. For every 1 ≤ p < ∞ we define W 1,p(X, γ;H) as the domain of
the closure of the operator DH : FC1

b (X,H) → Lp(X, γ;H) (still denoted by DH) in
Lp(X, γ;H).

Then, W 1,p(X, γ;H) is a Banach space with the graph norm

‖V ‖W 1,p(X,γ;H) =
(∫

X
|V (x)|pHdγ

)1/p
+
(∫

X
|DHV (x)|pHdγ

)1/p

=
(∫

X

( ∞∑
j=1

[V (x), hj ]
2
H

)p/2
dγ
)1/p

+
(∫

X

( ∞∑
i,j=1

[DHV (x)(hi), hj ]
2
H

)p/2
dγ
)1/p

.

Let v ∈ FC1
b (X,H),

v(x) =

n∑
k=1

ϕk(x)yk,

with ϕk ∈ FC1
b (X) and yk ∈ H. Then v may be written in the form

v(x) =
∞∑
j=1

vj(x)hj ,

where the series converges in W 1,p(X, γ;H). Indeed, setting

vj(x) = [v(x), hj ]H =
n∑
k=1

ϕk(x)[yk, hj ]H , j ∈ N

the sequence sm(x) =
∑m

j=1 vj(x)hj converges to v in W 1,p(X, γ;H), because for each

k = 1, . . . , n, the sequence
∑m

j=1 ϕk(x)[yk, hj ]H converges to ϕk(x)y in W 1,p(X, γ;H).
Moreover,

DHv(x)(h) =

∞∑
j=1

[∇Hvj(x), h]Hhj

so that, as in finite dimension,

[DHv(x)(hi), hj ]H = [∇Hvj(x), hi]H = ∂ivj(x).

10.2.1 The divergence operator

Let us recall the definition of adjoint operators. If X1, X2 are Hilbert spaces and T :
D(T ) ⊂ X1 → X2 is a densely defined linear operator, an element v ∈ X2 belongs to
D(T ∗) iff the function D(T )→ R, f 7→ 〈Tf, v〉X2 has a linear continuous extension to the
whole X1, namely there exists g ∈ X1 such that

〈Tf, v〉X2 = 〈f, g〉X1 , f ∈ D(T ).

In this case g is unique (because D(T ) is dense in X1) and we set

g = T ∗v.
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We are interested now in the case X1 = L2(X, γ), X2 = L2(X, γ;H) and T = ∇H . For
f ∈W 1,2(X, γ), v ∈ L2(X, γ;H) we have

〈Tf, v〉L2(X,γ;H) =

∫
X

[∇Hf(x), v(x)]H γ(dx)

so that v ∈ D(T ∗) if and only if there exists g ∈ L2(X, γ) such that∫
X

[∇Hf(x), v(x)]H γ(dx) =

∫
X
f(x)g(x) γ(dx), f ∈W 1,2(X, γ). (10.2.4)

In this case, in analogy to the finite dimensional case, we set

divγv := −g

and we call −g divergence or Gaussian divergence of v. As FC1
b (X) is dense in W 1,2(X, γ),

(10.2.4) is equivalent to∫
X

[∇Hf(x), v(x)]H γ(dx) =

∫
X
f(x)g(x) γ(dx), f ∈ FC1

b (X).

The main achievement of this section is the embedding W 1,2(X, γ;H) ⊂ D(T ∗). For its
proof, we use the following lemma.

Lemma 10.2.6. For every f ∈W 1,2(X, γ) and h ∈ H, fĥ ∈ L2(X, γ) and∫
X

(fĥ)2dγ ≤ 4

∫
X

(∂hf)2dγ + 2|h|2H
∫
X
f2 dγ. (10.2.5)

Proof. We already know that ĥ ∈ W 1,2(X, γ). Then, for every f ∈ FC1
b (X) we have

f2ĥ ∈W 1,2(X, γ) and∫
X

(fĥ)2dγ =

∫
X

(f2ĥ) ĥ dγ =

∫
X
∂h(f2ĥ) dγ (by Proposition 9.3.10 (i))

=

∫
X

(2f ∂hf ĥ+ f2∂h(ĥ))dγ

= 2

∫
X
f ĥ ∂hf dγ + |h|2H

∫
X
f2 dγ

≤ 2

(∫
X

(fĥ)2dγ

)1/2(∫
X

(∂hf)2dγ

)1/2

+ |h|2H
∫
X
f2 dγ.

Using the inequality ab ≤ a2/4 + b2, we get∫
X

(fĥ)2dγ ≤ 1

2

∫
X

(fĥ)2dγ + 2

∫
X

(∂hf)2dγ + |h|2H
∫
X
f2 dγ

so that f satisfies (10.2.5). Since FC1
b (X) is dense in W 1,2(X, γ), (10.2.5) holds for every

f ∈W 1,2(X, γ).
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Theorem 10.2.7. The Sobolev space W 1,2(X, γ;H) is continuously embedded in D(divγ)
and the estimate

‖divγv‖L2(X,γ) ≤ ‖v‖W 1,2(X,γ;H)

holds. Moreover, fixing an orthonormal basis {hn : n ∈ N} of H contained in Rγ(X∗),
and setting vn(x) = [v(x), hn]H for every v ∈W 1,2(X, γ;H) and n ∈ N, we have

divγv(x) =

∞∑
n=1

(
∂nvn(x)− vn(x)ĥn(x)

)
,

where the series converges in L2(X, γ).

Proof. Consider a function v ∈W 1,2(X, γ;H) of the type

v(x) =
n∑
i=1

vi(x)hi, x ∈ X. (10.2.6)

with vi ∈W 1,2(X, γ).

For every f ∈W 1,2(X, γ) we have [∇Hf(x), v(x)]H =
∑n

i=1 ∂if(x)vi(x), so that

∫
X

[∇Hf, v]Hdγ =

∫
X

( n∑
i=1

∂if vi

)
dγ =

∫
X

n∑
i=1

(−∂ivi + viĥi)f dγ

which yields

divγv =

n∑
i=1

(∂ivi − ĥivi).

Now we prove that ∫
X

(divγv)2dγ =

∫
X
|v|2Hdγ +

∫
X

n∑
i,j=1

∂ivj ∂jvi dγ, (10.2.7)

showing, more generally, that if u(x) =
∑n

i=1 ui(x)hi is another function of this type, then

∫
X

(divγv divγu)dγ =

∫
X

[u, v]Hdγ +

∫
X

n∑
i,j=1

∂iuj ∂jvi dγ. (10.2.8)

By linearity, it is sufficient to prove that (10.2.8) holds if the sums in u and v consist of a
single summand, u(x) = f(x)hi, v(x) = g(x)hj for some f , g ∈ W 1,2(X, γ) and i, j ∈ N.
In this case, (10.2.8) reads∫

X
(∂if − ĥif)(∂jg − ĥjg)dγ =

∫
X
fgδij dγ +

∫
X
∂jf ∂ig dγ. (10.2.9)
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First, let f , g ∈ FC2
b (X). Then,∫
X

(∂if − ĥif)(∂jg − ĥjg)dγ = −
∫
X
f∂i(∂jg − ĥjg)dγ

= −
∫
X
f∂ijg dγ +

∫
X
fgδij dγ +

∫
X
fĥj∂ig dγ

=

∫
X

(∂jf − ĥjf)∂ig dγ +

∫
X
fgδij dγ +

∫
X
fĥj∂ig dγ

so that (10.2.9) holds. Since FC2
b (X) is dense in W 1,2(X, γ), see Exercise 10.6, (10.2.9)

holds for f , g ∈ W 1,2(X, γ). Summing up, (10.2.8) follows, and taking u = v, (10.2.7)
follows as well. Since the linear span of functions in (10.2.6) is dense in W 1,2(X, γ;H)
both equalities hold in the whole W 1,2(X, γ;H). Notice also that (10.2.7) implies∫

X
(divγv)2dγ ≤

∫
X
|v|2Hdγ +

∫
X
‖DHv‖2H dγ. (10.2.10)

If v ∈W 1,2(X, γ;H) we approximate it by the sequence

vn(x) =
n∑
i=1

[v(x), hi]Hhi.

For every f ∈W 1,2(X, γ) we have∫
X

[∇Hf, vn]Hdγ = −
∫
X
fdivγvn dγ. (10.2.11)

By estimate (10.2.10), (divγvn) is a Cauchy sequence in L2(X, γ), so that it converges in

L2(X, γ) to g(x) :=
∑∞

j=1(∂jvj(x)− vj(x)ĥj(x)). Letting n→∞ in (10.2.11), we get∫
X

[∇Hf, v]Hdγ = −
∫
X
f g dγ,

so that v ∈ D(T ∗) and divγv = g.

Note that the domain of the divergence is larger than W 1,2(X, γ;H), even in finite
dimension. For instance, if X = R2 is endowed with the standard Gaussian measure,
any vector field v(x, y) = (α1(x) + β1(y), α2(x) + β2(y)) with α1, β2 ∈ W 1,2(R, γ1),
β1, α2 ∈ L2(R, γ1) belongs to the domain of the divergence, but it does not belong to
W 1,2(R2, γ2;R2) unless also β1, α2 ∈W 1,2(R, γ1).

The divergence may be defined, still as a dual operator, also in a Lp context with
p 6= 2. We recall that if X1, X2 are Banach spaces and : D(T ) ⊂ X1 → X2 is a densely
defined linear operator, an element v ∈ X∗2 belongs to D(T ∗) iff the function D(T ) → R,
f 7→ v(Tf) has a continous linear extension to the whole X1. Such extension is an element
of X∗1 ; denoting it by ` we have `(f) = v(Tf) for every f ∈ D(T ).
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We are interested in the case X1 = Lp(X, γ), X2 = Lp(X, γ;H), with 1 < p <∞, and
T : D(T ) = W 1,p(X, γ), Tf = ∇Hf . The dual space X∗2 consists of all the functions of
the type

w 7→
∫
X

[w, v]Hdγ,

v ∈ Lp′(X, γ;H), p′ = p/(p− 1), see [8, §IV.1], so we canonically identify Lp
′
(X, γ;H) as

Lp(X, γ;H)∗. We also identify (Lp(X, γ))∗ with Lp
′
(X, γ). After these identifications, a

function v ∈ Lp′(X, γ;H) belongs to D(T ∗) iff there exists g ∈ Lp′(X, γ) such that∫
X

[∇Hf(x), v(x)]Hγ(dx) =

∫
X
f(x)g(x)γ(dx), ∀ f ∈W 1,p(X, γ),

which is equivalent to∫
X

[∇Hf(x), v(x)]Hγ(dx) =

∫
X
f(x)g(x)γ(dx), ∀ f ∈ FC1

b (X),

since FC1
b (X) is dense in W 1,p(X, γ). So, this is similar to the case p = 2, see (10.2.4).

Theorem 10.2.8. Let 1 < p < ∞, and let T : D(T ) = W 1,p(X, γ) → Lp(X, γ;H),
Tf = ∇Hf . Then W 1,p(X, γ;H) ⊂ D(T ∗), and for every orthonormal basis {hn : n ∈ N}
of H we have

T ∗v(x) = −
∞∑
n=1

(∂nvn(x)− vn(x)ĥn(x)), v ∈W 1,p(X, γ;H)

where vn(x) = [v(x), hn]H , and the series converges in Lp(X, γ).

The proof of Theorem 10.2.8 for p 6= 2 is not as easy as in the case p = 2. See [3, Prop.
5.8.8]. The difficult part is the estimate

‖T ∗v‖Lp(X,γ) ≤ C‖v‖W 1,p(X,γ;H),

even for good vector fields v =
∑n

i=1 vi(x)hi, with vi ∈ FC1
b (X).

We may still call “Gaussian divergence” the operator T ∗.

10.3 The Sobolev spaces W 2,p(X, γ)

Let us start with regular functions, recalling the definition of the second order derivative
f ′′(x) given in Lecture 9. If f : X → R is differentiable at any x ∈ X, we consider the
function X → X∗, x 7→ f ′(x). If this function is differentiable at x, we say that f is twice
(Fréchet) differentiable at x. In this case there exists L ∈ L(X,X∗) such that

‖f ′(x+ h)− f ′(x)− Lh‖X∗ = o(‖h‖) as h→ 0 in X,

and we set L =: f ′′(x).
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In our setting we are interested in increments h ∈ H, and in H-differentiable functions.
If f : X → R is H-differentiable at any x ∈ X, we say that f is twice H-differentiable at
x if there exists a linear operator LH ∈ L(H) such that

|∇Hf(x+ h)−∇Hf(x)− LHh|H = o(|h|H) as h→ 0 in H.

The operator LH is denoted by D2
Hf(x), and by Definition 10.2.3, we have that D2

Hf(x) =
DH∇Hf(x).

We recall that if f is differentiable at x, it is also H-differentiable and we have
∇Hf(x) = Rγf

′(x). So, if f is twice differentiable at x, with f ′′(x) = L, then D2
Hf(x)h =

RγLh. Indeed,

|Rγf ′(x+ h)−Rγf ′(x)−RγLh|H ≤ ‖Rγ‖L(X∗,H)‖f ′(x+ h)− f ′(x)− Lh‖X∗ = o(‖h‖)

as h→ 0 in X, and therefore,

|Rγf ′(x+ h)−Rγf ′(x)−RγLh|H = o(|h|H) as h→ 0 in H.

If f ∈ FC2
b (X), f(x) = ϕ(`1(x), . . . , `n(x)) with ϕ ∈ C2

b (Rn), `k ∈ X∗, then f is twice
differentiable at any x ∈ X and

(f ′′(x)v)(w) =
n∑

i,j=1

∂i∂jϕ(`1(x), . . . , `n(x)`i(v)`j(w), v, w ∈ X

so that

[D2
Hf(x)h, k]H =

n∑
i,j=1

∂i∂jϕ(`1(x), . . . , `n(x)[Rγ`i, h]H [Rγ`j , k]H , h, k ∈ H.

D2
Hf(x) is a Hilbert–Schmidt operator, since for any orthonormal basis {hj : j ∈ N} of

H we have

∞∑
m,k=1

[D2
Hf(x)hm, hk]

2
H ≤

∞∑
m,k=1

( n∑
i,j=1

(∂i∂jϕ)2

)( n∑
i=1

[Rγ`i, hm]2H

)( n∑
j=1

[Rγ`j , hk]
2
H

)

= ‖D2
Hϕ‖2H(Rn,Rn)

∞∑
m,k=1

n∑
i=1

[Rγ`i, hm]2H

n∑
j=1

[Rγ`j , hk]
2
H

= ‖D2ϕ‖2H(Rn,Rn)

n∑
i=1

∞∑
m=1

[Rγ`i, hm]2H

n∑
j=1

∞∑
k=1

[Rγ`j , hk]
2
H

= ‖D2ϕ‖2H(Rn,Rn)

n∑
i=1

|Rγ`i|2H
n∑
j=1

|Rγ`j |2H

where the derivatives of ϕ are evaluated at (`1(x), . . . , `n(x)). Since ‖D2ϕ‖H(Rn,Rn) is
bounded, x→ ‖D2

Hf(x)‖H is bounded in X.
The next lemma is an immediate consequence of Proposition 9.3.7 and Lemma 10.2.4.
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Lemma 10.3.1. For every 1 ≤ p <∞, the operator

(∇H , D2
H) : FC2

b (X)→ Lp(X, γ;H)× Lp(X, γ;H)

is closable in Lp(X, γ).

Proof. Let (fn) be a sequence in FC2
b (X) such that fn → 0 in Lp(X, γ), ∇Hfn → G in

Lp(X, γ;H) and D2
Hfn = DH∇Hfn → Φ in Lp(X, γ;H). Then Proposition 9.3.7 implies

G = 0 and Lemma 10.2.4 implies Φ = 0.

Definition 10.3.2. For every 1 ≤ p <∞, W 2,p(X, γ) is the domain of the closure of

(∇H , D2
H) : FC2

b (X)→ Lp(X, γ;H)× Lp(X, γ;H)

in Lp(X, γ). Therefore, f ∈ Lp(X, γ) belongs to W 2,p(X, γ) iff there exists a sequence
(fn) ⊂ FC2

b (X) such that fn → f in Lp(X, γ), ∇Hfn converges in Lp(X, γ;H) and D2
Hfn

converges in Lp(X, γ;H). In this case we set D2
Hf := limn→∞D

2
Hfn.

W 2,p(X, γ) is a Banach space with the graph norm

‖f‖W 2,p := ‖f‖Lp(X,γ) + ‖∇Hf‖Lp(X,γ;H) + ‖D2
Hf‖Lp(X,γ;H) (10.3.1)

=

(∫
X
|f |pdγ

)1/p

+

(∫
X
|∇Hf |pHdγ

)1/p

+

(∫
X
|D2

Hf |
p
Hdγ

)1/p

.

Fixed any orthonormal basis {hj : j ∈ N} of H, for every f ∈W 2,p(X, γ) we set

∂ijf(x) = [D2
Hf(x)hj , hi]H .

For every sequence of approximating functions fn we have

[D2
Hfn(x)hj , hi]H = [D2

Hfn(x)hi, hj ]H , x ∈ X, i, j ∈ N,

then the equality
∂ijf(x) = ∂jif(x), a.e.

holds. Therefore, the W 2,p norm may be rewritten as(∫
X
|f |pdγ

)1/p

+

(∫
X

( ∞∑
j=1

(∂jf)2

)p/2
dγ

)1/p

+

(∫
X

( ∞∑
i,j=1

(∂ijf)2

)p/2
dγ

)1/p

.

Let X be a Hilbert space and assume that γ is nondegenerate. Then, another class of
W 2,p spaces looks more natural. As in Remark 9.3.11, we may replace (∇Hf,D2

Hf) in
Definition 10.3.2 by (∇f, f ′′). The proof of Lemma 10.3.1 works as well with this choice.

So, we define W̃ 2,p(X, γ) as the domain of the closure of the operator T : FC2
b (X) →

Lp(X, γ;X)× Lp(X, γ;H(X,X)), f 7→ (∇f, f ′′) in Lp(X, γ) (still denoted by T ), and we
endow it with the graph norm of T . This space is much smaller than W 2,p(X, γ) if X
is infinite dimensional. Indeed, fix as usual any orthonormal basis {ej : j ∈ N} of X
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consisting of eigenvectors of Q, Qej = λjej , and set hj =
√
λjej . Then {hj : j ∈ N} is a

orthonormal basis of H, ∂jf(x) =
√
λj∂f/∂ej , ∂ijf(x) =

√
λiλj∂

2f/∂ei∂ej , and

‖f‖W 2,p(X,γ) =‖f‖Lp(X,γ) +

(∫
X

( ∞∑
j=1

λj

(
∂f

∂ej

)2)p/2
dγ

)1/p

+

(∫
X

( ∞∑
i,j=1

λiλj

(
∂2f

∂ei∂ej

)2)p/2
dγ

)1/p

,

while

‖f‖
W̃ 2,p(X,γ)

=‖f‖Lp(X,γ) +

(∫
X

( ∞∑
j=1

(
∂f

∂ek

)2)p/2
dγ

)1/p

+

(∫
X

( ∞∑
i,j=1

(
∂2f

∂ei∂ej

)2)p/2
dγ

)1/p

.

Since limj→∞ λj = 0, the W̃ 2,p(X, γ) norm is stronger than the W 2,p(X, γ) norm. In
particular, the function f(x) = ‖x‖2 belongs to W 2,p(X, γ) for every 1 ≤ p < ∞ but it

does not belong to W̃ 2,p(X, γ) for any 1 ≤ p < ∞, because f ′′(x) = 2I for every x ∈ X
and ∂2f/∂ei∂ej = 2δij .

10.4 Exercises

Exercise 10.1. Prove that (10.1.2) holds.

Exercise 10.2. Prove that if f ∈ FC1(X) ∩ Lp(X, γ), 1 ≤ p < ∞ and ∇Hf ∈ Lp(X, γ)
then f ∈W 1,p(X, γ).

Exercise 10.3. Prove that if f ∈ W 1,p(X, γ) then f+, f−, |f | ∈ W 1,p(X, γ) as well.
Compute ∇Hf+,∇Hf−,∇H |f | and deduce that ∇Hf = 0 a.e. on {f = c} for every
c ∈ R.

Exercise 10.4. Let ϕ ∈ W 1,p(Rn, γn) and let `1, . . . , `n ∈ X∗, with 〈`i, `j〉L2(X,γ) = δij .

Prove that the function f : X → R defined by f(x) = ϕ(ĥ1(x), . . . , ĥn(x)) belongs to
W 1,p(X, γ).

Exercise 10.5. Let f ∈ Lp(X, γ), p > 1, be such that Enf ∈W 1,p(X, γ) for every n ∈ N,
with supn ‖∇HEnf‖Lp(X,γ;H) <∞. Prove that f ∈W 1,p(X, γ).

Exercise 10.6. Prove that FC2
b (X) is dense in W 1,2(X, γ)



Lecture 11

Semigroups of Operators

In this Lecture we gather a few notions on one-parameter semigroups of linear operators,
confining to the essential tools that are needed in the sequel. As usual, X is a real or
complex Banach space, with norm ‖ · ‖. In this lecture Gaussian measures play no role.

11.1 Strongly continuous semigroups

Definition 11.1.1. Let {T (t) : t ≥ 0} be a family of operators in L(X). We say that it
is a semigroup if

T (0) = I, T (t+ s) = T (t)T (s) ∀ t, s ≥ 0.

A semigroup is called strongly continuous (or C0-semigroup) if for every x ∈ X the func-
tion T (·)x : [0,∞)→ X is continuous.

Let us present the most elementary properties of strongly continuous semigroups.

Lemma 11.1.2. Let {T (t) : t ≥ 0} ⊂ L(X) be a semigroup. The following properties
hold:

(a) if there exist δ > 0, M ≥ 1 such that

‖T (t)‖ ≤M, 0 ≤ t ≤ δ,

then, setting ω = (logM)/δ we have

‖T (t)‖ ≤Meωt, t ≥ 0. (11.1.1)

Moreover, for every x ∈ X the function t 7→ T (t)x is continuous in [0,∞) iff it is
continuous at 0.

(b) If {T (t) : t ≥ 0} is strongly continuous, then for any δ > 0 there is Mδ > 0 such
that

‖T (t)‖ ≤Mδ, ∀ t ∈ [0, δ].

137
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Proof. (a) Using repeatedly the semigroup property in Definition 11.1.1 we get T (t) =
T (δ)n−1T (t− (n− 1)δ) for (n− 1)δ ≤ t ≤ nδ, whence ‖T (t)‖ ≤ Mn ≤ Meωt. Let x ∈ X
be such that t 7→ T (t)x is continuous at 0, i.e., limh→0+ T (h)x = x. Using again the
semigroup property in Definition 11.1.1 it is easily seen that for every t > 0 the equality
limh→0+ T (t+ h)x = T (t)x holds. Moreover,

‖T (t− h)x− T (t)x‖ = ‖T (t− h)(x− T (h)x)‖ ≤Meω(t−h)‖(x− T (h)x)‖, 0 < h < t,

whence limh→0+ T (t− h)x = T (t)x. It follows that t 7→ T (t)x is continuous in [0,∞).
(b) Let x ∈ X. As T (·)x is continuous, for every δ > 0 there is Mδ,x > 0 such that

‖T (t)x‖ ≤Mδ,x, ∀ t ∈ [0, δ].

The statement follows from the Uniform Boundedness Principle, see e.g. [4, Chapter 2] or
[10, §II.1].

If (11.1.1) holds with M = 1 and ω = 0 then the semigroups is said semigroup of
contractions or contractive semigroup. From now on, {T (t) : t ≥ 0} is a fixed strongly
continuous semigroup.

Definition 11.1.3. The infinitesimal generator (or, shortly, the generator) of the semi-
group {T (t) : t ≥ 0} is the operator defined by

D(L) =
{
x ∈ X : ∃ lim

h→0+

T (h)− I
h

x
}
, Lx = lim

h→0+

T (h)− I
h

x.

By definition, the vector Lx is the right derivative of the function t 7→ T (t)x at t = 0
and D(L) is the subspace where this derivative exists. In general, D(L) is not the whole
X, but it is dense, as the next proposition shows.

Proposition 11.1.4. The domain D(L) of the generator is dense in X.

Proof. Set

Ma,tx =
1

t

∫ a+t

a
T (s)x ds, a ≥ 0, t > 0, x ∈ X

(this is an X-valued Bochner integral). As the function s 7→ T (s)x is continuous, we have
(see Exercise 11.1)

lim
t→0

Ma,tx = T (a)x.

In particular, limt→0+ M0,tx = x for every x ∈ X. Let us show that for every t > 0,
M0,tx ∈ D(L), which implies that the statement holds. We have

T (h)− I
h

M0,tx =
1

ht

(∫ t

0
T (h+ s)x ds−

∫ t

0
T (s)x ds

)
=

1

ht

(∫ h+t

h
T (s)x ds−

∫ t

0
T (s)x ds

)
=

1

ht

(∫ h+t

t
T (s)x ds−

∫ h

0
T (s)x ds

)
=
Mt,hx−M0,hx

t
.
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Therefore, for every x ∈ X we have M0,tx ∈ D(L) and

LM0,tx =
T (t)x− x

t
. (11.1.2)

Proposition 11.1.5. For every t > 0, T (t) maps D(L) into itself, and L and T (t)
commute on D(L).

If x ∈ D(L), then the function T (·)x is differentiable at every t ≥ 0 and

d

dt
T (t)x = LT (t)x = T (t)Lx, t ≥ 0.

Proof. For every x ∈ X and for every h > 0 we have

T (h)− I
h

T (t)x = T (t)
T (h)− I

h
x.

If x ∈ D(L), letting h→ 0 we obtain T (t)x ∈ D(L) and LT (t)x = T (t)Lx.
Fix t0 ≥ 0 and let h > 0. We have

T (t0 + h)x− T (t0)x

h
= T (t0)

T (h)− I
h

x→ T (t0)Lx as h→ 0+.

This shows that T (·)x is right differentiable at t0. Let us show that it is left differentiable,
assuming t0 > 0. If h ∈ (0, t0) we have

T (t0 − h)x− T (t0)x

−h
= T (t0 − h)

T (h)− I
h

x→ T (t0)Lx as h→ 0+,

as∥∥∥T (t0−h)
T (h)− I

h
x−T (t0)Lx

∥∥∥ ≤ ∥∥∥T (t0−h)
(T (h)− I

h
x−Lx

)∣∣∣+‖(T (t0−h)−T (t0))Lx‖

and ‖T (t0 − h)‖ ≤ sup0≤t≤t0 ‖T (t)‖ < ∞ by Lemma 11.1.2. It follows that the function
t 7→ T (t)x is differentiable at all t ≥ 0 and its derivative is T (t)Lx, which is equal to
LT (t)x by the first part of the proof.

Using Proposition 11.1.5 we prove that the generator L is a closed operator. Therefore,
D(L) is a Banach space with the graph norm ‖x‖D(L) = ‖x‖+ ‖Lx‖.

Proposition 11.1.6. The generator L of any strongly continuous semigroup is a closed
operator.

Proof. Let (xn) be a sequence in D(L), and let x, y ∈ X be such that xn → x, Lxn =:
yn → y. By Proposition 11.1.5 the function t 7→ T (t)xn is continuously differentiable in
[0,∞). Hence for 0 < h < 1 we have (see Exercise 11.1)

T (h)− I
h

xn =
1

h

∫ h

0
LT (t)xndt =

1

h

∫ h

0
T (t)yndt,
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and then∥∥∥T (h)− I
h

x− y
∥∥∥ ≤ ∥∥∥T (h)− I

h
(x− xn)

∥∥∥+
∥∥∥1

h

∫ h

0
T (t)(yn − y)dt

∥∥∥+
∥∥∥1

h

∫ h

0
T (t)ydt− y

∥∥∥
≤ C + 1

h
‖x− xn‖+ C‖yn − y‖+

∥∥∥1

h

∫ h

0
T (t)ydt− y

∥∥∥,
where C = sup0<t<1 ‖T (t)‖. Given ε > 0, there is h0 such that for 0 < h ≤ h0 we have

‖
∫ h

0 T (t)ydt/h− y‖ ≤ ε/3. For h ∈ (0, h0], take n such that ‖x− xn‖ ≤ εh/3(C + 1) and

‖yn − y‖ ≤ ε/3C: we get ‖T (h)−I
h x− y‖ ≤ ε and therefore x ∈ D(L) and y = Lx, i.e., the

operator L is closed.

Proposition 11.1.5 implies that for any x ∈ D(L) the function u(t) = T (t)x is differ-
entiable for t ≥ 0 and it solves the Cauchy problem

u′(t) = Lu(t), t ≥ 0,

u(0) = x.
(11.1.3)

Lemma 11.1.7. For every x ∈ D(L), the function u(t) := T (t)x is the unique solution
of (11.1.3) belonging to C([0,∞);D(L)) ∩ C1([0,∞);X).

Proof. From Proposition 11.1.5 we know that u′(t) = T (t)Lx for every t ≥ 0, and then
u′ ∈ C([0,∞);X). Therefore, u ∈ C1([0,∞);X). Since D(L) is endowed with the graph
norm, a function u : [0,∞) → D(L) is continuous iff both u and Lu are continuous. In
our case, both u and Lu = u′ belong to C([0,∞);X), and then u ∈ C([0,∞);D(L)).

Let us prove that (11.1.3) has a unique solution in C([0,∞);D(L))∩C1([0,∞);X). If
u ∈ C([0,∞);D(L)) ∩ C1([0,∞);X) is any solution, we fix t > 0 and define the function

v(s) := T (t− s)u(s), 0 ≤ s ≤ t.

Then (Exercise 11.2) v is differentiable, and v′(s) = −T (t − s)Lu(s) + T (t − s)u′(s) = 0
for 0 ≤ s ≤ t, whence v(t) = v(0), i.e., u(t) = T (t)x.

Remark 11.1.8. If {T (t) : t ≥ 0} is a C0-semigroup with generator L, then for every
λ ∈ C the family of operators

S(t) = eλtT (t), t ≥ 0,

is a C0-semigroup as well, with generator L+ λI : D(L)→ X. The semigroup property is
obvious. Concerning the generator, for every x ∈ X we have

S(h)x− x
h

= eλh
T (h)− x

h
+
eλhx− x

h

and then

lim
h→0+

S(h)x− x
h

= lim
h→0+

eλh
T (h)− x

h
+
eλhx− x

h
= Lx+ λx

iff x ∈ D(L).
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Let {T (t) : t ≥ 0} be a strongly continuous semigroup. Characterising the domain
of its generator L may be difficult. However, for many proofs it is enough to know that
“good” elements x are dense in D(L). A subspace D ⊂ D(L) is called a core of L if D is
dense in D(L) with respect to the graph norm. The following proposition gives an easily
checkable sufficient condition in order that D is a core.

Lemma 11.1.9. If D ⊂ D(L) is a dense subspace of X and T (t)(D) ⊂ D for every t ≥ 0,
then D is a core.

Proof. Let M , ω be such that ‖T (t)‖ ≤Meωt for every t > 0. For x ∈ D(L) we have

Lx = lim
t→0

1

t

∫ t

0
T (s)Lxds.

Let (xn) ⊂ D be a sequence such that limn→∞ xn = x. Set

yn,t =
1

t

∫ t

0
T (s)xn ds =

1

t

∫ t

0
T (s)(xn − x) ds+

1

t

∫ t

0
T (s)x ds.

As the D(L)-valued function s 7→ T (s)xn is continuous in [0,∞), the vector
∫ t

0 T (s)xnds
belongs to D(L). Moreover, it is the limit of the Riemann sums of elements of D (see
Exercise 11.1), hence it belongs to the closure of D in D(L). Therefore, yn,t belongs to
the closure of D in D(L) for every n and t. Furthermore,

‖yn,t − x‖ ≤
∥∥∥1

t

∫ t

0
T (s)(xn − x) ds

∥∥∥+
∥∥∥1

t

∫ t

0
T (s)x ds− x

∥∥∥
tends to 0 as t→ 0, n→∞. By (11.1.2) we have

Lyn,t − Lx =
T (t)(xn − x)− (xn − x)

t
+

1

t

∫ t

0
T (s)Lxds− Lx.

Given ε > 0, fix τ > 0 such that∥∥∥1

τ

∫ τ

0
T (s)Lxds− Lx

∥∥∥ ≤ ε,
and then take n ∈ N such that (Meωτ + 1)‖xn − x‖/τ ≤ ε. Therefore, ‖Lyn,τ − Lx‖ ≤ 2ε
and the statement follows.

11.2 Generation Theorems

In this section we recall the main generation theorems for C0-semigroups. The most general
result is the classical Hille–Yosida Theorem, which gives a complete characterisation of the
generators. For contractive semigroups, i.e., semigroups verifying the estimate ‖T (t)‖ ≤
1 for all t ≥ 0, the characterisation of the generators provided by the Lumer-Phillips
Theorem is often useful. We do not present here the proofs of these results, referring e.g.
to [13, §II.3].
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First, we recall the definition of spectrum and resolvent. The natural setting for spec-
tral theory is that of complex Banach spaces, hence if X is real we replace it by its
complexification X̃ = {x+ iy : x, y ∈ X} endowed with the norm

‖x+ iy‖X̃ := sup
−π≤θ≤π

‖x cos θ + y sin θ‖

(notice that the seemingly more natural “Euclidean norm” (‖x‖2 + ‖y‖2)1/2 is not a norm
in general).

Definition 11.2.1. Let L : D(L) ⊂ X → X be a linear operator. The resolvent set ρ(L)
and the spectrum σ(L) of L are defined by

ρ(L) = {λ ∈ C : ∃ (λI − L)−1 ∈ L(X)}, σ(L) = C\ρ(L). (11.2.1)

The complex numbers λ ∈ σ(L) such that λI − L is not injective are the eigenvalues, and
the vectors x ∈ D(L) such that Lx = λx are the eigenvectors (or eigenfunctions, when
X is a function space). The set σp(L) whose elements are all the eigenvalues of L is the
point spectrum.

For λ ∈ ρ(L), we set
R(λ, L) := (λI − L)−1. (11.2.2)

The operator R(λ, L) is the resolvent operator or briefly resolvent.
We ask to check (Exercise 11.3) that if the resolvent set ρ(L) is not empty, then L is

a closed operator. We also ask to check (Exercise 11.4) the following equality, known as
the resolvent identity

R(λ, L)−R(µ,L) = (µ− λ)R(λ, L)R(µ,L), ∀ λ, µ ∈ ρ(L). (11.2.3)

Theorem 11.2.2 (Hille–Yosida). The linear operator L : D(L) ⊂ X → X is the generator
of a C0-semigroup verifying estimate (11.1.1) iff the following conditions hold:

(i) D(L) is dense in X,

(ii) ρ(L) ⊃ {λ ∈ R : λ > ω},

(iii) ‖(R(λ, L))k‖L(X) ≤
M

(λ− ω)k
∀ k ∈ N, ∀ λ > ω.

(11.2.4)

Before stating the Lumer–Phillips Theorem, we define the dissipative operators.

Definition 11.2.3. A linear operator L : D(L) ⊂ X → X is called dissipative if

‖(λI − L)x‖ ≥ λ‖x‖

for all λ > 0, x ∈ D(L).

Theorem 11.2.4 (Lumer–Phillips). A densely defined and dissipative operator L on X is
closable and its closure is dissipative. Moreover, the following statements are equivalent.

(i) The closure of L generates a contraction C0-semigroup.

(ii) The range of λI − L is dense in X for some (hence all) λ > 0.
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11.3 Invariant measures

In our lectures we shall encounter semigroups defined in Lp spaces, i.e., X = Lp(Ω) where
(Ω,F , µ) is a measure space, with µ(Ω) <∞. A property that will play an important role
is the conservation of the mean value, namely∫

Ω
T (t)f dµ =

∫
Ω
f dµ ∀ t > 0, ∀f ∈ Lp(Ω).

In this case µ is called invariant for T (t). The following proposition gives an equiva-
lent condition for invariance, in terms of the generator of the semigroup rather than the
semigroup itself.

Proposition 11.3.1. Let {T (t) : t ≥ 0} be a strongly continuous semigroup with generator
L in Lp(Ω, µ), where (Ω, µ) is a measure space, p ∈ [1,∞), and µ(Ω) <∞. Then∫

Ω
T (t)f dµ =

∫
Ω
f dµ ∀t > 0, ∀f ∈ Lp(Ω, µ) ⇐⇒

∫
Ω
Lf dµ = 0 ∀f ∈ D(L).

Proof. “⇒” Let f ∈ D(L). Then limt→0(T (t)f − f)/t = Lf in Lp(Ω, µ) and consequently
in L1(Ω, µ). Integrating we obtain∫

Ω
Lf dµ = lim

t→0

1

t

∫
Ω

(T (t)f − f)dµ = 0.

“⇐” Let f ∈ D(L). Then the function t 7→ T (t)f belongs to C1([0,∞);Lp(Ω, µ)) and
d/dt T (t)f = LT (t)f , so that for every t ≥ 0,

d

dt

∫
X
T (t)f dµ =

∫
Ω
LT (t)f dµ = 0.

Therefore the function t 7→
∫
X T (t)f dµ is constant, and equal to

∫
X f dµ. The operator

Lp(Ω, µ)→ R, f 7→
∫

Ω(T (t)f − f)dµ, is bounded and vanishes on the dense subset D(L);
hence it vanishes in the whole Lp(Ω, µ).

11.4 Analytic semigroups

We recall now an important class of semigroups, the analytic semigroups generated by
sectorial operators. For the definition of sectorial operators we need that X is a complex
Banach space.

Definition 11.4.1. A linear operator L : D(L) ⊂ X → X is called sectorial if there are
ω ∈ R, θ ∈ (π/2, π), M > 0 such that

(i) ρ(L) ⊃ Sθ,ω := {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ},

(ii) ‖R(λ, L)‖L(X) ≤
M

|λ− ω|
∀λ ∈ Sθ,ω.

(11.4.1)
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In the literature there are also other notions of sectorial operators, but this is the most
popular and the one usueful for us.

Sectorial operators with dense domains are infinitesimal generators of semigroups with
noteworthy smoothing properties. The proof of the following theorem may be found in
[13, Chapter 2], [21, Chapter 2].

Theorem 11.4.2. Let L be a sectorial operator with dense domain. Then it is the in-
finitesimal generator of a semigroup {T (t) : t ≥ 0} that enjoys the following properties.

(i) T (t)x ∈ D(Lk) for every t > 0, x ∈ X, k ∈ N.

(ii) There are M0, M1, M2, . . ., such that
(a) ‖T (t)‖L(X) ≤M0e

ωt, t > 0,

(b) ‖tk(L− ωI)kT (t)‖L(X) ≤Mke
ωt, t > 0,

(11.4.2)

where ω is the constant in (11.4.1).

(iii) The function t 7→ T (t) belongs to C∞((0,+∞);L(X)), and the equality

dk

dtk
T (t) = LkT (t), t > 0, (11.4.3)

holds.

(iv) The function t 7→ T (t) has a L(X)-valued holomorphic extension in a sector Sβ,0
with β > 0.

The name “analytic semigroup” comes from property (iv). If O is an open set in C,
and Y is a complex Banach space, a function f : O → Y is called holomorphic if it is
differentiable at every z0 ∈ O in the usual complex sense, i.e. there exists the limit

lim
z→z0

f(z)− f(z0)

z − z0
=: f ′(z0).

As in the scalar case, such functions are infinitely many times differentiable at every
z0 ∈ O, and the Taylor series

∑∞
k=0 f

(k)(z0)(z − z0)k/k! converges to f(z) for every z in a
neighborhood of z0.

We do not present the proof of this theorem, because in the case of the Ornstein-
Uhlenbeck semigroup that will be discussed in the next lectures we shall provide direct
proofs of the relevant properties without relying on the above general results. A more
general theory of analytic semigroups, not necessarily strongly continuous at t = 0, is
available, see [21].
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11.4.1 Self-adjoint operators in Hilbert spaces

If X is a Hilbert space (inner product 〈·, ·〉, norm ‖ · ‖) then we can say more on semi-
groups and generators in connection to self-adjointness. Notice also that the dissipativity
condition can be rephrased in the Hilbert space as follows. An operator L : D(L)→ X is
dissipative iff (see Exercise 11.5)

Re 〈Lx, x〉 ≤ 0, ∀x ∈ D(L). (11.4.4)

Let us prove that any self-adjoint dissipative operator is sectorial.

Proposition 11.4.3. Let L : D(L) ⊂ X → X be a self-adjoint dissipative operator. Then
L is sectorial with θ < π arbitrary and ω = 0.

Proof. Let us first show that the spectrum of L is real. If λ = a + ib ∈ C, for every
x ∈ D(L) we have

‖(λI − L)x‖2 = (a2 + b2)‖x‖2 − 2a〈x, Lx〉+ ‖Lx‖2 ≥ b2‖x‖2, (11.4.5)

hence if b 6= 0 then λI − L is injective. Let us check that in this case it is also surjective,
showing that its range is closed and dense in X. Let (xn) ⊂ D(L) be a sequence such that
the sequence (λxn − Lxn) is convergent. From the inequality

‖(λI − L)(xn − xm)‖2 ≥ b2‖xn − xm‖2, n, m ∈ N,

it follows that the sequence (xn) is a Cauchy sequence, hence (Lxn) as well. Therefore,
there are x, y ∈ X such that xn → x and Lxn → y. Since L is closed, x ∈ D(L) and
Lx = y, hence λxn − Lxn converges to λx− Lx ∈ rg (λI − L) and the range of λI − L is
closed.

Let now y be orthogonal to the range of (λI − L). Then, for every x ∈ D(L) we have
〈y, λx − Lx〉 = 0, whence y ∈ D(L?) = D(L) and λy − L?y = λy − Ly = 0. As λI − L
injective, y = 0 follows. Therefore the range of (λI − L) is dense in X.

From the dissipativity of L it follows that the spectrum of L is contained in (−∞, 0].
Indeed, if λ > 0 then for every x ∈ D(L) we have, instead of (11.4.5),

‖(λI − L)x‖2 = λ2‖x‖2 − 2λ〈x, Lx〉+ ‖Lx‖2 ≥ λ2‖x‖2, (11.4.6)

and arguing as above we deeduce λ ∈ ρ(L).

Let us now estimate ‖R(λ, L)‖, for λ = ρeiθ, with ρ > 0, −π < θ < π. For x ∈ X, set
u = R(λ, L)x. Multiplying the equality λu− Lu = x by e−iθ/2 and then taking the inner
product with u, we get

ρeiθ/2‖u‖2 − e−iθ/2〈Lu, u〉 = e−iθ/2〈x, u〉,

whence, taking the real part,

ρ cos(θ/2)‖u‖2 − cos(θ/2)〈Lu, u〉 = Re(e−iθ/2〈x, u〉) ≤ ‖x‖ ‖u‖
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and then, as cos(θ/2) > 0, also

‖u‖ ≤ ‖x‖
|λ| cos(θ/2)

,

with θ = arg λ.

Proposition 11.4.4. Let {T (t) : t ≥ 0} be a C0-semigroup. The family of operators
{T (t)? : t ≥ 0} is a C0-semigroup whose generator is L?.

Proof. The semigroup law is immediately checked. Let us prove the strong continuity.
Recall that by (11.1.1) we have ‖T (t)‖ = ‖T (t)?‖ ≤ Meωt, where we may assume ω > 0.
First, notice that T (t)?x → x weakly for every x ∈ X as t → 0. Indeed, by the strong
continuity of T (t) we have 〈T (t)?x, y〉 = 〈x, T (t)y〉 → 〈x, y〉 as t → 0 for every y ∈ X.
From the estimate ∣∣∣ ∫ t

0
〈T (s)?x, y〉 ds

∣∣∣ ≤ M

ω
(eωt − 1)‖x‖ ‖y‖

and the Riesz Theorem we get the existence of xt ∈ X such that

1

t

∫ t

0
〈T (s)?x, y〉 ds = 〈xt, y〉 ∀ y ∈ X.

Therefore, for t > 0 and 0 < h < t we infer

|〈T (h)?xt − xt, y〉| = |〈xt, T (h)y〉 − 〈xt, y〉|

=
∣∣∣1
t

∫ t

0
〈T (s)?x, T (h)y〉 ds− 1

t

∫ t

0
〈T (s)?x, y〉 ds

∣∣∣
=
∣∣∣1
t

∫ t

0
〈T (s+ h)?x, y〉 ds− 1

t

∫ t

0
〈T (s)?x, y〉 ds

∣∣∣
=
∣∣∣1
t

∫ t+h

t
〈T (s)?x, y〉 ds− 1

t

∫ h

0
〈T (s)?x, y〉 ds

∣∣∣
≤ 1

t
‖x‖ ‖y‖M

ω

[
(eω(t+h) − eωt) + (eωh − 1)

]
.

Taking the supremum on ‖y‖ = 1, we deduce

lim
h→0
‖T (h)?xt − xt‖ = 0. (11.4.7)

Set Y := {x ∈ X : limh→0 ‖T (h)?x − x‖ = 0. By an ε/3 argument, it is easily seen that
Y is closed. Moreover, it is a subspace of X. Therefore (e.g, [4, Thm. 3.7]), Y is weakly
closed. Since for any x ∈ X, xt ∈ Y and xt → x weakly as t→ 0, we conclude that Y = X,
and consequently {T (t)? : t ≥ 0} is strongly continuous. Denoting by A its generator, for
x ∈ D(L) and y ∈ D(A) we have

〈Lx, y〉 = lim
t→0
〈t−1(T (t)− I)x, y〉 = lim

t→0
〈x, t−1(T (t)? − I)y〉 = 〈x,Ay〉,
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so that A ⊂ L?. Conversely, for y ∈ D(L?), x ∈ D(L) we have

〈x, T (t)?y − y〉 = 〈T (t)x− x, y〉 =

∫ t

0
〈LT (s)x, y〉 ds

=

∫ t

0
〈T (s)x, L?y〉 ds =

∫ t

0
〈x, T (s)?L?y〉 ds.

We deduce

T (t)?y − y =

∫ t

0
T (s)?L?y ds,

whence, dividing by t and letting t → 0 we get Ay = L?y for every y ∈ D(L?) and
consequently L? ⊂ A.
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The following result is an immediate consequence of Proposition 11.4.4.

Corollary 11.4.5. The generator L is self-adjoint if and only if T (t) is self-adjoint for
every t > 0.

11.5 Exercises

Exercise 11.1. Let R be endowed with the Lebesgue measure λ1, and let f : [a, b]→ X
be a continuous function. Prove that it is Bochner integrable, that∫ b

a
f(t) dt = lim

n→∞

n∑
i=1

f(τi)
b− a
n

for any choice of τi ∈
[
a+ (b−a)(i−1)

n , a+ (b−a)i
n

]
, i = 1, . . . , n (the sums in this approxi-

mation are the usual Riemann sums in the real-valued case) and that, setting

F (t) =

∫ t

a
f(s)ds, a ≤ t ≤ b,

the function F is continuously differentiable, with

F ′(t) = f(t), a ≤ t ≤ b.

Exercise 11.2. Prove that if u ∈ C([0,∞);D(L))∩C1([0,∞);X) is a solution of problem
(11.1.3), then for t > 0 the function v(s) = T (t − s)u(s) is continuously differentiable in
[0, t] and it verifies v′(s) = −T (t− s)Lu(s) + T (t− s)u′(s) = 0 for 0 ≤ s ≤ t.

Exercise 11.3. Let L : D(L) ⊂ X → X be a linear operator. Prove that if ρ(L) 6= ∅ then
L is closed.

Exercise 11.4. Prove the resolvent identity (11.2.3).

Exercise 11.5. Prove that in Hilbert spaces the dissipativity condition in Definition 11.2.3
is equivalent to (11.4.4).

Exercise 11.6. Let {T (t) : t ≥ 0} be a bounded strongly continuous semigroup. Prove
that the norm

|x| := sup
t≥0
‖T (t)x‖

is equivalent to ‖ · ‖ and that T (t) is contractive on (X, | · |).
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The Ornstein-Uhlenbeck semigroup

All of us know the importance of the Laplacian operator ∆ and of the heat semigroup,

∆f(x) =

d∑
i=1

∂2f

∂x2
i

(x), T (t)f(x) =
1

(4πt)d/2

∫
Rd
e−|x−y|

2/4tf(y)dy, t > 0,

that serve as prototypes for elliptic differential operators and semigroups of operators,
respectively. Choosing X = L2(Rd, λd), the Laplacian ∆ : D(∆) = W 2,2(Rd, λd) → X
is the infinitesimal generator of T (t), namely given any f ∈ X, there exists the limit
limt→0+(T (t)f −f)/t if and only if f ∈W 2,2(Rd, λd), and in this case the limit is ∆f . The
W 2,2 norm is equivalent to the graph norm. Moreover, the realization of the Laplacian in
X is the operator associated with the quadratic form

Q(u, v) =

∫
Rd
∇u · ∇v dx, u, v ∈W 1,2(Rd, λd).

This means that D(∆) consists precisely of the elements u ∈ W 1,2(Rd, λd) such that the
function W 1,2(Rd, λd) → R, ϕ 7→

∫
Rd ∇u · ∇ϕdx has a linear bounded extension to the

whole X, namely there exists g ∈ L2(Rd, λd) such that∫
Rd
∇u · ∇ϕ dx =

∫
Rd
g ϕ dx, ϕ ∈W 1,2(Rd, λd),

and in this case g = −∆u. If u ∈W 2,2(Rd, λd), the above formula follows just integrating
by parts, and it is the basic formula that relates the Laplacian and the gradient. Moreover,
for u ∈W 2,2(Rd, λd) we have

∆u = div∇u,

where the divergence div is (minus) the adjoint of the gradient ∇ : W 1,2(Rd, λd) →
L2(Rd, λd;Rd), and for a vector field v ∈W 1,2(Rd, λd;Rd) it is given by

∑d
i=1 ∂vi/∂xi.

In this lecture and in the next ones we introduce the Ornstein–Uhlenbeck operator and
the Ornstein–Uhlenbeck semigroup, that play the role of the Laplacian and of the heat

149
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semigroup if the Lebesgue measure is replaced by the standard Gaussian measure γd, and
that have natural extensions to our infinite dimensional setting (X, γ,H). As before, X
is a separable Banach space endowed with a centred nondegenerate Gaussian measure γ,
and H is the relevant Cameron–Martin space.

12.1 The Ornstein–Uhlenbeck semigroup

In this section we define the Ornstein–Uhlenbeck semigroup; we start by defining it in the
space of the bounded continuous functions and then we extend it to Lp(X, γ), for every
p ∈ [1,∞).

The Ornstein–Uhlenbeck semigroup in Cb(X) is defined as follows: T (0) = I, and for
t > 0, T (t)f is defined by the Mehler formula

T (t)f(x) :=

∫
X
f(e−tx+

√
1− e−2ty)γ(dy). (12.1.1)

We list some properties of the family of operators {T (t) : t ≥ 0}.

Proposition 12.1.1. {T (t) : t ≥ 0} is a contraction semigroup in Cb(X). Moreover, for
every f ∈ Cb(X) we have ∫

X
T (t)f dγ =

∫
X
f dγ, t > 0. (12.1.2)

Proof. First of all we notice that |T (t)f(x)| ≤ ‖f‖∞ for every x ∈ X and t ≥ 0. The fact
that T (t)f ∈ Cb(X) follows by Dominated Convergence Theorem. So, T (t) ∈ L(Cb(X))
and ‖T (t)‖L(Cb(X)) ≤ 1. Taking f ≡ 1, we have T (t)f ≡ 1 so that ‖T (t)‖L(Cb(X)) = 1 for
every t ≥ 0.

Let us prove that {T (t) : t ≥ 0} is a semigroup. For every f ∈ Cb(X) and t, s > 0 we
have

(T (t)(T (s)f))(x) =

∫
X

(T (s)f)(e−tx+
√

1− e−2ty)γ(dy)

=

∫
X

∫
X
f(e−s(e−tx+

√
1− e−2ty) +

√
1− e−2sz)γ(dy)γ(dz).

Setting now Φ(y, z) = e−s
√

1−e−2t√
1−e−2t−2s

y +
√

1−e−2s√
1−e−2t−2s

z, and using Proposition 2.2.7(iv), we
get

(T (t)(T (s)f))(x) =

∫
X

∫
X
f(e−s−tx+

√
1− e−2t−2sΦ(y, z))γ(dy)γ(dz)

=

∫
X
f(e−t−sx+

√
1− e−2t−2sξ)((γ ⊗ γ) ◦ Φ−1)(dξ)

=

∫
X
f(e−t−sx+

√
1− e−2t−2sξ)γ(dξ)

= T (t+ s)f(x).
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Let us prove that (12.1.2) holds. For any f ∈ Cb(X) we have∫
X
T (t)f γ(dx) =

∫
X

∫
X
f(e−tx+

√
1− e−2ty)γ(dy)γ(dx).

Setting φ(x, y) = e−tx+
√

1− e−2ty, we apply Proposition 2.2.7(iv) with any θ ∈ R such
that e−t = cos θ,

√
1− e−2t = sin θ, and we get∫

X
T (t)f dγ =

∫
X
f(ξ)(γ ⊗ γ) ◦ φ−1(dξ) =

∫
X
f(ξ)γ(dξ).

We point out that the semigroup {T (t) : t ≥ 0} is not strongly continuous in Cb(X),
and not even in the subspace BUC(X) of the bounded and uniformly continuous functions.
In fact, we have the following characterisation.

Lemma 12.1.2. Let f ∈ BUC(X). Then

lim
t→0+

‖T (t)f − f‖∞ = 0⇐⇒ lim
t→0+

‖f(e−t·)− f‖∞ = 0.

Proof. For every t > 0 and x ∈ X we have

(T (t)f − f(e−t·))(x) =

∫
X

(f(e−tx+
√

1− e−2ty)− f(e−tx))γ(dy)

and the right hand side goes to 0, uniformly in X, as t→ 0+. Indeed, given ε > 0 fix R > 0
such that γ(X \ B(0, R)) ≤ ε, and fix δ > 0 such that |f(u) − f(v)| ≤ ε for ‖u − v‖ ≤ δ.
Then, for every t such that

√
1− e−2tR ≤ δ and for every x ∈ X we have∣∣∣∣ ∫

X
(f(e−tx+

√
1− e−2ty)− f(e−tx))γ(dy)

∣∣∣∣
=

∣∣∣∣( ∫
B(0,R)

+

∫
X\B(0,R)

)
(f(e−tx+

√
1− e−2ty)− f(e−tx))γ(dy)

∣∣∣∣
≤ ε+ 2‖f‖∞ε.

The simplest counterexample to strong continuity in BUC(X) is one dimensional: see
Exercise 12.1.

However, for every f ∈ Cb(X) the function (t, x) 7→ T (t)f(x) is continuous in [0,∞)×X
by the Dominated Convergence Theorem. In particular,

lim
t→0+

T (t)f(x) = f(x), ∀x ∈ X,

which is enough for many purposes.
The semigroup {T (t) : t ≥ 0} enjoys important smoothing and summability improving

properties. The first smoothing property is in the next proposition.
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Proposition 12.1.3. For every f ∈ Cb(X) and t > 0, T (t)f is H-differentiable at every
x ∈ X, and we have

[∇HT (t)f(x), h]H =
e−t√

1− e−2t

∫
X
f(e−tx+

√
1− e−2ty)ĥ(y)γ(dy). (12.1.3)

Therefore,

|∇HT (t)f(x)|H ≤
e−t√

1− e−2t
‖f‖∞, x ∈ X. (12.1.4)

Proof. Set

c(t) :=
e−t√

1− e−2t
.

For every h ∈ H we have

T (t)f(x+ h) =

∫
X
f(e−tx+

√
1− e−2t(c(t)h+ y))γ(dy)

=

∫
X
f(e−tx+

√
1− e−2tz) exp

{
c(t)ĥ(z)− c(t)2 |h|2H

2

}
γ(dz),

by the Cameron–Martin formula. Therefore, denoting by lt,x(h) the right hand side of
(12.1.3),

|T (t)f(x+ h)− T (t)f(x)− lt,x(h)|
|h|H

≤

≤ 1

|h|H

∫
X

∣∣∣f(e−tx+
√

1− e−2ty)
(

exp
{
c(t)ĥ(y)− c(t)2 |h|2H

2

}
− 1− c(t)ĥ(y)

)∣∣∣γ(dy)

≤ ‖f‖∞
|h|H

∫
R

∣∣∣exp
{
c(t)ξ − c(t)2 |h|2H

2

}
− 1− c(t)ξ

∣∣∣N (0, |h|2H)(dξ)

= ‖f‖∞
∫
R

∣∣∣ exp
{
c(t)|h|Hη − c(t)2 |h|2H

2

}
− 1− c(t)|h|Hη

∣∣∣N (0, 1)(dη)

where the right hand side vanishes as |h|H → 0, by the Dominated Convergence Theorem.
This proves (12.1.3). In its turn, (12.1.3) yields

|[∇HT (t)f(x), h]H | ≤ c(t)‖f‖∞‖ĥ‖L1(X,γ) ≤ c(t)‖f‖∞‖ĥ‖L2(X,γ) = c(t)‖f‖∞|h|H

for every h ∈ H, and (12.1.4) follows.

Notice that in the case X = Rd, γ = γd, we have ∇H = ∇ and formula (12.1.3) reads
as

DiT (t)f(x) =
e−t√

1− e−2t

∫
Rd
f(e−tx+

√
1− e−2ty)yi γd(dy), i = 1, . . . , d. (12.1.5)

Let us consider now more regular functions f .
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Proposition 12.1.4. For every f ∈ C1
b (X), T (t)f ∈ C1

b (X) for any t ≥ 0, and its
derivative at x is

(T (t)f)′(x)(v) = e−t
∫
X
f ′(e−tx+

√
1− e−2ty)(v) γ(dy). (12.1.6)

In particular,
∂

∂v
T (t)f(x) = e−t

(
T (t)

( ∂
∂v
f
))

(x), v ∈ X, x ∈ X. (12.1.7)

For every f ∈ C2
b (X), T (t)f ∈ C2

b (X) for any t ≥ 0, and its second order derivative at x
is

(T (t)f)′′(x)(u)(v) = e−2t

∫
X
f ′′(e−tx+

√
1− e−2ty)(u)(v) γ(dy), (12.1.8)

so that
∂2T (t)f

∂u∂v
(x) = e−2tT (t)

(
∂2f

∂u∂v

)
(x), u, v ∈ X, x ∈ X. (12.1.9)

Proof. Fix t > 0 and set Φ(x, y) = e−tx+
√

1− e−2ty. For every x, v ∈ X we have∣∣∣∣(T (t)f)(x+ v)− (T (t)f)(x)− e−t
∫
X
f ′(e−tx+

√
1− e−2ty)(v) γ(dy)

∣∣∣∣ 1

‖v‖

≤
∫
X
|f(Φ(x, y) + e−tv)− f(Φ(x, y))− f ′(Φ(x, y))(e−tv)| γ(dy)

1

‖v‖
.

On the other hand, for every y ∈ X we have

lim
v→0

f(Φ(x, y) + e−tv)− f(Φ(x, y))− f ′(Φ(x, y))(e−tv)

‖v‖
= 0,

and (see Exercise 12.3)

|f(Φ(x, y) + e−tv)− f(Φ(x, y))− f ′(Φ(x, y))(e−tv)|
‖v‖

≤ 2e−t sup
z∈X
‖f ′(z)‖X∗ ,

and (12.1.6) follows by the Dominated Convergence Theorem. Formula (12.1.7) is an
immediate consequence. The derivative (T (t)f)′ is continuous still by the Dominated
Convergence Theorem. The verification of (12.1.8) and (12.1.9) for f ∈ C2

b (X) follow
iterating this procedure (see Exercise 12.4).

Let us compare Proposition 12.1.3 and Proposition 12.1.4. Proposition 12.1.3 describes
a smoothing property of T (t), while Proposition 12.1.4 says that T (t) preserves the spaces
C1
b (X) and C2

b (X). In general, T (t) regularises only along H and it does not map Cb(X)
into C1(X). If X = Rd and γ = γd we have H = Rd, this difficulty does not arise,
Proposition 12.1.3 says that T (t) maps Cb(Rd) into C1

b (Rd) and in fact one can check that
T (t) maps Cb(Rd) into Ckb (Rd) for every k ∈ N, as we shall see in the next lecture.
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If f ∈ C1
b (X) we can write ∇HT (t)f(x) in two different ways, using (12.1.3) and

(12.1.6): for every h ∈ H we have

[∇HT (t)f(x), h]H =
e−t√

1− e−2t

∫
X
f(e−tx+

√
1− e−2ty)ĥ(y)γ(dy)

= e−t
∫
X
f ′(e−tx+

√
1− e−2ty)(h) γ(dy).

We now extend T (t) to Lp(X, γ), 1 ≤ p <∞.

Proposition 12.1.5. Let t ≥ 0. For every f ∈ Cb(X) and p ∈ [1,∞) we have

‖T (t)f‖Lp(X,γ) ≤ ‖f‖Lp(X,γ). (12.1.10)

Hence {T (t) : t ≥ 0} is uniquely extendable to a contraction semigroup {Tp(t) : t ≥ 0} in
Lp(X, γ). Moreover

(i) {Tp(t) : t ≥ 0} is strongly continuous in Lp(X, γ), for every p ∈ [1,∞);

(ii) T2(t) is self–adjoint and nonnegative in L2(X, γ) for every t > 0;

(iii) γ is an invariant measure for {Tp(t) : t ≥ 0}.

Proof. For every f ∈ Cb(X), t > 0 and x ∈ X the Hölder inequality yields

|T (t)f(x)|p ≤
∫
X
|f(e−tx+

√
1− e−2ty)|pdγ = T (t)(|f |p)(x).

Integrating over X and using (12.1.2) we obtain∫
X
|T (t)f |pdγ ≤

∫
X
T (t)(|f |p) dγ =

∫
X
|f |pdγ.

Since Cb(X) is dense in Lp(X, γ), T (t) has a unique bounded extension Tp(t) to the whole
Lp(X, γ), such that ‖Tp(t)‖L(Lp(X,γ)) ≤ 1. In fact, taking f ≡ 1, Tp(t)f ≡ 1 so that
‖Tp(t)‖L(Lp(X,γ)) = 1.

Let us prove that {Tp(t) : t ≥ 0} is strongly continuous. We already know that for f ∈
Cb(X) we have limt→0+ T (t)f(x) = f(x) for every x ∈ X, and moreover |T (t)f(x)| ≤ ‖f‖∞
for every x. By the Dominated Convergence Theorem, limt→0+ T (t)f = f in Lp(X, γ).
Since Cb(X) is dense in Lp(X, γ) and ‖Tp(t)‖L(Lp(X,γ)) = 1 for every t, limt→0+ Tp(t)f = f
for every f ∈ Lp(X, γ).

Let us prove statement (ii). Let f , g ∈ Cb(X), t > 0. Then

〈T (t)f, g〉L2(X,γ) =

∫
X

∫
X
f(e−tx+

√
1− e−2ty)g(x)γ(dy)γ(dx)
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and setting u = e−tx +
√

1− e−2ty, v = −
√

1− e−2tx + e−ty, (u, v) =: R(x, y), using
Proposition 2.2.7(iii)

〈T (t)f, g〉L2(X,γ) =

∫
X

∫
X
f(e−tu+

√
1− e−2tv)g(u)γ(dv)γ(du)

=

∫
X×X

f(u)g(e−tu−
√

1− e−2tv)((γ ⊗ γ) ◦R−1)(d(u, v))

=

∫
X

∫
X
f(u)g(e−tu−

√
1− e−2tv)γ(dv)γ(du)

=

∫
X

∫
X
f(u)g(e−tu+

√
1− e−2tv)γ(dv)γ(du)

= 〈f, T (t)g〉L2(X,γ).,

where in the second to last equality we have used the fact that γ is centred. Approximating
any f , g ∈ L2(X, γ) by elements of Cb(X), we obtain 〈T2(t)f, g〉L2(X,γ) = 〈f, T2(t)g〉L2(X,γ).

Still for every f ∈ L2(X, γ) and t > 0 we have

〈T2(t)f, f〉L2(X,γ) = 〈T2(t/2)T2(t/2)f, f〉L2(X,γ) = 〈T2(t/2)f, T2(t/2)f〉L2(X,γ) ≥ 0.

Statement (iii) is an immediate consequence of (12.1.2).

To simplify some statements we extend the Ornstein–Uhlenbeck semigroup T (t) to
H–valued functions. For v ∈ Cb(X;H) and t > 0 we set

T (t)v(x) =

∫
X
v(e−tx+

√
1− e−2ty)γ(dy), t > 0, x ∈ X.

By Remark 9.2.6, for every orthonormal basis {hi : i ∈ N} of H we have

T (t)v(x) =
∞∑
i=1

T (t)([v(·), hi]H)(x)hi.

Using Proposition 9.2.5(i) we get the estimate

|T (t)v(x)|H ≤
∫
X
|v(e−tx+

√
1− e−2ty)|H γ(dy) = (T (t)(|v|H))(x), x ∈ X. (12.1.11)

Notice that the right hand side concerns the scalar valued function |v|H . Raising to the
power p, integrating over X and recalling (12.1.2), we obtain

‖T (t)v‖Lp(X,γ;H) ≤ ‖v‖Lp(X,γ;H), t ≥ 0. (12.1.12)

As in the case of real valued functions, since Cb(X;H) is dense in Lp(X, γ;H), estimate
(12.1.12) allows to extend T (t) to a bounded (contraction) operator in Lp(X, γ;H), called
Tp(t). We will not develop the theory for H–valued functions, but we shall use this notion
to write some formulae in a concise way, see e.g. (12.1.13).

Lp gradient estimates for Tp(t)f are provided by the next proposition.
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Proposition 12.1.6. Let 1 ≤ p <∞.

(i) For every f ∈W 1,p(X, γ) and t > 0, Tp(t)f ∈W 1,p(X, γ) and

∇HTp(t)f = e−tTp(t)(∇Hf), (12.1.13)

‖Tp(t)f‖W 1,p(X,γ) ≤ ‖f‖W 1,p(X,γ). (12.1.14)

(ii) If p > 1, for every f ∈ Lp(X, γ) and t > 0, Tp(t)f ∈W 1,p(X, γ) and∫
X
|∇HTp(t)f(x)|pHdγ ≤ c(t, p)

p

∫
X
|f |pdγ, (12.1.15)

with c(t, p) =

(∫
R |ξ|

p′N (0, 1)(dξ)

)1/p′

e−t/
√

1− e−2t.

Proof. (i). Let f ∈ C1
b (X). By Proposition 12.1.4, T (t)f ∈ C1

b (X) and (∂hT (t)f)(x) =
e−t(T (t)(∂hf))(x) for every h ∈ H, namely [(∇HT (t)f)(x), h]H = e−tT (t)([∇Hf, h]H)(x).
Therefore, |(∇HT (t)f)(x)|H ≤ e−tT (t)(|∇Hf |H)(x), for every x ∈ X. Consequently,

|∇HT (t)f(x)|pH ≤ e
−tp(T (t)(|∇Hf |H)(x))p ≤ e−tp(T (t)(|∇Hf |pH)(x))

and integrating we obtain∫
X
|∇HT (t)f(x)|pHdγ ≤ e

−tp
∫
X
T (t)(|∇Hf |H)pdγ = e−tp

∫
X
|∇Hf |pHdγ,

so that

‖T (t)f‖W 1,p(X,γ) = ‖T (t)f‖Lp(X,γ) + ‖ |∇HT (t)f |H ‖Lp(X,γ)

≤ ‖f‖Lp(X,γ) + ‖ |∇Hf |H ‖Lp(X,γ) = ‖f‖W 1,p(X,γ).

Since C1
b (X) is dense in W 1,p(X, γ), (12.1.14) follows.

(ii) Let f ∈ Cb(X). By Proposition 12.1.3, T (t)f is H-differentiable at every x, and
we have

|∇HT (t)f(x)|H = sup
h∈H, |h|H=1

|[∇HT (t)f(x), h]H |.

Let us estimate |[∇HT (t)f(x), h]H | = |lt,x(h)| (where lt,x(h) is as in the proof of Proposi-
tion 12.1.3), for |h|H = 1, using formula (12.1.3). We have

|lt,x(h)| ≤ e−t√
1− e−2t

∫
X
|f(e−tx+

√
1− e−2ty)|ĥ(y)γ(dy)

≤ e−t√
1− e−2t

(∫
X
|f(e−tx+

√
1− e−2ty)|pγ(dy)

)1/p(∫
X
|ĥ|p′dγ

)1/p′

=
e−t√

1− e−2t
(T (t)(|f |p)(x))1/p

(∫
R
|ξ|p′N (0, 1)(dξ)

)1/p′

.
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By the invariance property (12.1.2) of γ,∫
X
|∇HT (t)f(x)|pH γ(dx) ≤

(
e−t√

1− e−2t

)p ∫
X

(T (t)(|f |p) dγ
(∫

R
|ξ|p′N (0, 1)(dξ)

)p/p′
=

(
e−t√

1− e−2t

)p ∫
X
|f |pdγ

(∫
R
|ξ|p′N (0, 1)(dξ)

)p/p′
.

Therefore, T (t)f ∈ W 1,p(X, γ) and estimate (12.1.15) holds for every f ∈ Cb(X). Since
Cb(X) is dense in Lp(X, γ), the statement follows.

Note that the proof of (ii) fails for p = 1, since the function ĥ does not belong to L∞

for every h ∈ H, and the constant c(t, p) in estimate (12.1.15) blows up as p→ 1. Indeed,
T (t) does not map L1(X, γ) into W 1,1(X, γ) for t > 0, even in the simplest case X = R,
γ = γ1 (see for instance [22, Corollary 5.1]).

12.2 Exercises

Exercise 12.1. Let X = R and set f(x) = sinx. Prove that T (t)f does not converge
uniformly to f in R as t→ 0.

Exercise 12.2. Show that the argument used in Proposition 12.1.5 to prove that T (t) is
self–adjoint in L2(X, γ) implies that Tp′(t) = Tp(t)

∗ for p ∈ (1,∞) with 1/p+ 1/p′ = 1.

Exercise 12.3. Prove that for every f ∈ C1(X) and for every x, y ∈ X we have

f(y)− f(x) =

∫ 1

0
f ′(σy + (1− σ)x)(y − x) dσ,

so that, if f ∈ C1
b (X),

|f(y)− f(x)| ≤ sup
z∈X
‖f ′(z)‖X′‖y − x‖.

Exercise 12.4. Prove that for every f ∈ C2
b (X) and t > 0, T (t)f ∈ C2

b (X) and (12.1.8),
(12.1.9) hold.
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Lecture 13

The Ornstein-Uhlenbeck operator

In this lecture we study the infinitesimal generator of Tp(t), for p ∈ [1,∞). The strongest
result is the characterisation of the domain of the generator L2 of T2(t) as the Sobolev
space W 2,2(X, γ). A similar result holds for p ∈ (1,∞) \ {2}, but the proof is much more
complicated and will not be given here.

13.1 The finite dimensional case

Here, X = Rd and γ = γd. We describe the infinitesimal generator Lp of Tp(t) in
Lp(Rd, γd), for p ∈ (1,∞), which is a suitable realisation of the Ornstein-Uhlenbeck dif-
ferential operator

Lf(x) := ∆f(x)− x · ∇f(x) (13.1.1)

in Lp(Rd, γd).
We recall that

D(Lp) =

{
f ∈ Lp(Rd, γd) : ∃Lp − lim

t→0+

T (t)f − f
t

}
,

Lpf = lim
t→0+

T (t)f − f
t

.

If f ∈ D(Lp), by Lemma 11.1.7 the function t 7→ T (t)f belongs to C1([0,∞);Lp(Rd, γd))
∩C([0,∞);D(Lp)) and d/dt T (t)f = LpT (t)f , for every t ≥ 0. To find an expression of
Lp, we differentiate T (t)f with respect to time for good f . We recall that for f ∈ Cb(Rd),
Tp(t)f = T (t)f is given by formula (12.1.1).

Lemma 13.1.1. For every f ∈ Cb(Rd), the function (t, x) 7→ T (t)f(x) is smooth in
(0,∞)× Rd, and we have

d

dt
(T (t)f)(x) = ∆T (t)f(x)− x · ∇T (t)f(x), t > 0, x ∈ Rd. (13.1.2)

159
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If f ∈ C2
b (Rd), for every x ∈ Rd the function t 7→ T (t)f(x) is differentiable also at t = 0,

with
d

dt
(T (t)f)(x)|t=0 = ∆f(x)− x · ∇f(x), x ∈ Rd, (13.1.3)

and the function (t, x) 7→ d/dt (T (t)f)(x) is continuous in [0,∞)× Rd.

Proof. Setting z = e−tx+
√

1− e−2ty in (12.1.1) we see that (t, x) 7→ T (t)f(x) is smooth
in (0,∞)× Rd, and that

d

dt
(T (t)f)(x) =

1

(2π)d/2

∫
Rd
f(z)

∂

∂t

(
exp
{
−|z − e

−tx|2

2(1− e−2t)

}
(1− e−2t)−d/2

)
dz

=
(1− e−2t)−d/2

(2π)d/2

∫
Rd
f(z) exp

{
−|z − e

−tx|2

2(1− e−2t)

}
(
− e−t(z − e−tx) · x

1− e−2t
+
e−2t|z − e−tx|2

(1− e−2t)2
− de−2t

1− e−2t

)
dz

=

∫
Rd
f(e−tx+

√
1− e−2ty)(−c(t) y · x+ c(t)2|y|2 − dc(t)2)γd(dy),

where c(t) = e−t/
√

1− e−2t. Differentiating twice with respect to x in (12.1.1) (recall
(12.1.5)), we obtain

Dij(T (t)f)(x) = c(t)2

∫
Rd
f(e−tx+

√
1− e−2ty)(−δij + yiyj)γd(dy)

so that

∆T (t)f(x) = c(t)2

∫
Rd
f(e−tx+

√
1− e−2ty)(−d+ |y|2)γd(dy).

Therefore,

d

dt
(T (t)f)(x)−∆T (t)f(x) = −c(t)

∫
Rd
f(e−tx+

√
1− e−2ty)x · y γd(dy)

= −∇T (t)f(x) · x,

and (13.1.2) follows.
For f ∈ C2

b (Rd), we rewrite formula (13.1.2) as

d

dt
(T (t)f)(x) = (LT (t)f)(x)

= e−2t(T (t)∆f)(x)− e−tx · (T (t)∇f)(x), t > 0, x ∈ Rd,
(13.1.4)

taking into account (12.1.7) and (12.1.9). (We recall that (T (t)∇f)(x) is the vector whose
j-th component is T (t)Djf(x)). Since ∆f and each Djf are continuous and bounded in
Rd, the right hand side is continuous in [0,∞) × Rd. So, for every x ∈ Rd the function
θ(t) := T (t)f(x) is continuous in [0,∞), it is differentiable in (0,∞) and limt→0 θ

′(t) =
∆f(x)− x · ∇f(x). Therefore, θ is differentiable at 0 too, (13.1.4) holds also at t = 0, and
(13.1.3) follows.
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Lemma 13.1.1 suggests that Lp is a suitable realisation of the Ornstein-Uhlenbeck
differential operator L defined in (13.1.1). For a first characterisation of Lp we use Lemma
11.1.9.

Proposition 13.1.2. For 1 ≤ p < ∞ and k ∈ N, k ≥ 2, the operator L : D(L) =
Ckb (Rd) ⊂ Lp(Rd, γd) → Lp(Rd, γd) is closable, and its closure is Lp. So, D(Lp) consists
of all f ∈ Lp(Rd, γd) for which there exists a sequence of functions (fn) ⊂ Ckb (Rd) such
that fn → f in Lp(Rd, γd) and (Lfn) converges in Lp(Rd, γd). In this case, Lpf = Lp −
limn→∞Lfn.

Proof. We check that D = Ckb (Rd) satisfies the assumptions of Proposition 11.1.9, i.e., it
is a core of Lp. We already know, from Proposition 12.1.4, that T (t) maps Ckb (Rd) into
itself for k = 1, 2. The proof of the fact that Ckb (Rd) is dense in Lp(Rd, γd) and that T (t)
maps Ckb (Rd) into itself for k ≥ 3 is left as Exercise 13.2.

Since Ckb (Rd) ⊂ C2
b (Rd) for k ≥ 2, it remains to prove that C2

b (Rd) ⊂ D(Lp), and
Lpf = Lf for every f ∈ C2

b (Rd).
By Lemma 13.1.1, for every f ∈ C2

b (Rd) we have d/dt T (t)f(x) = LT (t)f(x) for every
x ∈ Rd and t ≥ 0; moreover t 7→ d/dt T (t)f(x) is continuous for every x. Therefore for
every t > 0 we have

T (t)f(x)− f(x)

t
=

1

t

∫ t

0

d

ds
T (s)f(x) ds =

1

t

∫ t

0
LT (s)f(x) ds,

and∫
Rd

∣∣∣∣T (t)f(x)− f(x)

t
− Lf(x)

∣∣∣∣pγd(dx) ≤
∫
Rd

(
1

t

∫ t

0
|LT (s)f(x)− Lf(x)| ds

)p
γd(dx).

Since s 7→ LT (s)f(x) is continuous, for every x we have

lim
t→0+

(
1

t

∫ t

0
|LT (s)f(x)− Lf(x)| ds

)p
= 0.

Moreover, by (13.1.4),(
1

t

∫ t

0
|LT (s)f(x)− Lf(x)| ds

)p
≤ 2p(‖∆f‖∞ + |x| ‖ |∇f | ‖∞)p ∈ L1(Rd, γd).

By the Dominated Convergence Theorem,

lim
t→0+

∫
Rd

∣∣∣∣T (t)f(x)− f(x)

t
− Lf(x)

∣∣∣∣pγd(dx) = 0.

Then, Ckb (Rd) ⊂ D(Lp). Since Lp is a closed operator and it is an extension of L :
Ckb (Rd)→ Lp(Rd, γd), L : Ckb (Rd)→ Lp(Rd, γd) is closable.

Applying Lemma 11.1.9 with D = Ckb (Rd), we obtain that D(Lp) is the closure of
Ckb (Rd) in the graph norm of Lp, namely f ∈ D(Lp) iff there exists a sequence (fn) ⊂
Ckb (Rd) such that fn → f in Lp(Rd, γd) and Lpfn = Lfn converges in Lp(Rd, γd). This
shows that Lp is the closure of L : Ckb (Rd)→ Lp(Rd, γd).
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In the case p = 2 we obtain other characterisations of D(L2). To start with, we point
out some important properties of L, when applied to elements of W 2,2(Rd, γd).

Lemma 13.1.3. (a) L : W 2,2(Rd, γd)→ L2(Rd, γd) is a bounded operator;

(b) for every f ∈W 2,2(Rd, γd), g ∈W 1,2(Rd, γd) we have∫
Rd

Lf g dγd = −
∫
Rd
∇f · ∇g dγd. (13.1.5)

(c) for every f ∈W 2,2(Rd, γd) we have

Lf = divγd∇f. (13.1.6)

Proof. To prove (a) it is sufficient to show that the mapping T : W 2,2(Rd, γd)→ L2(Rd, γd)
defined by (Tf)(x) := x · ∇f(x) is bounded. For every i = 1, . . . , d, set gi(x) = xiDif(x).
The mapping f 7→ gi is bounded from W 2,2(Rd, γd) to L2(Rd, γd) by Lemma 10.2.6, and
summing up the statement follows.

To prove (b) it is sufficient to apply the integration by parts formula (9.1.3) to compute∫
Rd Diif g dγd, for every i = 1, . . . , d, and to sum up. In fact, (9.1.3) was stated for C1

b

functions, but it is readily extended to Sobolev functions using Proposition 9.1.5.
Statement (c) follows from Theorem 10.2.7. In this case we have H = Rd, and it is

convenient to take the canonical basis of Rd as a basis for H. So, we have ĥi(x) = xi for
i = 1, . . . , d and divγdv(x) =

∑d
i=1Divi − xivi, for every v ∈ W 1,2(Rd, γd;Rd). Taking

v = ∇f , (13.1.6) follows.

The first characterisation of D(L2) is the following.

Theorem 13.1.4. D(L2) = W 2,2(Rd, γd), and L2f = Lf for every f ∈ W 2,2(Rd, γd).
Moreover, for every f ∈W 2,2(Rd, γd),

‖f‖2L2(Rd,γd) + ‖Lf‖L2(Rd,γd) = ‖f‖2L2(Rd,γd) + ‖∇f‖2L2(Rd,γd;Rd) + ‖D2f‖2L2(Rd,γd;Rd×d),

(13.1.7)
where the square root of the right hand side is an equivalent norm in W 2,2(Rd, γd).

Proof. Let us prove that (13.1.7) holds for every f ∈ C3
b (Rd). We set Lf =: g and we

differentiate with respect to xj (this is why we consider C3
b , instead of only C2

b , functions)
for every j = 1, . . . , d. We obtain

Dj(∆f)−
d∑
i=1

(δijDif + xiDjif) = Djg.

Multiplying by Djf and summing up we get

d∑
j=1

Djf∆(Djf)− |∇f |2 −
d∑
j=1

x · ∇(Djf)Djf = ∇f · ∇g.
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Note that each term in the above sum belongs to Lp(Rd, γd) for every p > 1. We integrate
over Rd and we obtain∫

Rd

( d∑
j=1

Djf L(Djf)− |∇f |2
)
dγd =

∫
Rd
∇f · ∇g dγd.

Now we use the integration formula (13.1.5), both in the left hand side and in the right
hand side, obtaining

−
∫
Rd

d∑
j=1

|∇Djf |2dγd −
∫
Rd
|∇f |2dγd = −

∫
Rd
gLf dγd

so that, since g = Lf

∫
Rd

(Lf)2dγd =

∫
Rd

d∑
i,j=1

(Dijf)2dγd +

∫
Rd
|∇f |2dγd.

Since C3
b is dense both in W 2,2(Rd, γd) and in D(L2), the statement follows.

The next characterisation fits last year Isem. We recall below general results about
bilinear forms in Hilbert spaces. We only need a basic result; more refined results are in
last year Isem lecture notes.

Let V ⊂ W be real Hilbert spaces, with continuous and dense embedding, and let
Q : V × V → R be a bounded bilinear form. “Bounded” means that there exists M > 0
such that |Q(u, v)| ≤ M‖u‖V ‖v‖V for every u, v ∈ V ; “bilinear” means that Q is linear
both with respect to u and with respect to v. Q is called “nonnegative” if Q(u, u) ≥ 0
for every u ∈ V , and “coercive” if there is c > 0 such that Q(u, u) ≥ c‖u‖2V , for every
u ∈ V ; it is called “symmetric” if Q(u, v) = Q(v, u) for every u, v ∈ V . Note that the form
in (13.1.8), with V = W 1,2(Rd, γd), W = L2(Rd, γd) is bounded, bilinear, symmetric and
nonnegative. It is not coercive, but Q(u, v) + α〈u, v〉L2(Rd,γd) is coercive for every α > 0.

For any bounded bilinear form Q, an unbounded linear operator A in the space W is
naturally associated with Q. D(A) consists of the elements u ∈ V such that the mapping
V → R, v 7→ Q(u, v), has a linear bounded extension to the whole W . By the Riesz
Theorem, this is equivalent to the existence of g ∈ W such that Q(u, v) = 〈g, v〉W , for
every v ∈ V . Note that g is unique, because V is dense in W . Then we set Au = −g,
where g is the unique element of W such that Q(u, v) = 〈g, v〉W , for every v ∈ V .

Theorem 13.1.5. Let V ⊂ W be real Hilbert spaces, with continuous and dense em-
bedding, and let Q : V × V → R be a bounded bilinear symmetric form, such that
(u, v) 7→ Q(u, v) +α〈u, v〉W is coercive for some α > 0. Then the operator A : D(A)→W
defined above is densely defined and self-adjoint. If in addition Q is nonnegative, A is
dissipative.
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Proof. The mapping (u, v) 7→ Q(u, v) + α〈u, v〉W is an inner product in V , and the as-
sociated norm is equivalent to the V -norm, by the continuity of Q and the coercivity
assumption.

It is convenient to consider the operator Ã : D(Ã) = D(A)→W , Ãu := Au+ αu. Of
course if Ã is self-adjoint, also A is self-adjoint.

We consider the canonical isomorphism T : V → V ∗ defined by (Tu)(v) = Q(u, v) +
α〈u, v〉W (we are using the new inner product above defined), and the embedding J :
W → V ∗, such that (Ju)(v) = 〈u, v〉W . T is an isometry by the Riesz Theorem, and J is
bounded since for every u ∈W and v ∈ V we have |(Ju)(v)| ≤ ‖u‖W ‖v‖W ≤ C‖u‖W ‖v‖V ,
where C is the norm of the embedding V ⊂ W . Moreover, J is one to one, since V is
dense in W .

By definition, u ∈ D(Ã) iff there exists g ∈W such that Q(u, v) + α〈u, v〉W = 〈g, v〉W
for every v ∈ V , which means Tu = Jg, and in this case Ãu = −g.

The range of J is dense in V ∗. If it were not, there would exist Φ ∈ V ∗ \ {0} such that
〈Jw,Φ〉V ∗ = 0 for every w ∈W . So, there would exists ϕ ∈ V \ {0} such that Jw(ϕ) = 0,
namely 〈w,ϕ〉W = 0 for every w ∈ W . This implies ϕ = 0, a contradiction. Since T is
an isomorphism, the range of T−1J , which is nothing but the domain of Ã, is dense in V .
Since V is in its turn dense in W , D(Ã) is dense in W .

The symmetry of Q implies immediately that Ã is self–adjoint. Indeed, for u, v ∈ D(Ã)
we have

〈Ãu, v〉W = Q(u, v) + α〈u, v〉W = Q(v, u) + α〈v, u〉W = 〈u, Ãv〉W .

Since Ã is onto, it is self-adjoint.
The last statement is obvious: since 〈Au, u〉 = −Q(u, u) for every u ∈ D(A), if Q is

nonnegative, A is dissipative.

In our setting the bilinear form is

Q(u, v) :=

∫
Rd
∇u · ∇v dγd, u, v ∈W 1,2(Rd, γd), (13.1.8)

so that the assumptions of Theorem 13.1.5 are satisfied with W = L2(Rd, γd), V =
W 1,2(Rd, γd) and every α > 0. D(A) is the set{
u ∈W 1,2(Rd, γd) : ∃g ∈ L2(Rd, γd) such that Q(u, v) =

∫
Rd
g v dγd, ∀v ∈W 1,2(Rd, γd)

}
and Au = −g.

Theorem 13.1.6. Let Q be the bilinear form in (13.1.8). Then D(A) = W 2,2(Rd, γd),
and A = L2.

Proof. Let u ∈ W 2,2(Rd, γd). By (13.1.5) and Theorem 13.1.4, for every v ∈ W 1,2(Rd, γd)
we have

Q(u, v) = −
∫
Rd

Lu v dγd
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Therefore, the function g = Lu = L2u fits the definition of Au (recall that g ∈ L2(Rd, γd)
by Lemma 13.1.3(a)). So, W 2,2(Rd, γd) ⊂ D(A) and Au = L2u for every u ∈W 2,2(Rd, γd)
(the last equality follows from Theorem 13.1.4). In other words, A is a self-adjoint ex-
tension of L2. L2 itself is self-adjoint by Corollary 11.4.5, because T2(t) is self-adjoint
in L2(Rd, γd) by Proposition 12.1.5(ii), for every t > 0. Self-adjoint operators have no
proper self-adjoint extensions (this is because D(L2) ⊂ D(A) ⇒ D(A∗) ⊂ D(L∗2), but
D(A∗) = D(A) and D(L∗2) = D(L2)), hence D(A) = D(L2) and A = L2.

13.2 The infinite dimensional case

Here, as usual, X is a separable Banach space endowed with a centred nondegenerate
Gaussian measure γ, and H is the relevant Cameron-Martin space.

The connection between finite dimension and infinite dimension is provided by the
cylindrical functions. In the next proposition we show that suitable cylindrical functions
belong to D(Lp) for every p ∈ (1,∞), and we write down an explicit expression of Lpf for
such f . Precisely, we fix an orthonormal basis {hj : j ∈ N} of H contained in Rγ(X∗), and

we denote by Σ the set of the cylindrical functions of the type f(x) = ϕ(ĥ1(x), . . . , ĥd(x))
with ϕ ∈ C2

b (Rd), for some d ∈ N. This is a dense subspace of Lp(X, γ) for every p ∈ [1,∞),
see Exercise 13.3. For such f , we have

∂if(x) =
∂ϕ

∂ξi
(ĥ1(x), . . . , ĥd(x)), i ≤ d; ∂if(x) = 0, i > d. (13.2.1)

To distinguish between the finite and the infinite dimensional case, we use the superscript
(d) when dealing with the Ornstein-Uhlenbeck semigroup and the Ornstein-Uhlenbeck

semigroup in Rd. So, L
(d)
p is the infinitesimal generator of the Ornstein-Uhlenbeck semi-

group T (d)(t) in Lp(Rd, γd). We recall that L
(d)
p is a realisation of the operator L(d) =

∆− x · ∇, namely L
(d)
p f = L(d)f for every f ∈ D(L

(d)
p ).

Proposition 13.2.1. Let {hj : j ∈ N} be an orthonormal basis of H contained in Rγ(X∗).

Let d ∈ N, p ∈ [1,∞) and f(x) = ϕ(ĥ1(x), . . . , ĥd(x)) with ϕ ∈ Lp(Rd, γd). Then for every
t > 0 and γ-a.e. x ∈ X,

Tp(t)f(x) = (T (d)
p (t)ϕ)(ĥ1(x), . . . , ĥd(x)).

If in addition ϕ ∈ D(L
(d)
p ), then f ∈ D(Lp), and

Lpf(x) = L(d)
p ϕ(ĥ1(x), . . . , ĥd(x)).

If ϕ ∈ C2
b (Rd), then

Lpf(x) = L(d)ϕ(ĥ1(x), . . . , ĥd(x)) =

d∑
i=1

(∂iif(x)− ĥi(x)∂if(x)) = divγ∇Hf(x).
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Proof. Assume first that ϕ ∈ Cb(Rd). For t > 0 we have

T (t)f(x) =

∫
X
f(e−tx+

√
1− e−2ty)γ(dy)

=

∫
X
ϕ(e−tĥ1(x) +

√
1− e−2tĥ1(y), . . . , e−tĥd(x) +

√
1− e−2tĥd(y))γ(dy)

=

∫
Rd
ϕ(e−tĥ1(x) +

√
1− e−2tξ1, . . . , e

−tĥd(x) +
√

1− e−2tξd)γd(dξ)

= (T (d)(t)ϕ)(ĥ1(x), . . . , ĥd(x)),

because γ ◦ (ĥ1, . . . , ĥd)
−1 = γd by Exercise 2.4. If ϕ ∈ Lp(Rd, γd) is not continuous,

we approximate it in Lp(Rd, γd) by a sequence of continuous and bounded functions ϕn.
The sequence fn(x) := ϕn(ĥ1(x), . . . , ĥd(x)) converges to f and the sequence gn(x) :=
(T (d)(t)ϕn)(ĥ1(x), . . . , ĥd(x)) converges to (T (d)(t)ϕ)(ĥ1(x), . . . , ĥd(x)) in Lp(X, γ), still
by Exercise 2.4. Therefore, T (t)fn converges to T (t)f in Lp(X, γ) for every t > 0, and the
first statement follows.

Let now ϕ ∈ D(L
(d)
p ). For every t > 0 we have∫

X

∣∣∣T (t)f(x)− f(x)

t
− L(d)

p ϕ(ĥ1(x), . . . , ĥd(x))
∣∣∣pγ(dx)

=

∫
X

∣∣∣T (d)(t)ϕ(ĥ1(x), . . . , ĥd(x))− ϕ(ĥ1(x), . . . , ĥd(x))

t
− L(d)

p ϕ(ĥ1(x), . . . , ĥd(x))
∣∣∣pγ(dx)

=

∫
Rd

∣∣∣T (d)(t)ϕ(ξ)− ϕ(ξ)

t
− L(d)

p ϕ(ξ)
∣∣∣pγd(dξ)

that vanishes as t→ 0. So, the second statement follows.

Let ϕ ∈ C2
b (Rd). By Theorem 13.1.2 we have

L(d)
p ϕ(ξ) =

d∑
i=1

(Diiϕ(ξ)− ξiDiϕ(ξ)) = L(d)ϕ(ξ), ξ ∈ Rd.

Therefore,

Lpf(x) = (L(d)ϕ)(ĥ1(x), . . . , ĥd(x)) =

d∑
i=1

(Diiϕ(ξ)− ξiDiϕ(ξ))|ξ=(ĥ1(x),...,ĥd(x))

=

d∑
i=1

(∂iif(x)− ĥi(x)∂if(x)),

which coincides with divγ∇Hf(x). See Theorem 10.2.7.

As a consequence of Propositions 13.2.1 and 11.1.9, we obtain a characterisation of
D(Lp) which is quite similar to the finite dimensional one.
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Theorem 13.2.2. Let {hj : j ∈ N} be an orthonormal basis of H contained in Rγ(X∗).
Then the subspace Σ of FC2

b (X) defined above is a core of Lp for every p ∈ [1,∞), the
restriction of Lp to Σ is closable in Lp(X, γ) and its closure is Lp. In other words, D(Lp)
consists of all f ∈ Lp(X, γ) such that there exists a sequence (fn) in Σ which converges to
f in Lp(X, γ) and such that Lpfn = divγ∇Hfn converges in Lp(X, γ).

Proof. By Proposition 13.2.1, Σ ⊂ D(Lp). For every t > 0, T (t)f ∈ Σ if f ∈ Σ, by
Proposition 13.2.1 and Proposition 12.1.4. By Lemma 11.1.9, Σ is a core of Lp.

For p = 2 we can prove other characterisations.

Theorem 13.2.3. D(L2) = W 2,2(X, γ), and for every f ∈W 2,2(X, γ) we have

L2f = divγ∇Hf, (13.2.2)

and

‖f‖L2(X,γ) + ‖L2f‖L2(X,γ) ≤ ‖f‖W 2,2(X,γ) ≤
3

2
(‖f‖L2(X,γ) + ‖L2f‖L2(X,γ)). (13.2.3)

Proof. Fix an orthonormal basis of H contained in Rγ(X∗). By Exercise 13.3, Σ is dense
in W 2,2(X, γ), and by Theorem 13.2.2 it is dense in D(L2).

We claim that every f ∈ Σ satisfies (13.2.3), so that the W 2,2 norm is equivalent
to the graph norm of L2 on Σ. For every f ∈ Σ, if f(x) = ϕ(ĥ1(x), . . . , ĥd(x)), by
Proposition 13.2.1 we have L2f(x) = (L(d)ϕ)(ĥ1(x), . . . , ĥd(x)), where L(d) is defined in
(13.1.1). Recalling that γ ◦ (ĥ1, . . . , ĥd)

−1 = γd, we get∫
X
f2dγ =

∫
Rd
ϕ2dγd,

∫
X

(L2f)2dγ =

∫
Rd

(L(d)ϕ)2dγd,

and, using (13.2.1),
‖f‖W 2,2(X,γ) = ‖ϕ‖W 2,2(Rd,γd).

Therefore, estimates (13.1.7) imply that f satisfies (13.2.3), and the claim is proved.
The statement is now a standard consequence of the density of Σ in W 2,2(X, γ) and

in D(L2). Indeed, to prove that W 2,2(X, γ) ⊂ D(L2), and that L2f = divγ∇Hf for every
f ∈ W 2,2(Rd, γd), it is sufficient to approximate any f ∈ W 2,2(X, γ) by a sequence (fn)
of elements of Σ; then fn converges to f and L2fn = divγ∇Hfn converges to divγ∇Hf
in L2(X, γ) by Theorem 10.2.7, as ∇Hfn converges to ∇Hf in L2(X, γ;H). Since L2 is
a closed operator, f ∈ D(L2) and L2f = divγ∇Hf . Similarly, to prove that D(L2) ⊂
W 2,2(X, γ) we approximate any f ∈ D(L2) by a sequence (fn) of elements of Σ that
converges to f in the graph norm; then (fn) is a Cauchy sequence in W 2,2(X, γ) and
therefore f ∈W 2,2(X, γ).

Finally, as in finite dimension, we have a characterisation of L2 in terms of the bilinear
form

Q(u, v) =

∫
X

[∇Hu,∇Hv]Hdγ, u, v ∈W 1,2(X, γ). (13.2.4)

Applying Theorem 13.1.5 with W = L2(X, γ), V = W 1,2(X, γ) we obtain
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Theorem 13.2.4. Let A be the operator associated with the bilinear form Q above. Then
D(A) = W 2,2(X, γ), and A = L2.

The proof is identical to the proof of Theorem 13.1.6 and it is omitted.

Note that Theorem 13.2.4 implies that for every f ∈ D(L2) = W 2,2(X, γ) and for every
g ∈W 1,2(X, γ) we have ∫

X
L2f g dγ = −

∫
X

[∇Hf,∇Hg]Hdγ, (13.2.5)

which is the infinite dimensional version of (13.1.5). Proposition 11.4.3 implies that L2 is
a sectorial operator, therefore the Ornstein-Uhlenbeck semigroup is analytic in L2(X, γ).

We mention that, by general results about semigroups and interpolation theory (e.g.
[7, Thm. 1.4.2]), {Tp(t) : t ≥ 0} is an analytic semigroup in Lp(X, γ) for every p ∈ (1,∞).
However, this fact will not be used in these lectures.

A result similar to Theorem 13.2.3 holds also for p 6= 2. More precisely, for every
p ∈ (1,∞), D(Lp) = W 2,p(X, γ), and the graph norm of D(Lp) is equivalent to the W 2,p

norm. But the proof is not as simple. We refer to [25] and [3, Sect. 5.5] for the infinite
dimensional case, and to [23] for an alternative proof in the finite dimensional case.

13.3 Exercises

Exercise 13.1. Let % : Rd → [0,∞) be a mollifier, i.e. a smooth function with support
in B(0, 1) such that ∫

B(0,1)
%(x)dx = 1.

For ε > 0 set

%ε(x) = ε−d%
(x
ε

)
, x ∈ Rd.

Prove that if p ∈ [1,∞) and f ∈ Lp(Rd, γd), then

fε(x) := f ∗ %ε(x) =

∫
Rd
f(y)%ε(x− y)dy,

is well defined, belongs to Lp(Rd, γd) and converges to f in Lp(Rd, γd) as ε→ 0+.

Exercise 13.2. Prove that for every k ∈ N, k ≥ 3, Ckb (Rd) is dense in Lp(Rd, γd) and that
T (t) ∈ L(Ckb (Rd)) for every t > 0.

Exercise 13.3. Let {hj : j ∈ N} be an orthonormal basis of H contained in Rγ(X∗).

Prove that the set Σ of the cylindrical functions of the type f(x) = ϕ(ĥ1(x), . . . , ĥd(x))
with ϕ ∈ C2

b (Rd), for some d ∈ N, is dense in Lp(X, γ) and in W 2,p(X, γ) for every
p ∈ [1,∞).

Exercise 13.4.
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(i) With the help of Proposition 10.1.2, show that if f ∈ W 1,p(X, γ) with p ∈ [1,∞) is
such that ∇Hf = 0 a.e., then f is a.e. constant.

(ii) Use point (i) to show that for every p ∈ (1,∞) the kernel of Lp consists of the
constant functions.
(Hint: First of all, prove that T (t)f = f for all f ∈ D(Lp) such that Lpf = 0 and
then pass to the limit as t→∞ in (12.1.3))
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Lecture 14

More on Ornstein-Uhlenbeck oper-
ator and semigroup

In this lecture we go on in the study of the realisation of the Ornstein-Uhlenbeck operator
and of the Ornstein-Uhlenbeck semigroup in Lp spaces. As in the last lectures, X is a
separable Banach space endowed with a centred nondegenerate Gaussian measure γ, and
H is the Cameron-Martin space. We use the notation of Lectures 12 and 13.

We start with the description of the spectrum of L2. Although the domain of L2

is not compactly embedded in L2(X, γ) if X is infinite dimensional, the spectrum of L2

consists of a sequence of eigenvalues, and the corresponding eigenfunctions are the Hermite
polynomials that we already encountered in Lecture 8. So, L2(X, γ) has an orthonormal
basis made by eigenfunctions of L2. This is used to obtain another representation formula
for T2(t) and another characterisation of D(L2) in terms of Hermite polynomials.

In the second part of the lecture we present two important inequalities, the the Log-
arithmic Sobolev and Poincaré inequalities, that hold for C1

b functions and are easily
extended to Sobolev functions. They are used to prove summability improving properties
and asymptotic behavior results for Tp(t).

14.1 Spectral properties of L2

Let {hj : j ∈ N} be an orthonormal basis of H contained in Rγ(X∗). We recall the
definition of the Hermite polynomials, given in Lecture 8.

Λ is the set of of multi-indices α ∈ (N ∪ {0})N, α = (αj), with finite length |α| =∑∞
j=1 αj <∞. For every α ∈ Λ, α = (αj), the Hermite polynomial Hα is defined by

Hα(x) =
∞∏
j=1

Hαj (ĥj(x)), x ∈ X.

171
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where the polynomial Hαj is defined in (8.1.1). By Lemma 8.1.2, for every k ∈ N we have

H ′′k (ξ)− ξH ′k(ξ) = −kHk(ξ), ξ ∈ R,

namely Hk is an eigenfunction of the one-dimensional Ornstein-Uhlenbeck operator, with
eigenvalue −k. This property is extended to any dimension as follows.

Proposition 14.1.1. For every α ∈ Λ, Hα belongs to D(L2) and

L2Hα = −|α|Hα.

Proof. As a first step, we consider the finite dimensional case X = Rd, γ = γd. Then
H = Rd and we take the canonical basis of Rd as a basis for H, so that ĥj(x) = xj for
j = 1, . . . d.

We fix a Hermite polynomial Hα in Rd, with α = (α1, . . . , αd) ∈ (N ∪ {0})d,

Hα(x) =
d∏
j=1

Hαj (xj), x ∈ Rd.

Hα belongs to W 2,2(Rd, γd) (in fact, it belongs to W 2,p(Rd, γd) for every p ∈ [1,∞)) and

therefore by Theorem 13.1.4, it is in D(L
(d)
2 ). By (8.1.4) we know that L

(d)
2 Hα = L(d)Hα =

−|α|Hα.
Now we turn to the infinite dimensional case. Let α ∈ Λ and let d ∈ N be such

that αj = 0 for each j > d. Then Hα(x) = ϕ(ĥ1(x), . . . , ĥd(x)), where ϕ is a Hermite
polynomial in Rd. Proposition 13.2.1 implies that Hα ∈ D(L2), and

L2Hα = L(d)ϕ(ĥ1(·), . . . , ĥd(·)) = −|α|ϕ(ĥ1(·), . . . , ĥd(·)) = −|α|Hα.

As a consequence of Propositions 14.1.1 and 8.1.9, we characterise the spectrum of L2.
We recall that, for every k ∈ N ∪ {0}, Ik is the orthogonal projection on the subspace
Xk = span{Hα : α ∈ Λ, |α| = k} of L2(X, γ). See Section 8.1.2.

Proposition 14.1.2. The spectrum of L2 is equal to −N ∪ {0}. For every k ∈ N ∪ {0},
Xk is the eigenspace of L2 with eigenvalue −k. Therefore, Ik(L2f) = L2(Ikf) = −kIk(f),
for every f ∈ D(L2).

Proof. Let us consider the point spectrum. First of all, we prove that Xk is contained in
the eigenspace of L2 with eigenvalue −k.

X0 consists of the constant functions, which belong to the kernel of L2. For k ∈ N, every
element f ∈ Xk is equal to limn→∞ fn, where each fn is a linear combination of Hermite
polynomials Hα with |α| = k. By Proposition 14.1.1, fn ∈ D(L2) and L2fn = −kfn. Since
L2 is a closed operator, f ∈ D(L2) and L2f = −kf .

Let now f ∈ D(L2) be such that L2f = λf for some λ ∈ R. For every α ∈ Λ we have

λ〈f,Hα〉L2(X,γ) = 〈L2f,Hα〉L2(X,γ) = 〈f, L2Hα〉L2(X,γ) = −|α|〈f,Hα〉L2(X,γ).
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Therefore, either λ = −|α| or 〈f,Hα〉L2(X,γ) = 0. If λ = −k with k ∈ N ∪ {0}, then f is
orthogonal to all Hermite polynomials Hβ with |β| 6= k, hence f ∈ Xk is an eigenfunction
of L2 with eigenvalue −k. If λ 6= −k for every k ∈ N ∪ {0}, then f is orthogonal to all
Hermite polynomials so that it vanishes. This proves that Xk is equal to the eigenspace
of L2 with eigenvalue −k.

Since L2 is self-adjoint, for f ∈ D(L2) and |α| = k we have

〈L2f,Hα〉L2(X,γ) = 〈f, L2Hα〉L2(X,γ) = −k〈f,Hα〉L2(X,γ). (14.1.1)

Let fj , j ∈ N, be any enumeration of the Hermite polynomials Hα with |α| = k. The
sequence sn :=

∑n
j=0〈f, fj〉L2(X,γ)fj converges in D(L2), since L2 − limn→∞ sn = Ik(f)

and

L2sn =

n∑
j=0

〈f, fj〉L2(X,γ)L2fj = −k
n∑
j=0

〈f, fj〉L2(X,γ)fj =

n∑
j=0

〈L2f, fj〉L2(X,γ)fj ,

where the last equality follows from (14.1.1). The series in the right hand side converges
to −kIk(f) = Ik(L2f), as n → ∞. Then, L2Ik(f) = −kIk(f) = Ik(L2f), for every
k ∈ N ∪ {0}.

It remains to show that the spectrum of L2 is just −N∪ {0}. We notice that D(L2) is
not compactly embedded in L2(X, γ) if X is infinite dimensional, because it has infinite
dimensional eigenspaces. So, the spectrum does not necessarily consist of eigenvalues.

If λ 6= −h for every h ∈ N∪ {0}, and f ∈ L2(X, γ), the resolvent equation λu−L2u =
f is equivalent to λIk(u) − Ik(L2u) = Ik(f) for every k ∈ N ∪ {0}, and therefore to
λIk(u) + kIk(u) = Ik(f), for every k ∈ N ∪ {0}. So, we define

u =

∞∑
k=0

1

λ+ k
Ik(f). (14.1.2)

The sequence un :=
∑n

k=0 Ik(f)/(λ+k) converges in D(L2), since both sequences 1/(λ+k)
and k/(λ+ k) are bounded. Therefore, u ∈ D(L2), and λu− L2u = f .

Another consequence is a characterisation of L2 in terms of Hermite polynomials.

Proposition 14.1.3.
(a) D(L2) =

{
f ∈ L2(X, γ) :

∞∑
k=1

k2‖Ik(f)‖2L2(X,γ) <∞
}
,

(b) L2f = −
∞∑
k=1

kIk(f), f ∈ D(L2).

(14.1.3)

Proof. Let f ∈ D(L2). Then Ik(L2f) = −kIk(f) = L2(Ik(f)) for every k ∈ N ∪ {0}, by
Proposition 14.1.2. Applying (8.1.9) to L2f we obtain

L2f =
∞∑
k=0

Ik(L2f) =
∞∑
k=1

−kIk(f)
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which proves (14.1.3)(b). Moreover,

‖L2f‖2L2(X,γ) =
∞∑
k=1

k2‖Ik(f)‖2L2(X,γ) <∞.

Conversely, let f ∈ L2(X, γ) be such that
∑∞

k=1 k
2‖Ik(f)‖2L2(X,γ) <∞. Then the sequence

fn :=
n∑
k=0

Ik(f)

converges to f in L2(X, γ), and it converges in D(L2) too, since for n > m

‖L2(fn − fm)‖2L2(X,γ) =
∥∥∥ n∑
k=m+1

−kIk(f)
∥∥∥2

L2(X,γ)
=

n∑
k=m+1

k2‖Ik(f)‖2L2(X,γ) → 0 as m→∞.

Since L2 is closed, f ∈ D(L2).

As every Hα is an eigenfunction of L2 with eigenvalue −|α|, we ask to verify that

T2(t)Hα = e−|α|tHα, t ≥ 0, α ∈ Λ, (14.1.4)

see Exercise 14.1. As a consequence, we obtain a very handy expression of T2(t) in terms
of Hermite polynomials.

Corollary 14.1.4. For every t > 0 we have

T2(t)f =

∞∑
k=0

e−ktIk(f), f ∈ L2(X, γ), (14.1.5)

where the series converges in L2(X, γ). Moreover, T2(t)f ∈ D(L2) and

‖L2T2(t)f‖L2(X,γ) ≤
1

te
‖f‖L2(X,γ). (14.1.6)

The function t 7→ T (t)f belongs to C1((0,∞);L2(X, γ)), and

d

dt
T2(t)f = L2T2(t)f, t > 0. (14.1.7)

Proof. Fix f ∈ L2(X, γ). By Lemma 14.1.1, for every k ∈ N, Ik(f) ∈ D(L2) and
L2Ik(f) = −kIk(f), so that by the above considerations, T2(t)Ik(f) = e−ktIk(f). Since
f = limn→∞

∑n
k=0 Ik(f) in L2(X, γ) and T2(t) is a bounded operator in L2(X, γ), (14.1.5)

follows.
The other statements and estimate ‖L2T2(t)f‖L2(X,γ) ≤ c‖f‖L2(X,γ)/t follow from the

fact that T2(t) is an analytic semigroup in L2(X, γ), see Theorem 11.4.2. However, we
give here a simple independent proof, specifying the constant c = 1/e in (14.1.6).
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Since supξ>0 ξ
2e−2ξ = e−2, using (14.1.5) we obtain

∞∑
k=1

k2‖Ik(T2(t)f)‖2L2(X,γ) =
∞∑
k=1

k2e−2kt‖Ik(f)‖2L2(X,γ)

≤ 1

e2t2

∞∑
k=1

‖Ik(f)‖2L2(X,γ) ≤
1

e2t2
‖f‖2L2(X,γ)

so that T2(t)f ∈ D(L2) by (14.1.3)(a), and estimate (14.1.6) follows from (14.1.3)(b).
Moreover, for every t > 0 and 0 < |h| ≤ t/2 we have∥∥∥1

h
(T2(t+ h)f − T2(t)f)− L2T2(t)f

∥∥∥2

L2(X,γ)
=

∞∑
k=0

(
e−k(t+h) − e−kt

h
+ k

)2

‖Ik(f)‖2L2(X,γ).

Each addend in the right hand side sum converges to 0, and using the Taylor formula for
the exponential function we easily obtain(

e−k(t+h) − e−kt

h
+ k

)2

≤ t2

4
k4e−2kt ≤ c

t2
,

with c independent of t, h, k. By the Dominated Convergence Theorem for series, we
obtain

lim
h→0+

∥∥∥1

h
(T2(t+ h)f − T2(t)f)− L2T2(t)f

∥∥∥
L2(X,γ)

= 0,

namely, the function T2(·)f is differentiable at t, with derivative L2T2(t)f . For t > t0 > 0
we have L2T2(t)f = L2T2(t − t0)T (t0)f = T2(t − t0)L2T (t0)f . Then, t 7→ L2T2(t)f is
continuous in [t0,∞). Since t0 is arbitrary, T (·)f belongs to C1((0,∞);L2(X, γ)).

We already know that D(L2) = W 2,2(X, γ). So, Proposition 14.1.3 gives a charac-
terisation of W 2,2(X, γ) in terms of Hermite polynomials. A similar characterisation is
available for the space W 1,2(X, γ).

Proposition 14.1.5.

W 1,2(X, γ) =
{
f ∈ L2(X, γ) :

∞∑
k=1

k‖Ik(f)‖2L2(X,γ) <∞
}
.

Moreover, for every f ∈W 1,2(X, γ),∫
X
|∇Hf |2H dγ =

∞∑
k=1

k

∫
X

(Ik(f))2dγ,

and

(i) for every f ∈W 1,2(X, γ) the sequence
n∑
k=0

Ik(f) converges to f in W 1,2(X, γ),
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(ii) the sequence
n∑
k=1

√
kIk converges in L(W 1,2(X, γ), L2(X, γ)).

Proof. Let f ∈ L2(X, γ). By Proposition 14.1.2, for every k ∈ N, Ik(f) ∈ D(L2) and
L2Ik(f) = −kIk(f). Therefore,∫

X
|∇HIk(f)|2Hdγ = −

∫
X
Ik(f)L2Ik(f) dγ = k

∫
X

(Ik(f))2dγ, k ∈ N. (14.1.8)

Assume that
∑∞

k=1 k‖Ik(f)‖2L2(X,γ) < ∞. The sequence sn :=
∑n

k=0 Ik(f) converges to f

in L2(X, γ). Moreover, (∇Hsn) is a Cauchy sequence in L2(X, γ;H). Indeed, ∇HIk(f)
and ∇HIl(f) are orthogonal in L2(X, γ;H) for l 6= k, because∫

X
[∇HIk(f),∇HIl(f)]Hdγ = −

∫
X
Ik(f)L2Il(f)dγ = l

∫
X
Ik(f)Il(f)dγ = 0.

Therefore, for n, p ∈ N,∥∥∥ n+p∑
k=n

∇HIk(f)
∥∥∥2

L2(X,γ;H)
=

n+p∑
k=n

∫
X
|∇HIk(f)|2Hdγ =

n+p∑
k=n

k‖Ik(f)‖2L2(X,γ).

So, f ∈W 1,2(X, γ), sn → f in W 1,2(X, γ), and∫
X
|∇Hf |2Hdγ =

∞∑
k=1

∫
X
|∇HIk(f)|2Hdγ =

∞∑
k=1

k‖Ik(f)‖2L2(X,γ).

To prove the converse, first we take f ∈ D(L2). Then, by (13.2.5),∫
X
|∇Hf |2Hdγ = −

∫
X
fL2f dγ = −

∫
X

∞∑
l=0

Il(f)
∞∑
k=0

Ik(L2f) dγ

= −
∫
X

∞∑
k=0

Ik(f)Ik(L2f) dγ,

since Il(f) ∈ Xl, Ik(L2f) ∈ Xk. By Proposition 14.1.2,∫
X
|∇Hf |2Hdγ =

∞∑
k=1

k

∫
X

(Ik(f))2dγ.

Comparing with (14.1.8), we obtain∫
X
|∇Hf |2Hdγ =

∞∑
k=1

∫
X
|∇HIk(f)|2Hdγ.

So, the mappings Tn : D(L2)→ L2(X, γ), Tnf =
∑n

k=1

√
kIk(f) satisfy

∃L2(X, γ)− lim
n→∞

Tnf, ‖Tnf‖L2(X,γ) ≤ ‖f‖W 1,2(X,γ).

Since D(L2) is dense in W 1,2(X, γ), the sequence (Tnf) converges in L2(X, γ) for every
f ∈ W 1,2(X, γ). Since ‖Tnf‖2L2(X,γ) =

∑n
k=1 k‖Ik(f)‖2L2(X,γ), letting n → ∞ we get∑∞

k=1 k‖Ik(f)‖2L2(X,γ) <∞.
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Proposition 14.1.3 may be recognized as the spectral decomposition of L. See e.g. [26,
§VIII.3], in particular Theorem VIII.6. Accordingly, a functional calculus for L may be
defined , namely for every g : −N ∪ {0} → R we set

D(g(L)) :=
{
f ∈ L2(X, γ) :

∞∑
k=0

|g(−k)|2‖Ik(f)‖2L2(X,γ) <∞
}

and

g(L)(f) =
∞∑
k=0

g(−k)Ik(f), f ∈ D(g(L)).

In particular, for g(ξ) = (−ξ)1/2, Proposition 14.1.5 says that D((−L)1/2) = W 1,2(X, γ),
and ‖(−L)1/2f‖L2(X,γ) = ‖ |∇Hf |H‖L2(X,γ) for every f ∈W 1,2(X, γ).

Corollary 14.1.6. For every d ∈ N, the embedding W 1,2(Rd, γd) ⊂ L2(Rd, γd) is compact.

Proof. Let (fn) be a bounded sequence in W 1,2(Rd, γd), say ‖fn‖W 1,2(Rd,γd) ≤ C. Then

there exists a subsequence (fnj ) that converges weakly in W 1,2(Rd, γd) to an element
f ∈ W 1,2(Rd, γd), that still satisfies ‖f‖W 1,2(Rd,γd) ≤ C. We claim that fnj → f in

L2(Rd, γd).
For every N ∈ N we have (norms and inner products are in L2(Rd, γd))

‖fnj − f‖2 =
∞∑
k=0

‖Ik(fnj − f)‖2 =
N−1∑
k=0

‖Ik(fnj − f)‖2 +
∞∑
k=N

‖Ik(fnj − f)‖2

≤
N−1∑
k=0

∑
α∈(N∪{0})d, |α|=k

〈fnj − f,Hα〉2 +
1

N

∞∑
k=N

k‖Ik(fnj − f)‖2

≤
N−1∑
k=0

∑
α∈(N∪{0})d, |α|=k

〈fnj − f,Hα〉2 +
(2C)2

N
.

Fixed any ε > 0, let N be such that 4C2/N ≤ ε. The sum in the right hand side consists
of a finite number of summands, each of them goes to 0 as nj →∞, therefore it does not
exceed ε provided nj is large enough.

The argument in the proof of Corollary 14.1.6 does not work in infinite dimension,
because in this case for every k ∈ N the Hermite polynomials Hα with |α| = k are
infinitely many. In fact, W 1,2(X, γ) is not compactly embedded in L2(X, γ) if H is infinite
dimensional. It is sufficient to consider the Hermite polynomials Hα with |α| = 1, namely
the sequence of functions (ĥj). Their W 1,2(X, γ) norm is 2 but no subsequence converges

in L2(X, γ) since ‖ĥi − ĥj‖2L2(X,γ) = 2 for i 6= j. The same argument shows that D(L2) is

not compactly embedded in L2(X, γ).
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14.2 Functional inequalities and asymptotic behaviour

In this section we present two important inequalities, the Logarithmic Sobolev and Poinca-
ré inequality, that hold for functions in Sobolev spaces. The Ornstein-Uhlenbeck semigroup
can be used as a tool in their proofs, and, in their turn, they are used to prove summability
improving and asymptotic behaviour results for Tp(t)f , as t→∞.

We introduce the mean value f of any f ∈ L1(X, γ),

f :=

∫
X
f dγ.

If f ∈ L2(X, γ), f = I0(f) is just the orthogonal projection of f on the kernel X0 of L2,
that consists of constant functions by Proposition 14.1.2 (see also Exercise 13.4). In any
case, we have the following asymptotic behavior result.

Lemma 14.2.1. For every f ∈ Cb(X),

lim
t→∞

T (t)f(x) = f, x ∈ X. (14.2.1)

For every f ∈ Lp(X, γ), 1 ≤ p <∞,

lim
t→∞
‖Tp(t)f − f‖Lp(X,γ) = 0. (14.2.2)

Proof. The first assertion is an easy consequence of the definition (12.1.1) of T (t)f , through
the Dominated Convergence Theorem. Still for f ∈ Cb(X), we have that (14.2.2) holds
again by the Dominated Convergence Theorem. Since Cb(X) is dense in Lp(X, γ) and the
linear operators f 7→ Tp(t)f − f belong to L(Lp(X, γ)) and have norm not exeeding 2, the
second assertion follows as well.

We shall see that the rate of convergence in (14.2.2) is exponential. This fact could be
seen as a consequence of general results on analytic semigroups, but here we shall give a
simpler and direct independent proof.

14.2.1 The Logarithmic Sobolev inequality

To begin with, we remark that no Sobolev embedding holds for nondegenerate Gaussian
measures. Even in dimension 1, the function

f(ξ) =
eξ

2/4

1 + ξ2
, ξ ∈ R,

belongs to W 1,2(R, γ1) but it does not belong to L2+ε(R, γ1) for any ε > 0. This example
may be adapted to show that for every p ≥ 1, W 1,p(R, γ1) is not contained in Lp+ε(R, γ1)
for any ε > 0, see Exercise 14.2.

The best result about summability properties in this context is the next Logarithmic
Sobolev (Log-Sobolev) inequality. In the following we set 0 log 0 = 0.
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Theorem 14.2.2. Let p > 1. For every f ∈ C1
b (X) we have∫

X
|f |p log |f | dγ ≤ ‖f‖pLp(X,γ) log ‖f‖Lp(X,γ) +

p

2

∫
X
|f |p−2|∇Hf |2H1l{f 6=0}dγ. (14.2.3)

Proof. As a first step, we consider a function f with positive infimum, say f(x) ≥ c > 0
for every x. In this case, also fp belongs to C1

b (X), and (T (t)fp)(x) ≥ cp for every x, by
(12.1.1). We define the function

F (t) =

∫
X

(T (t)fp) log(T (t)fp)dγ, t ≥ 0.

Since L2 is a sectorial operator (or, by Corollary 14.1.4), the function t 7→ T (t)fp and t 7→
log(T (t)fp) belong to C1((0,∞);L2(X, γ)). Consequently, their product is in C1((0,∞);L1(X, γ)),
F ∈ C1(0,∞), and for every t > 0 we have

F ′(t) =

∫
X

[L2(T (t)fp) · log(T (t)fp) + L2T (t)fp] dγ (14.2.4)

=

∫
X
L2(T (t)fp) · log(T (t)fp) dγ.

The second equality is a consequence of the invariance of γ (Propositions 12.1.5(iii) and
11.3.1). Moreover, t 7→ T (t)fp(x) and t 7→ log(T (t)fp)(x) are continuous for every x and
bounded by constants independent of x. It follows that F is continuous up to t = 0, and
F (t)−F (0) =

∫ t
0 F
′(s)ds. Integrating in the right hand side of (14.2.4) and using (13.2.5)

with f replaced by T (t)fp, g replaced by log(T (t)fp), we obtain

F ′(t) = −
∫
X

[∇HT (s)fp,∇H log(T (s)fp))]Hdγ

= −
∫
X

1

T (t)fp
|∇H(T (t)fp)|2H dγ.

We recall that for every x ∈ X, |∇H(T (t)fp)(x)|H ≤ e−tT (t)(|∇Hfp|H)(x) (see Proposi-
tion 12.1.6). So,

F ′(t) ≥ −e−2t

∫
X

1

T (t)fp
(T (t)(|∇Hfp|H))2 dγ. (14.2.5)

Moreover, the Hölder inequality in (12.1.1) yields

|T (t)(ϕ1ϕ2)(x)| ≤ [(T (t)ϕ2
1)(x)]1/2[(T (t)ϕ2

2)(x)]1/2, ϕi ∈ Cb(X), x ∈ X.

We use this estimate with ϕ1 = |∇Hfp|H/fp/2, ϕ2 = fp/2 and we obtain

T (t)(|∇Hfp|H) = T (t)

(
|∇Hfp|H
fp/2

fp/2
)
≤
(
T (t)

(
|∇Hfp|2H

fp

))1/2

(T (t)fp)1/2.

Replacing in (14.2.5) and using (12.1.2), we get

F ′(t) ≥ −e−2t

∫
X
T (t)

(
|∇Hfp|2H

fp

)
dγ = −e−2t

∫
X

|∇Hfp|2H
fp

dγ

= −p2e−2t

∫
X
fp−2|∇Hf |2Hdγ.
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Integrating with respect to time in (0, t) yields∫
X

(T (t)fp) log(T (t)fp) dγ −
∫
X
fp log(fp)dγ = F (t)− F (0)

≥ p2

2
(e−2t − 1)

∫
X
fp−2|∇Hf |2Hdγ.

(14.2.6)

Now we let t→∞. By Lemma 14.2.1, limt→∞(T (t)fp)(x) = fp = ‖f‖pLp , and consequently
limt→∞ log((T (t)fp)(x)) = p log(‖f‖Lp), for every x ∈ X. Moreover, cp ≤ |(T (t)fp)(x)| ≤
‖f‖p∞, for every x. By the Dominated Convergence Theorem, the left hand side of (14.2.6)
converges to p‖f‖pLp log(‖f‖Lp)− p

∫
X f

p log f dγ as t→∞, and (14.2.3) follows.

For f ∈ C1
b (X) we approximate |f | in W 1,p(X, γ) and pointwise by the sequence

fn =
√
f2 + 1/n, see Exercise 14.3. Applying (14.2.3) to each fn we get∫

X
fpn log fn dγ − ‖fn‖pLp(X,γ) log ‖fn‖Lp(X,γ) ≤

p

2

∫
X
f2(f2 + 1/n)p/2−2|∇Hf |2Hdγ

≤ p

2

∫
X

1l{f 6=0}(f
2 + 1/n)p/2−1|∇Hf |2Hdγ,

and letting n → ∞ yields that f satisfies (14.2.3). Notice that the last integral goes to∫
X 1l{f 6=0}|f |p−2|∇Hf |2Hdγ by the Monotone Convergence Theorem, even if p < 2.

Corollary 14.2.3. Let p ≥ 2. For every f ∈W 1,p(X, γ) we have∫
X
|f |p log |f | dγ ≤ ‖f‖pLp(X,γ) log ‖f‖Lp(X,γ) +

p

2

∫
X
|f |p−2|∇Hf |2Hdγ. (14.2.7)

Proof. We approximate f by a sequence of FC1
b (X) functions (fn) that converges in

W 1,p(X, γ) and pointwise a.e. to f . We apply (14.2.3) to each fn, and then we let
n→∞. Recalling that ∇Hfn = 0 a.e. in the set {fn = 0} (see Exercise 10.3), we get∫

X
|fn|p−2|∇Hfn|2H1l{fn 6=0} dγ =

∫
X
|fn|p−2|∇Hfn|2H dγ

for every n, and∫
X
|f |p log |f | dγ ≤ lim inf

n→∞

∫
X
|fn|p log |fn| dγ

≤ lim inf
n→∞

(
‖fn‖pLp(X,γ) log ‖fn‖Lp(X,γ) +

p

2

∫
X
|fn|p−2|∇Hfn|2Hdγ

)
= ‖f‖pLp(X,γ) log ‖f‖Lp(X,γ) +

p

2

∫
X
|f |p−2|∇Hf |2Hdγ
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Note that for 1 < p < 2 the function 1l{f 6=0}|f |p−2|∇Hf |2H does not necessarily belong
to L1(X, γ) for f ∈ W 1,p(X, γ), and in this case (14.2.3) is not meaningful. Take for
instance X = R and f(x) = x1/p for 0 < x < 1, f(x) = 0 for x ≤ 0, f(x) = 1 for x ≥ 1.
Then f ∈W 1,p(R, γ1) but

∫
R |f |

p−2|∇Hf |2H1l{f 6=0}dγ1 =∞.

Instead (see [24]), it is possible to show that for any p ∈ (1,∞)

− (p− 1)

∫
X
|f |p−2|∇Hf |2H1l{f 6=0}dγ =

∫
X
f |f |p−2Lpf dγ (14.2.8)

for every f ∈ D(Lp), so that
∫
X |f |

p−2|∇Hf |2H1l{f 6=0}dγ ≤ Cp‖f‖D(Lp). See Exercise 14.4.
So, if f ∈ D(Lp) (14.2.3) may be rewritten as∫

X
|f |p log |f | dγ ≤ ‖f‖pLp(X,γ) log ‖f‖Lp(X,γ) −

p

2(p− 1)

∫
X
f |f |p−2Lpf dγ. (14.2.9)

An important consequence of the Log-Sobolev inequality is the next summability im-
proving property of T (t), called hypercontractivity.

Theorem 14.2.4. Let p > 1, and set p(t) = e2t(p − 1) + 1 for t > 0. Then Tp(t)f ∈
Lp(t)(X, γ) for every f ∈ Lp(X, γ), and

‖Tp(t)f‖Lp(t)(X,γ) ≤ ‖f‖Lp(X,γ), t > 0. (14.2.10)

Proof. Let us prove that (14.2.10) holds for every f ∈ Σ with positive infimum (the set
Σ was introduced at the beginning of Section 13.2, and it is dense in Lp(X, γ)). For such
f ’s, since they belong to D(Lq) for any q, we have that Tp(f) = T (t)f and we can drop
the idex p in the semigroup. We shall show that the function

β(t) := ‖T (t)f‖Lp(t)(X,γ), t ≥ 0

decreases in [0,∞).

It is easily seen that β is continuous in [0,∞). Our aim is to show that β ∈ C1(0,∞),
and β′(t) ≤ 0 for every t > 0. Indeed, by Proposition 13.2.1 we know that for every x ∈ X
the function t 7→ T (t)f(x) belongs to C1(0,∞), as well as t 7→ (T (t)f(x))p(t), and

d

dt
(T (t)f(x))p(t) = p′(t)(T (t)f(x))p(t) log(T (t)f(x)) + p(t)(T (t)f(x))p(t)−1 d

dt
(T (t)f(x))

= p′(t)(T (t)f(x))p(t) log(T (t)f(x)) + p(t)(T (t)f(x))p(t)−1(L2T (t)f(x)).

We have used the operator L2, but any other Lq can be equivalently used. Moreover,
|d/dt(T (t)f(x))p(t)| is bounded by c(t)(1 + ‖x‖) for some continuous function c(·). So,
t 7→

∫
X |T (t)f |p(t)dγ is continuously differentiable, with derivative equal to

p′(t)

∫
X

(T (t)f)p(t) log(T (t)f)dγ − p(t)(p(t)− 1)

∫
X
T (t)f)p(t)−2|∇HT (t)f |2H dγ.
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It follows that β is differentiable and

β′(t) = β(t)

[
− p′(t)

p(t)2
log

∫
X

(T (t)f)p(t)dγ + +
p′(t)

p(t)

∫
X(T (t)f)p(t) log(T (t)f)dγ∫

X(T (t)f)p(t)dγ

− (p(t)− 1)

∫
X(T (t)f)p(t)−2|∇HT (t)f |2H dγ∫

X(T (t)f)p(t)dγ

]
.

The Logarithmic Sobolev inequality (14.2.3) yields∫
X

(T (t)f)p(t) log(T (t)f)dγ ≤

≤ 1

p(t)

∫
X

(T (t)f)p(t)dγ log

∫
X

(T (t)f)p(t)dγ +
p(t)

2

∫
X

(T (t)f)p(t)−2|∇HT (t)f |2H dγ,

and replacing we obtain

β′(t) ≤
(
p′(t)

2
− (p(t)− 1)

)∫
X(T (t)f)p(t)−2|∇HT (t)f |2H dγ∫

X(T (t)f)p(t)dγ
.

The function p(t) was chosen in such a way that p′(t) = 2(p(t)− 1). Therefore, β′(t) ≤ 0,
and (14.2.10) follows.

Let now f ∈ Σ and set fn = (f2 + 1/n)1/2. For every x ∈ X and n ∈ N we have, by
(12.1.1), |(T (t)f)(x)| ≤ (T (t)|f |)(x) ≤ (T (t)fn)(x), so that

‖T (t)f‖Lp(t)(X,γ) ≤ lim inf
n→∞

‖T (t)fn‖Lp(t)(X,γ) ≤ lim inf
n→∞

‖fn‖Lp(X,γ) = ‖f‖Lp(X,γ),

and (14.2.10) holds. Since Σ is dense in Lp(X, γ), (14.2.10) holds for every f ∈ Lp(X, γ).

We notice that in the proof of Theorem 14.2.4 we have not used specific properties
of the Ornstein-Uhlenbeck semigroup: the main ingredients were the integration by parts
formula, namely the fact that the infinitesimal generator L2 is the operator associated to
the quadratic form (13.2.4), and the Log-Sobolev inequality (14.2.3) for good functions.
In fact, the proof may be extended to a large class of semigroups in spaces Lp(Ω, µ), (Ω, µ)
being a probability space, see [16]. In [16] a sort of converse is proved, namely under
suitable assumptions if a semigroup T (t) is a contraction from Lp(Ω, µ) to Lq(t)(Ω, µ),
with q differentiable and increasing, then a logarithmic Sobolev inequality of the type
(14.2.9) holds in the domain of the infinitesimal generator of T (t) in Lp(X,µ).

14.2.2 The Poincaré inequality and the asymptotic behaviour

The Poincaré inequality is the following.

Theorem 14.2.5. For every f ∈W 1,2(X, γ),∫
X

(f − f)2dγ ≤
∫
X
|∇Hf |2Hdγ. (14.2.11)
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Proof. There are several proofs of (14.2.11). One of them follows from Theorem 14.2.4,
see Exercise 14.5. The simplest proof uses the Wiener Chaos decomposition. By (8.1.9)
and (14.1.3), for every f ∈ D(L2) we have f =

∑∞
k=0 Ik(f) and L2f =

∑∞
k=1−kIk(f),

where both series converge in L2(X, γ). Using (13.2.5) and these representation formulas
we obtain ∫

X
|∇Hf |2H dγ = −

∫
X
f L2f dγ

=
∞∑
k=1

k‖Ik(f)‖2L2(X,γ) ≥
∞∑
k=1

‖Ik(f)‖2L2(X,γ)

= ‖f‖2L2(X,γ) − ‖I0(f)‖2L2(X,γ)

= ‖f‖2L2(X,γ) − f
2

= ‖f − f‖2L2(X,γ).

Since D(L2) is dense in W 1,2(X, γ), (14.2.11) follows.

An immediate consequence of the Poincaré inequality is the following: if f ∈ W 1,2(X, γ)
and ∇Hf ≡ 0, then f is constant a.e. (compare with Exercise 13.4).

An Lp version of (14.2.11) is∫
X
|f − f |pγ ≤ cp

∫
X
|∇Hf |pHdγ. (14.2.12)

that holds for p > 2, f ∈W 1,p(X, γ) (Exercise 14.6).
Now we are able to improve Lemma 14.2.1, specifying the decay rate of Tq(t)f to f .

Proposition 14.2.6. For every q > 1 there exists cq > 0 such that c2 = 1 and for every
f ∈ Lq(X, γ),

‖Tq(t)f − f‖Lq(X,γ) ≤ cqe−t‖f‖Lq(X,γ), t > 0. (14.2.13)

Proof. As a first step, we prove that the statement holds for q = 2. By (14.1.5), for every
f ∈ L2(X, γ) and t > 0 we have T (t)f =

∑∞
k=0 e

−ktIk(f). We already know that for k = 0,
I0(f) = f . Therefore,

‖T (t)f − f‖2L2(X,γ) =

∥∥∥∥ ∞∑
k=1

e−ktIk(f)

∥∥∥∥2

L2(X,γ)

≤ e−2t
∞∑
k=1

‖Ik(f)‖2L2(X,γ) ≤ e
−2t‖f‖2L2(X,γ).

For q 6= 2 it is enough to prove that (14.2.13) holds for every f ∈ Cb(X). For such
functions we have Tq(t)f = T (t)f for every t > 0.

Let q > 2. Set τ = log
√
q − 1, so that e2τ + 1 = q, and by Theorem 14.2.4 Tq(τ) is a

contraction from L2(X, γ) to Lq(X, γ). Then, for every t ≥ τ ,

‖T (t)f − f‖Lq(X,γ) = ‖T (τ)(T (t− τ)f − f)‖Lq(X,γ)

≤ ‖T (t− τ)f − f‖L2(X,γ) (by (14.2.10))

≤ e−(t−τ)‖f‖L2(X,γ) (by (14.2.13) with q = 2)

≤ e−(t−τ)‖f‖Lq(X,γ) (by the Hölder inequality)

=
√
q − 1 e−t‖f‖Lq(X,γ),
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while for t ∈ (0, τ) we have

‖T (t)f − f‖Lq(X,γ) ≤ 2‖f‖Lq(X,γ) = 2ete−t‖f‖Lq(X,γ) ≤ 2
√
q − 1 e−t‖f‖Lq(X,γ).

So, (14.2.13) holds with cq = 2
√
q − 1.

Let now q < 2 and set τ = − log
√
q − 1, so that e2τ (q − 1) + 1 = 2, and by Theorem

14.2.4 Tq(τ) is a contraction from Lq(X, γ) to L2(X, γ). For every t ≥ τ we have

‖T (t)f − f‖Lq(X,γ) ≤ ‖T (t)f − f‖L2(X,γ) (by the Hölder inequality)

= ‖T (t− τ)(T (τ)f − T (τ)f)‖L2(X,γ)

≤ e−(t−τ)‖T (τ)f‖L2(X,γ) (by (14.2.13) with q = 2)

≤ e−(t−τ)‖f‖Lq(X,γ) (by (14.2.10))

=
1√
q − 1

e−t‖f‖Lq(X,γ),

while for t ∈ (0, τ) we have, as before,

‖T (t)f − f‖Lq(X,γ) ≤ 2‖f‖Lq(X,γ) = 2ete−t‖f‖Lq(X,γ) ≤
2√
q − 1

e−t‖f‖Lq(X,γ).

So, (14.2.13) holds with cq = 2/
√
q − 1.

In fact, estimate (14.2.13) could be deduced also by the general theory of (analytic)
semigroups, but we prefer to give a simpler self-contained proof.

14.3 Exercises

Exercise 14.1. Prove the equality (14.1.4).

Exercise 14.2. Show that for every p ≥ 1, W 1,p(R, γ1) is not contained in Lp+ε(R, γ1)
for any ε > 0.

Exercise 14.3. Prove that for every f ∈ W 1,p(X, γ) the sequence fn =
√
f2 + 1/n

converges to |f | in W 1,p(X, γ).

Exercise 14.4. Prove that for every p > 1 and f ∈ D(Lp), (14.2.8) holds.
Hint: for every f ∈ Σ and ε > 0, apply formula (13.2.5) with g = f(f2 + ε)1−p/2 and then
let ε→ 0.

Exercise 14.5. Prove the Poincaré inequality (14.2.11) for functions f ∈ C1
b (X) such

that f = 0, in the following alternative way: apply (14.2.7) with p = 2 to the functions
fε := 1 + εf , for ε > 0, and then divide by ε2 and let ε→ 0.

Exercise 14.6. Prove that (14.2.12) holds for every f ∈W 1,p(X, γ) with p > 2.
Hint: For p ≤ 4, apply (14.2.11) to |f |p/2 and estimate (

∫
X |f |

p/2dγ)2 by ‖f‖p
L2(X,γ)

, then
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estimate (
∫
X |∇Hf |

2
H |f |p/2−1dγ)2 by ε

∫
X |f |

pdγ + C(ε)(
∫
X |∇Hf |

p
Hdγ). Taking ε small,

arrive at ∫
X
|f |pdγ ≤ ‖f‖p

L2(X,γ)
+K

∫
X
|∇Hf |pHdγ.

(14.2.12) follows applying such estimate to f − f , and using (14.2.11) to estimate ‖f −
f‖L2(X,γ). For p ≥ 4, use a bootstrap procedure.
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