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We collect here the revised edition of the 19*" Internet Seminar on “Infinite dimen-
sional analysis”. In the lectures, we consider separable infinite dimensional Banach spaces
endowed with Gaussian measures and we describe their main properties; in particular
we are interested in integration by parts formulae that allow the definition of gradient
and divergence operators. Once these tools are introduced, we study Sobolev spaces. In
the context of Gaussian analysis the role of the Laplacian (A = div V) is played by the
Ornstein-Uhlenbeck operator. We study the realisation of the Ornstein-Uhlenbeck op-
erator and the Ornstein-Uhlenbeck semigroup in spaces of continuous functions and in
LP spaces. In particular, for p = 2 the Ornstein-Uhlenbeck operator is self-adjoint and
we show that there exists an orthogonal basis consisting of explicit eigenfunctions (the
Hermite polynomials) that give raise to the “Wiener Chaos Decomposition”.

In the present revision we have taken into account the feedback coming from all the
participants to the discussion board and we are grateful for all the contributions, which
have corrected many mistakes and improved the presentation. We warmly thank in par-
ticular, Prof. Jurgen Voigt and the whole Dresden group for their careful reading and
their constructive criticism. We are planning to prepare another revision after the final
workshop in Casalmaggiore, where we shall take into account possible further commnets.
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Lecture 1

Preliminaries

We present the basic notions of measure theory, with the aim of fixing the notation and
making the exposition self-contained. We deal only with finite measures, even though of
course positive infinite measures are the first natural examples. In particular, we assume
familiarity with the Lebesgue measure in R?, which we denote by Ag. Assuming that the
basic notions relative to positive measures are known, we go straight to finite real measures
because all measures we are going to discuss are of this type. In the first section we present
real measures and the related notions of LP spaces, absolute continuous and singular
measures, the Radon-Nikodym theorem, weak convergence and product measures. In the
case of topological spaces we introduce Borel and Radon measures. Next, we introduce
characteristic functions (or Fourier transforms) of measures and Gaussian measures in R?.

1.1 Abstract Measure Theory

We start by introducing measurable spaces, i.e., sets equipped with a o-algebra.

Definition 1.1.1 (c-algebras and measurable spaces). Let X be a nonempty set and let
F be a collection of subsets of X.

(a) We say that F is an algebra in X if ) € #, EyUEy € F and X\ E| € .F whenever
FEq, Fy € Z.

(b) We say that an algebra .Z is a o-algebra in X if for any sequence (Ep) C F its
union | J,, Ey, belongs to F.

(c) For any collection & of subsets of X, the o-algebra generated by ¢ is the smallest
o-algebra containing ¢. If (X, T) is a topological space, we denote by B(X) the
o-algebra of Borel subsets of X, i.e., the o-algebra generated by the open subsets of
X.

(d) If F is a o-algebra in X, we call the pair (X,.#) a measurable space.

1



It is obvious by the De Morgan laws that algebras are closed under finite intersections,
and o-algebras are closed under countable intersections. Moreover, since the intersection
of any family of o-algebras is a o-algebra and the set of all subsets of X is a o-algebra,
the definition of generated o-algebra is well posed. Once a o-algebra has been fixed, it is
possible to introduce positive measures.

Definition 1.1.2 (Finite measures). Let (X,.%) be a measurable space and let p : F —
[0,00). We say that p is a positive finite measure if u(0) = 0 and p is o-additive on F,
i.e., for any sequence (Ey) of pairwise disjoint elements of F the equality

p (U Eh) = u(Ey) (1.1.1)
h=0

h=0

holds. We say that u is a probability measure if u(X) = 1.
We say that p : F — R is a (finite) real measure if y = p1 — pg, where py and ps are
positive finite measures. The triple (X,.%, ) is called a measure space.

If 11 is a real measure, we define its total variation |u| for every E € % as follows:

o o
|| (E) := sup {Z |w(Ep)|: Ey € .Z pairwise disjoint, F = U Eh} (1.1.2)
h=0 h=0

and it turns out to be a positive measure, see Exercise If p is real, then (|1.1.1)) still
holds, and the series converges absolutely, as the union is independent of the order. Notice
also that the following equality holds for Borel measures p on R%:

ul(B) = supf /R fds f € GRY, |l <1}, (1.1.3)

See Exercise [L.3l

Remark 1.1.3. (Monotonicity) Any positive finite measure p is monotone with respect to
set inclusion and continuous along monotone sequences, i.e., if (Ej) C .% is an increasing
sequence of sets (resp. a decreasing sequence of sets), then

[ (U Eh> = lim p(Ep),  vesp. p (ﬂ Eh) = lim p(Ey),

h=0 h=0
see Exercise L1l

We recall the following (unique) extension theorem for o-additive set functions defined
on an algebra. It is a classical result due to K. Carathéodory, we refer to [9], Theorems
3.1.4 and 3.1.10.

Theorem 1.1.4 (Carathéodory Extension Theorem). Let & be an algebra of sets of X.
If u:9 — [0,00) is a finite o-additive set function then p can be uniquely extended to
0(¥) and the extension is a measure on (X,0(9)).



Definition 1.1.5 (Radon measures). A real measure u on the Borel sets of a topological
space X is called a real Radon measure if for every B € AB(X) and € > 0 there is a
compact set K C B such that |u|(B\ K) < e.

A measure is tight if the same property holds for B = X.

Proposition 1.1.6. If (X, d) is a separable complete metric space then every real measure

on (X, #A(X)) is Radon.

Proof. Observe that it is enough to prove the result for finite positive measures. The
general case follows splitting the given real measure into its positive and negative parts.
Let then u be a positive finite measure on (X, Z(X)). Let us first show that it is a regular
measure, i.e., for any B € #(X) and for any £ > 0 there are an open set G D B and a
closed set F' C B such that (G \ F') < e. Indeed, for a given € > 0, if B = F' is closed
it suffices to consider open sets G5 = {x € X : d(z,F) = infyepd(z,y) < 6}, getting
F = N5s0Gs. As p(Gs) — pu(F) as 6 — 0 by Remark fixed ¢ > 0, for § small
enough we have u(Gs\ F') < e. Next, we show that the family ¢ containing () and all sets
B € #(X) such that for any € > 0 there are an open set G D B and a closed set F' C B
such that u(G \ F) < ¢ is a o-algebra. To this aim, given a sequence (B,,) C ¥, consider
open sets G, and closed sets F), such that F,, C B, C G, and u(G, \ F,,) < ¢/2"*!. For
G=U2,G, and F = J_| F,, with N € N such that u({J>°, F,, \ F) < £/2, we have
FcU,Bn CGand u(G\ F) < e. Therefore, ¢ is closed under countable unions, and,
since it is closed under complementation as well, it is a o-algebra.
Since we have proved that all closed sets belong to ¢, then it coincides with Z(X).

As a consequence, we prove that any positive finite measure on (X, Z(X)) is Radon
iff it is tight. If p is Radon then it is tight by definition. Conversely, assuming that p
is tight, for every € > 0 and every Borel set B C X, there exists a compact set K; such
that (X \ K1) < € and a closed set F' C B such that u(B \ F)) < e. Then, the set
K := K; N F is compact, because it is complete (being closed) and precompact, and it
verifies u(B\ K) < 2e.

Therefore, to prove our statement it suffices to show that every positive finite Borel
measure on X is tight. Let (z,,) be a dense sequence and notice that X C (72, B(zn, 1/k)
for every k € N. Then, given € > 0, for every k € N there is N € N such that

Ny
M(U Bz, 1/k)> > u(X) — /2",
n=1

Then, the set

oo Ng
K := () | B(&n, 1/k)
k=1n=1
is closed and totally bounded. It verifies p(K) > pu(X) —e. O

Let us come to measurable functions.

Definition 1.1.7 (Measurable functions). Let (X,.%, 1) be a measure space and let (Y,¥)
be a measurable space. A function f : X — Y is said to be (F — ¥ )-measurable if



fYHA) € F for every A€ 9. IfY is a topological space, a function f: X — Y is said to
e . -measurable (or u-measurable) if f~1(A) € .F for every open set ACY.

In particular, if Y is a topological space and f is .#-measurable then f~!(B) € .% for
every B € A(Y). For E C X we define the indicator (or characteristic) function of E,

denoted by 1z, by
1 ifzekFk
Ip(x) := .
0 ifxégFE

and we say that f : X — R is a simple function if the image of f is finite, i.e., if f belongs
to the vector space generated by the indicator functions of measurable sets. We assume
that the readers are familiar with the usual notion of integral of a measurable function.
For p positive, we define the LP (semi)-norms and spaces as follows,

1/p
lullrcen = ( [ tupan)
X

1l oo (x ) = Inf {C € [0, 00]: [u(x)| < C for p-a.e. v € X}

if 1 <p< oo, and

for every %-measurable u : X — R. We define the space LP(X,u) as the space of
equivalence classes of functions u agreeing p-a.e. such that ||ulz»(x ) < oo. In this way,
| - lze(x,u) is @ norm and LP(X, u) is a Banach space, see e.g. [9, Theorem 5.2.1]. When
there is no risk of confusion, we use the shorter notation || - ||,.

We assume that the reader is familiar also with the properties of integrals, measurable
functions and LP spaces as well as the main convergence theorems of Levi, Fatou, Lebesgue,
see e.g. [9, Section 4.3]. We just recall the convergence in measure and the Lebesgue-Vitali
theorem on uniformly integrable sequences, see Exercise

Definition 1.1.8. Let (X,.%,u) be a measure space and let (fi) be a sequence of real-
valued F-measurable functions. We say thet (fi) converges in measure to the function
f: X =>Rif

klim p{x e X ¢ |fx(z) — f(z)] >€e}) =0 for every e >0 . (1.1.4)
—00
Theorem 1.1.9 (Lebesgue-Vitali Convergence Theorem). Let (X,.%) be a measurable

space, let | be a positive finite measure on it and let (f) be a sequence of measurable
functions such that

lim Sup/ | fx| dp = 0.
M0 keN J{] fi|>M}
If fv — f in measure then f € LY (X, 1) and limy_,o0 Jx |f = feldpw = 0.

Given a c-algebra on a set X, we have defined the class of real-valued measurable
functions. Conversely, given a family of real-valued functions defined on X, it is possible
to define a suitable o-algebra.



Definition 1.1.10. Given a family F' of functions f : X — R, let us define the o-algebra
& (X, F) generated by F on X as the smallest o-algebra such that all the functions f € F
are measurable, i.e., the o-algebra generated by the sets {f < t}, with f € F and t € R.

Given a metric space, the set of real Borel measures p is a vector space in an obvi-
ous way. All continuous and bounded functions are in L'(X, 1) and we define the weak
convergence of measures by

i = = /de,uj—>/deu Ve Cy(X). (1.1.5)

Let us now introduce the notions of absolute continuity and singularity of measures. Let u
be a positive finite measure and let v be a real measure on the measurable space (X,.%).
We say that v is absolutely continuous with respect to p, and we write v < p, if u(B) =
0 = [v|(B) =0 for every B € .#. If u, v are real measures, we say that they are
mutually singular, and we write v L p, if there exists E € .% such that |u|(E) = 0 and
|v|(X \ E) = 0. Notice that for mutually singular measures u,v the equality |u + v| =
||+ |v| holds. If 4 < v and v < p we say that u and v are equivalent and we write p ~ v.
If  is a positive measure and f € L'(X, ), then the measure v := fu defined below is
absolutely continuous with respect to p and the following integral representations hold,
see Exercise

v(B) ::/de,u, |1/|(B):/B\f|d,u VB e #. (1.1.6)

In the following classical theorem we see that if a real measure v is absolutely continuous
with respect to pu, then the above integral representation holds, with a suitable f.

Theorem 1.1.11 (Radon-Nikodym). Let p be a positive finite measure and let v be a real
measureon the same measurable space (X,.%). Then there is a unique pair of real measures
v, v® such that v* < p, v° L p and v = v* + v®. Moreover, there is a unique function
f € LY(X, u) such that v® = fu. The function f is called the density (or Radon-Nikodym
derivative) of v with respect to p and it is denoted by dv/du.

Since trivially each real measure p is absolutely continuous with respect to |ul|, from
the Radon-Nikodym theorem the polar decomposition of u follows: there exists a unique
real valued function f € L'(X,|u|) such that g = flu| and |f| =1 |ul|-a.e.

The following result is a useful criterion of mutual singularity.

Theorem 1.1.12 (Hellinger). Let p,v be two probability measures on a measurable space
(X, F), and let X be a positive measure such that i < X\, v < X. Then the integral

o du dv
H(p,v) '_/X“d)\d)\dA

2(1-H(p,v)) <|p—v|(X) <2y/1—H(u,v)? (1.1.7)

is independent of A and



Proof. Let us first take A\ = u+ v and notice that pu, v < A. Then, setting f := du/d\ and
g:=dv/d\ ie, p= f\and v = g\, we have |u—v|(X) = |[f — gll11(x,) and integrating
the inequalities

VI =Va?<If =gl =IVF=ValVI+ 3l

we get

/f Va)2dA=2(1— H(u /\f gldA = |u = v|(X)
:/W—mﬁww
(- ([ 7 )

— (2 - 2H(p, )22 + 2H(1,v))* = 2y/1 = H(u, )%,

where we have used the Cauchy-Schwarz inequality. If A’ is another measure such that
pw=f'N<XNandv=g¢gN <N, then A < \: setting ¢ := %, we have f' = ¢f, ¢ = ¢g
and then

dup dv , ; , dp dv
d)\d)\d)\ /\/ d\ = /\/ godXN = /\/f "dN = / d)\’d/\/d)\

Corollary 1.1.13. If p and v are probability measures, then u L v iff H(u,v) = 0 iff
[ —v|(X) =2.

Proof. Tt is obvious from Hellinger’s theorem that |p—v|(X) = 2 if and only if H(u,v) = 0.
Let us show that this is equivalent to i L v. Using the notation in the proof of Theorem
notice that H(u,v) = 0 if and only if the set F' defined by F' := {fg # 0}
verifies A(F') = 0 (hence also u(F) = v(F) = 0). Therefore, for the measurable set
E={f=0,9g>0} we have u(F) = v(X \ E) = 0 and the assertion follows. O

We recall the notions of push-forward of a measure (or image measure) and the con-
structions and main properties of product measure. The push-forward of a measure gen-
eralises the classical change of variable formula.

Definition 1.1.14 (Push-forward). Let (X,.%) and (Y,¥) be measurable spaces, and let
f: X =Y be (F,9)-measurable, i.e., such that f~1(F) € .F whenever F € 4. For any
positive or real measure p on (X,.%) we define the push-forward or image measure of i
under f, that is the measure po f=1 in (Y,94) by

po fHF) ::,u,(f_l(F)) VF 9.

Sometimes po f~1 is denoted by fup.



The change of variables formula immediately follows from the previous definition. If
uwe LYY, po f~1), then uo f € L'(X, 1) and we have the equality

/ud(uof_l):/(uof)d,u. (1.1.8)
Y X

The above equality is nothing but the definition for simple functions f, and it is immedi-
ately extended to the whole of L' by density.

We consider now two measure spaces and we describe the natural resulting structure
on their cartesian product.

Definition 1.1.15 (Product o-algebra). Let (X1, .%#1) and (X2,.%2) be measurable spaces.
The product o-algebra of %1 and F, denoted by 1 X Fo, is the o-algebra generated in
X1 X X2 by

= {El x Ey: By € 91, E5 € yg}

Remark 1.1.16. Let E € .7 x Z3; then for every x € X; the section E, = {y €
Xo: (z,y) € E} belongs to F,, and for every y € Xo the section EY := {z € X;: (z,y) €
E} belongs to #;. In fact, it is easily checked that the families

gx = {FEﬁl Xﬂg: Fx€92}7 @GY = {FEﬁl ngt Fyeﬁl}
are o-algebras in X; X X5 and contain ¥, see Exercise [1.5

Theorem 1.1.17 (Fubini). Let (X1, %1, 11), (X2, %2, p2) be measure spaces with py, o
positive and finite. Then, there is a unique positive finite measure p on (X1 x Xo, F1 X Fa),
denoted by p1 ® o, such that

,u(El X Eg) = MI(EI) . 'LLQ(E2) VE, € 91, VEy € F.

Furthermore, for any p-measurable function u : X1 x X9 — [0,00) the functions
v | u(@,y)pe(dy) and y— | u(z,y)p(ds)
X2 X1

are respectively pi-measurable and pz-measurable and

/X1><XQUdlu - /X1 (/)(2 u(z,y) M2(dy)> pu1 (dex)
- /x2 (/Xl uzy) “1(‘“)) pa(dy).

Remark 1.1.18. More generally, it is possible to construct a product measure on infinite
cartesian products. If I is a set of indices, typically I = [0,1] or I = N, and (X, %, ),
t € I, is a family of probability spaces, the product o-algebra is that generated by the
family of sets of the type

B=B;x---xB,x X X:, Bpe F,,
teN\{t1,....tn}

whose measure is p(B) := g, (B1) - - - e, (Br).



In the sequel we shall sometimes encounter some ideas coming from probability theory
and stochastic analysis. In order to simplify several computations concerning probability
measures on RY, it is often useful to use characteristic functions of measures. This is the
probabilistic counterpart of Fourier transform. Indeed, given a finite real measure p on
(RY, (R%)), we define its characteristic function by setting

() == /Rd vt u(dr), € eRY (1.1.9)

We list the main elementary properties of characteristic functions, whose proofs are in
Exercise [L.6

1. f1 is uniformly continuous on R%;
2. u(0) = p(X);

if i1 = fio then pg = po;

L

if pu; — 1 in the sense of ((1.1.5)), then fi; — f uniformly on compacts;

5. if (u;) is a sequence of probability measures and there is ¢ : R? — C continuous in
§ = 0 such that fi; — ¢ pointwise, then there is a probability measure ;2 such that

fL=¢.
1.2 Gaussian measures

Gaussian (probability) measures are the main reference measures we shall encounter in the
Lectures. Let us start from the finite dimensional case. We recall the following elementary

equality : .
1 Tr—a
expy ————— ¢dr =1, 1.2.1
o 277—/]1@ p{ 20’2 } ( )

that holds for all @ € R and o > 0. An easy way to prove (|1.2.1)) is to compute the double
integral

/ exp{—(a? +y?)} dady
RQ

using polar coordinates and the change of variables formula and apply Fubini Theorem

LII7

Definition 1.2.1 (Gaussian measures on R). A probability measure v on (R, Z(R)) is
called Gaussian if it is either a Dirac measure §, at a point a (in this case, we put o =0),
or a measure absolutely continuous with respect to the Lebesgue measure A\ with density

1

oV 2w

.73—@2
( )}7

exp{ 202

with ainR and o > 0. In this case we call a the mean, o the mean-square deviation and
o2 the variance of v and we say that 7 is centred or symmetric if a = 0 and standard if
in addition o = 1.



By elementary computations we get
a= / xy(dz), o? = /(:U —a)?y(dz).
R R

Remark 1.2.2. For every a,0 € R we have §(§) = eiag*%"zgz, see Exercise n Con-
versely, by property 3 of characteristic functions, a probability measure on R is Gaussian
iff its characteristic function has this form. Therefore, it is easy to recognise a Gaussian
measure from its characteristic function. This is true in R?, as we are going to see in
Proposition and also in infinite dimensions, as we shall see in the next lecture.

Let us come to Gaussian measures in R%.

Definition 1.2.3 (Gaussian measures on R%). A Borel probability measure v on R? is
said to be Gaussian if for every linear functional £ on R? the measure v o~ is Gaussian
on R.

The first example of Gaussian measure in R? is ~q := (27)~% 2¢=12*/2); that is called
standard Gaussian measure. We denote by Gy the standard Gaussian density in R%, i.e.,
the density of «4 with respect to Ay. Notice also that if d = h + k then v4 = v, ® V%.

The following result gives a useful characterisation of a Gaussian measure through its
characteristic function.

Proposition 1.2.4. A measure v on R? is Gaussian if and only if its characteristic
function is

4(6) = exp{ia £~ Q¢ €] (12

for some a € R? and Q nonnegative symmetric d x d matriz. Moreover, v is absolutely
continuous with respect to the Lebesgue measure Ag if and only if Q is nondegenerate. In
this case, the density of v is

1

Wexp{—Z(Ql(az—a) . (x—a))}. (1.2.3)

Proof. Let v be a measure such that (1.2.2)) holds. Then, for every linear funtional ¢ :
R? — R (here we identify ¢ with the vector in R? such that ¢(x) = £ - x) we compute the
characteristic function of the measure jiy :=yo /¢~ on R,

' 2
fp(T) = / e pp(dt) = / @) y(dx) = 4(rl) = exp{iTa Al — T—Qﬁ . E}
R Ra 2

by . Therefore, by Remark e is a Gaussian measure with mean ay = a - ¢ and
variance 03 = Q¢ - ¢, and also y is a Gaussian measure by the arbitrariness of /.

Conversely, assume that uy is Gaussian for every ¢ as above. Its mean ay and its
variance Uf are given by

ag == /Rt,ug(dt) = /]Rd Ux)y(dz) =1 - (/Rdm'y(dx)) (1.2.4)
ot = (0=l = [ () — 00 (da). (1.25)
R R4
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These formulas show that the map ¢ — ay is linear and the map ¢ — al? is a nonnegative
quadratic form. Therefore, there are a vector a € R? and a nonnegative definite symmetric
matrix @ = (Q;;) such that a; = a- £ and O'? = Q¢ - ¢, whence (|1.2.2)) follows. Notice that

a:/Rde"Y(dZL‘), Qij :/Rd(xi_ai)(l‘j—&j)v(dx).

To prove the last part of the statement, let us assume that v < Ay, i.e. v = fAg for some
f € LY(R? \;). We want to show that Q¢ - ¢ = 0 iff £ = 0. From (T.2.4), (1.2.5) we have

Q- (= /R (- (e ) f ),

then Q¢- ¢ = 0iff ((-(z —a))? =0 for a.e. € R ie. iff =0, as f # 0. Hence Q is
nondegenerate.

Conversely, if ) is nondegenerate, we consider the measure v = f\; with f given by
and we compute its characteristic function. Using the change of variable z = QY Yz —a),
since yq = ®§-l:171, we have:

#(6) = | explis - a} fa)do = @@ —a)-(z—a) b

1

T Ll
d

=exp{i - a} /]Rd exp{iQ1/2§ - z}ya(dz) = exp{i& - a} H /Rexp{i(Ql/Qg)jt}’yl(dt)

d d
=esplic-a} [[ (@79 = exptie- [ ey {-5@ o7}
=1 i=1
. 1 .
—exp {zf ca- Q¢ 5} = 4(©).
Hence, by property 3 of the characteristic function, v = v. ]

Remark 1.2.5. If v is a Gaussian measure and holds, we call a the mean and @
the covariance of 7, and we write v = 4 (a, Q) when it is useful to emphasise the relevant
parameters. If a = 0 we say that ~ is centred. If the matrix @ is invertible then the
Gaussian measure v = .4 (a, Q) is said to be nondegenerate. Its density, given by ,
is denoted Gy,g. The nondegeneracy is equivalent to the fact that pu, < A; for every
¢ e R4

Proposition 1.2.6. Let v centred Gaussian measure in R% and for every § € R define the
map ¢ : RExRY — R by ¢(x,y) := xsin@+ycosf. Then, the image measure (y®7y)op™*
in R? is .

Proof. We use characteristic functions and Proposition Indeed, the characteristic
function of v is exp{—%Qﬁ -£} for some nonnegative d x d matrix ). Then we may compute
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the characteristic function of p := (y® ) 0 ¢! as follows:
(e = [ e niaz)
Rd
_ / ei(:(;sin@—i—ycosH){ 7 ® "y(d(:(}, y))
Rd xR

— /I‘W ei(xsin@)f ’y(dx)/ ei(ycos@){ ’y(dy)

Rd
= exp{—% sin? 0 Q¢ - £} exp{—% cos® 0Q¢ - £}

1
= exp{—§Q§ ) 5}1
and the assertion follows from property 3 of characteristic functions. 0

Remark 1.2.7. We point out that the property stated in Proposition [1.2.6] is not the
invariance of v under rotations in R?. Indeed, rotation invariance holds iff the covariance
of « is a positive multiple of an orthogonal matrix.

1.3 Exercises

Exercise 1.1. Let p be a positive finite measure on (X,.#). Prove the monotonicity
properties stated in Remark

Exercise 1.2. Prove that the set function |u| defined in (1.1.2)) is a positive finite measure
and that the integral representation for |v| = | fu| in (1.1.6) holds. Prove also that if 1 L v
then |p+v| = |p| + |V

Exercise 1.3. Prove the equality .

Exercise 1.4. Prove the Vitali-Lebesgue Theorem

Exercise 1.5. Prove that the families ¥, and Y defined in Remark are o-algebras.
Exercise 1.6. Prove the properties of characteristic functions listed in Section
Exercise 1.7. Prove the equality §(§) = ei9€=39%€ gtated in Remark

Exercise 1.8. (Layer cake formula) Prove that if 4 is a positive finite measure on (X,.7)
and 0 < f € LY(X, u) then
o
0

/fd,u:/ p({z e X« f(z) > t})dt
X
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Lecture 2

Gaussian measures 1n infinite
dimension

In this lecture, after recalling a few notions about o-algebras in Fréchet spaces, we in-
troduce Gaussian measures and we prove the Fernique Theorem. This is a powerful tool
to get precise estimates on the Gaussian integrals. In most of the course, our framework
is an infinite dimensional separable real Fréchet or Banach space that we denote by X.
In the latter case, the norm is denoted by || - || or || - ||x when there is risk of confusion.
The separability assumption is not essential in most of the theory, but Radon Gaussian
measures are concentrated on separable subspaces, see [3, Theorem 3.6.1], hence we as-
sume saparability from the beginning. The open (resp. closed) ball with centre x € X
and radius 7 > 0 will be denoted by B(z,r) (resp. B(z,r)). We denote by X*, with norm
|| - ||x*, the topological dual of X consisting of all linear continuous functions f : X — R.
Sometimes, we shall discuss the case of a separable Hilbert space in order to highlight
some special features. The only example that is not a separable Banach space is R’ (see
Lecture , but we prefer to describe this as a particular case rather than to present a
more general abstract theory.

2.1 o-algebras in infinite dimensional spaces and
characteristic functions

In order to present further properties of measures in X, and in particular approximation
of measures and functions, it is useful to start with a discussion on the relevant underly-
ing o-algebras. Besides the Borel g-algebra, to take advantage of the finite dimensional
reductions we shall frequently encounter in the sequel, we introduce the o-algebra & (X)
generated by the cylindrical sets, i.e, the sets of the form

C= {x X (fi(x), ..., fulz)) € co},

13
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where f1,..., fn € X* and Cy € B(R"), called a base of C. According to Deﬁnition
E(X) = &(X, X™). Notice that the cylindrical sets constitute an algebra. The following
important result holds. We do not present its most general version, but we do not even
confine ourselves to Banach spaces because we shall apply it to R*°, which is a Fréchet
space. We recall that a Fréchet space is a complete metrisable locally convex topological
vector space, i.e., a vector space endowed with a sequence of seminorms that generate a
metrisable topology such that the space is complete.

Theorem 2.1.1. If X is a separable Fréchet space, then &(X) = #(X). Moreover, there
is a countable family F C X* separating the points in X (i.e., such that for every pair of
points x #y € X there is f € F such that f(x) # f(y)) such that &(X) = (X, F).

Proof. Let (z,) be a sequence dense in X, and denote by (px) a family of seminorms

which defines the topology of X. By the Hahn-Banach theorem for every n and k there is

U € X* such that pg(z,) = lyk(zy) and sup{l, x(z) : = € X, pp(z) < 1} = 1, whence

lni(x) < pi(x) for every n,k € N and x € X. As a consequence, for every z € X and

k € N we have py(z) = sup,{ln(z)}. Indeed, if (x,,) is a subsequence of (z,) such that

Ty, — x as h — oo, we have limy, £, 1(zn,) = pr(z). Therefore, for every r > 0
Bi(z,r)i={y e X : pply—2) <r} = [[{y € X : Lop(y —2) <r} € &(X),

neN

As X is separable, there is a countable base of its topology. For instance, we may take
the sets By(xp,r) with rational r, see [10, 1.6.2 and 1.6.12]. These sets are in &(X), as

By (xp,r) = m {reX: lpplx —x,) <7}
meN

Hence, the inclusion #(X) C &(X) holds. The converse inclusion is trivial.

To prove the last statement, just take F' = {{, 1, n,k € N}. It is obviously a countable
family; let us show that it separates points. If x # y, there is k € N such that py(z —y) =
sup,, {n x(x —y) > 0 and therefore there is 7 € N such that ¢ (z —y) > 0. O

In the discussion of the properties of Gaussian measures in infinite dimensional spaces,
as in R%, the characteristic functions, defined by

Alf) = /X exp{if (2)} u(dz), | X", (2.1.1)

play an important role. The properties of characteristic functions seen in Lecture [I| can be
extended to the present context. We discuss in detail only the extension of property (iii)
(the injectivity), which is the most important for our purposes. In the following proposi-
tion, we use the coincidence criterion for measures agreeing on an algebra of generators of
the o-algebra, see e.g. [9, Theorem 3.1.10].

Proposition 2.1.2. Let X be a separable Fréchet space, and let p1, ps be two probability
measures on (X, 2(X)). If i1 = la then py = po.
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Proof. 1t is enough to show that if i = 0 then g = 0 and in particular, by Theorem [2.1.1
that u(C) = 0 when C is a cylinder with base Cyp € Z(R?). Let be i = 0, consider
F = span{fi,..., fs} € X* and define up = po P;', where Pp : X — R? is given by
Pp(z) = (fi(x),..., fa(x)). Then for any ¢ € R?

Ap(€) = /F expli€ - y} up(dy) = /X expli€ - Pp(a)} pu(dz) = /X exp{iPpE(x)} pu(dz) = 0,

where Py : R? — X* is the adjoint map

d
Pr(&) = &fs.
i=1

It follows that up = 0 and therefore the restriction of p to the o-algebra & (X, F') is the
null measure. O

2.2 Gaussian measures in infinite dimensional spaces

Measure theory in infinite dimensional spaces is far from being a trivial issue, because there
is no equivalent of the Lebesgue measure, i.e., there is no nontrivial measure invariant by
translations.

Proposition 2.2.1. Let X be an infinite dimensional separable Hilbert space. If p :
PB(X) — [0,00] is a o-additive set function such that:

(1) p(z+ B) = p(B) for every x € X, B € B(X),
(11) p(B(0,7)) > 0 for every r >0,
then u(A) = oo for every open set A.

Proof. Assume that p satisfies (i) and (ii), and let {e,, : n € N} be an orthonormal basis
in X. For any n € N consider the balls B,, with centre 2re,, and radius r > 0; they are
pairwise disjoint and by assumption they have the same measure, say p(B,) =m > 0 for
all n € N. Then,

o0 [e.e] (e e}
UB.cB(0,3r) = u(B(0,3r) 2> u(B) =) m=oo,
n=1 n=1 n=1
hence u(A) = oo for every open set A. O

Definition 2.2.2 (Gaussian measures on X). Let X be a separable Fréchet space. A
probability measure vy on (X, B(X)) is said to be Gaussian if yo f~ is a Gaussian measure
in R for every f € X*. The measure 7y is called centred (or symmetric) if all the measures
v o f~1 are centred and it is called nondegenerate if for any f # 0 the measure yo f~' is
nondegenerate.
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Our first task is to give characterisations of Gaussian measures in infinite dimensions
in terms of characteristic functions analogous to those seen in R?, Proposition m
Notice that if f € X* then f € LP(X,~) for every p > 1: indeed, the integral

/ @) (dz) = / P (o ) ()
X R

is finite because v o f~! is Gaussian in R. Therefore, we can give the following definition.

Definition 2.2.3. We define the mean a, and the covariance B, of v by

a%ﬂriéfwwwﬂ, (2.2.1)
By(f.g) = / (@) - ()] [9() — ay(9)] 7(d), (22.2)

X
fige X

Observe that f +— a,(f) is linear and (f,g) — By(f,g) is bilinear in X*. Moreover,
By(f. /) =If- a“/(f)Hiz(xﬁ) = 0 for every f e X*.

Theorem 2.2.4. A Borel probability measure v on X is Gaussian if and only if its char-
acteristic function is given by

i) =epfialh) - 3BUNY,  fex, (223)

where a is a linear functional on X* and B is a nonnegative symmetric bilinear form on
X

Proof. Assume that v is Gaussian. Let us show that 4 is given by (2.2.3) with a = a,, and
B = B,. Indeed, we have:

30 = [ elie)yo 1)) = espfim 50},

where m and ¢? are the mean and the covariance of v o f~!, given by

m— / E(vo f1)(de) = / F@)y(de) = ay (f),
R X
and
o = / (€ — m)*(vo fV)(de) = / (F(x) — ay (1))*1(dz) = By(f. f).
R X

Conversely, let v be a Borel probability measure on X and assume that (2.2.3) holds.
Since a is linear and B is bilinear, we can compute the Fourier transform of v o f~1, for
f € X*, as follows:

—

o f~I(r) = expiiT o f1 = | expiitf(x T
Vo () /R plirt} (7o 1) (df) /X p{ir f(2)} 7(da)

. 1,
= exp{ira(f) = 37B(f.1) }-
According to Remark yo f~t= A (a(f), B(f, f)) is Gaussian and we are done. [
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Remark 2.2.5. We point out that at the moment we have proved that a, is linear on
X* and B, is bilinear on X* x X*, but they are not necessarily continuous. We shall see
that if X is a Banach space then a, and B, are in fact continuous.

As in the finite dimensional case, we say that 7 is centred if a, = 0; in this case, the
bilinear form B, is nothing but the restriction of the inner product in L*(X,v) to X*,

By(fo) = [ f@a@da) B D) = 1 (2.2.4)

In the sequel we shall frequently consider centred Gaussian measures; this requirement
is equivalent to the following symmetry property.

Proposition 2.2.6. Let v be a Gaussian measure on a Fréchet space X and define the
measure (i by
w(B) :=~(-B),  VBe€ A(X).

Then, v is centred if and only if v = p.
Proof. We know that 5(f) = exp{ia,(f) — || f —a(f) H%Q(X 'y)}' On the other hand, since
p=vyoR 1 with R: X - X given by R(z) = —u,

i) = [ @ Outa) = [ IO () = expl=ia, (1) = 517 = (Dl

Then i = 7 if and only if ay(f) = 0 for any f € X*, whence the statement follows by
Proposition [2.1.2] O

Let us draw some interesting (and useful) consequences from the above result.

Proposition 2.2.7. Let X be a separable Freéchet space and let v be a Gaussian measure
on X.

(i) If p is a Gaussian measure on a Fréchet space Y, then v® p is a Gaussian measure
on X XY.

(ii) If u is another Gaussian measure on X, then the convolution measure v u, defined
as the image measure in X of v @ u on X x X under the map (x,y) — x + 1y is a
Gaussian measure and is given by

v * p(B) = /X u(B — x)y(dz) = /X’Y(B — z)p(dz). (2.2.5)

113) I is centred, then for every 6 € R the image measure @Yo RYin X x X
(i1i) If ~ : Y g Y ®7) o R,
under the map Rgp : X x X — X x X, Rg(z,y) := (xcosf+ysinh, —xsinf+ycosb)
18 again y @ 7.
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() If v is centred, then for every 6 € R the image measures (y® ) o ¢Z-_1, 1=1,2in X
under the maps ¢; : X x X — X,
¢1(x,y) :=xcosO+ysinh, ¢o(z,y) := —xsinfd + ycosb
are again vy.

Proof. All these results follow quite easily by computing the relevant characteristic func-
tions. We start with (i) taking into account that for f € X* and g € Y* we have

By 1) = If — ay (Do Bule:9) = g — au(0) 22y
For every ¢ € (X x Y)*, we define f and g by

Uz, y) = £(z,0) + £(0,y) =: f(z) + g(y).
Then

TERH() = /X (i)} © (e )
_ / exp{if ()} (dx) / explig(y) buldy)
X Y
—exp {ias (1) = 51 = 0 (DlEagrs) +auls) = 319 - @B |

—exp {ilar (1) + 0u(6)) = 5 (I = DBy + 10 = 0u(@) By

On the other hand, since

/ny(f(x) —ay(f))(9(y) — au(9)(y ® p)(d(z,y)) =
- / (f(2) = ay(f))y(de) / (9(v) — a,(9)) uldy) = 0,
X

Y

we have
1 = 0y ()22 + 119 — an(@) gy =
- / (F(2) — ay(£))y(de) + / (9(y) — ay(9))*u(dy)
X Y

(6, 0) — ay () (dr) + / (€0, 9) — a,.(9))u(dy)

Y

(€(,0) = ay(£))* (v ® p)(d(z, y)) + / (€0, ) = au(9))*(v ® w)(d(z,y))

XY X XY

(€(2,0) = ay(£))* + (000, y) — au(9))* (v ® p)(d(x, 1))

)-<

X

(€(2,0) + £(0,y) = (ay(f) + an(9))* (v @ p)(d(x,y))

I

b-.<

X

Xy(am’ y) = (ay(f) + au(9)))* (v ® p)(d(, y)).-
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So we have

Byou(l,0) = [[€(x, y) = (ay(f) + au(9)ll L2(x xviren) = By(f, f) + Bulg; 9)

if we decompose ¢ by {(z,y) = f(z) + g(y), f(x) = 4(x,0), g(y) = £(0,y) as before.
The proof of statement (ii) is similar; indeed if h : X x X — X is given by h(z,y) =
x + y, then

—

(o ueh(0) = [ explit@)} (9 w0 ™) (da)
- / exp{it(h(z, y))} (v ® ) (d(x,))
XxX
- / exp{il(z)}y(dx) / exp{if(y)}u(dy)
X X
= exp {mw(@ = %(nznimm + i%(@”ﬂﬁ%x,m)} :

for every ¢ € X*. Using the notation of Remark [1.1.16} for every B € Z(X) we have

{(z,y) € X x X : h(z,y) € B}, = B —x,
{(z,y) € X x X : h(z,y) € B}Y =B —y.

Applying the Fubini Theorem to the characteristic functions of h~!(B) we deduce that
the convolution measure is given by (2.2.5)),

v u(B) = (v ® u)(h ™ (B)) = /X (@ n)dey)

= /X v(dz) /{ yEX:HyEB}u(dy) = /X (B — z)y(dz).

To show (iii), set 1 := (v ® 7) o R, '; taking into account that for any £ € (X x X)*
we have

U(Ry(x,y)) =l(zcosh + ysinf, —xsinf + ycosh)
={(x,0)cos @ — ¢(0,z)sin + £(y,0) sin b + £(0,y) cos b .

=:fo(z) =:g9(y)

We find
) = /X (it Role. )Moy ©7)(dlan)
- / exp{ifo(z)}y(dz) / exp{igy(y)}y(dy)
X X
=exp {—; (By(fo, fo) + B’y(gevge))} .



20

Since B, is bilinear,

B, (fo, fo) + By(90, 90) = B(fo, fo) + B+(90 90),
where fo(x) = £(x,0), go(y) = £(0,y) and

B, (fo, fo) + B(90, 90) = Bye~ (4, £)

by the proof of statement (i).
To prove (iv), we notice that the laws of v ® v under the projection maps pi,ps :
XxX > X,

p1(z,y) =, p2(z,y) ==y

are v by definition of product measure. Since ¢; = p; o Ry, i = 1,2 we deduce

(v®7)od; ' =(y®7)o(pioRy) = ((y®y)oRyop;t =(yy)op;t =17.

2.3 The Fernique Theorem

In this section we prove the Fernique Theorem; we start by proving it in the case of centred
Gaussian measures and then we extend the result to any Gaussian measure.

Theorem 2.3.1 (Fernique). Let v be a centred Gaussian measure on a separable Banach
space X. Then there exists o > 0 such that

/ exp{alle]?} y(dz) < oo
X

Proof. 1f v is a Dirac measure the result is trivial, therefore we may assume that this is
not the case. The idea of the proof is to show that the measures of suitable annuli decay
fast enough to compensate the growth of the exponential function in the integral. Let
us fix t > 7 > 0 and let us estimate Y{llz]| < 7H)y{]|z|| > t}). Using property (iii) of
Proposition [2.2.7 with § = —7, we obtain

Tz e Xz < v e X - 2| > t})
= (r®7) {(z,y) € X x X |lzf] < 73N {(z,y) € X x X = ly| > 1})

lz —yll _ [ + ]|
=(r® {x, c X xX: }ﬁ{x, eXxX:7>t} .
(v®7) < (z,9) 7 (z,9) 7
The triangle inequality yields ||z||, |y|| > ngy” — @, which implies the inclusion
“LweXxX:H —ull o } { eXxX:m+m“ﬁ}
V2

t—1T1

C{m, e X x X: m>7} { )eEX x X : > }
(z,y) ] [yl 7
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As a consequence, we have the estimate

— T 2
Yzl < Thr(llel > 1) < 4 (X \B(o, tﬂ)) . (2.3.1)

We leave as an exercise, Exercise the fact that if v is not a Dirac measure, then
v(B(0,7)) < 1 for any 7 > 0. Let us fix 7 > 0 such that ¢ := v(B(0,7)) € (1/2,1) and set

1 1 ( c )
= ——log ——
RV & 1—¢/’
to =17, tn:=7+V2,_1= 7(1+4 ﬁ)(\&nﬂ — 1), n > 1.

Applying estimate (2.3.1) with ¢ = ¢,, and recalling that t’z/g = t,_1, we obtain

XN\ B(0,tn)) <

V(X \ ‘?(07 tn—l))2 _ <V(X \ B(Ov tn—l))>2c
Y(B(0,7)) c

and iterating

Therefore

/ exp{al|z[|*} y(dz) =/ exp{alz||*} y(dz)+
X T

)

2 / _ explafal?} v(dx)
n—=0" BO0;tn+1)\B(0,tn)

<cexp{ar’} + Y exp{atp }7(X \ B(0,tn)).

n=0

Since (\/§n+2 —1)2 < 27*2 for every n € N,

n

| explallal}(de) < e(expar?) + g%exp{wm vy ()

1—c¢
c

~cfesptor®)+ Yoo (5 - ) s })

The last series is convergent because ¢ > 1/2 and hence log (1—:3) < 0. O

= c(exp{aTQ} + io: eXP{Qn (lOg +dar*(1+ \/5)2) }>
n=0

The validity of the Fernique Theorem can be extended to any Gaussian measure, not
necessarily centred.
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Corollary 2.3.2. Let v be a Gaussian measure on a separable Banach space X. Then
there exists o > 0 such that

/ exp{az]|?} ~(dx) < oo.
X

Proof. Let us set p(B) = v(—B) for any B € #(X). According to (2.2.5)), the measure
1 = v*p is given by (y® p) oh™L, h(x,y) = x +v, and it is a centred Gaussian measure.
Therefore, there exists a3 > 0 such that

5 > /X exp{on |22} 11 (dz) = /X explanllz + v} (v @ 1) (d(z, y)

x X
_ / explas]lz — ]2} (v ® 7)(d(z, 1)) = / +(dy) / explas |z -y} (dx).
XxX X X

Then, for v—a.e. y € X,
| explanlle =y} ads) < .

Using the inequality 2ab < ea® + %bz, which holds for any a,b and € > 0, we get

1
)1 < llz =yl + lyll* + 2llz = ylllly] < (1 +e)lle - ylI* + (1 + g) Iyl

For any a € (0,aq), by setting ¢ = <= — 1, we obtain

«

aqq

[ ewallelPy (o) < e { 22Xy} [ esplanls - 12 (d0)

o) —
Then for any a < aj,

| explalalP}a(ds) < oc.
O

As a first application of the Fernique theorem, we notice that for every 1 < p < oo we
have

/ [z]|P y(dz) < oo (2.3.2)
X

since [|z||P < cq.pexp{a||z||?} for all z € X and for some constant c,,, depending on a and
p only. We already know, through the definition of Gaussian measure, that the functions
f € X* belong to all LP(X, ) spaces, for 1 < p < co. The Fernique Theorem tells us much
more, since it gives a rather precise description of the allowed growth of the functions in
LP(X,~y). Moreover, estimate has important consequences on the functions a, and
B,.

Proposition 2.3.3. If v is a Gaussian measure on a separable Banach space X, then
ay : X* = R and By : X* x X* = R are continuous. In addition, there exists a € X
representing a~, i.e., such that

ay(f) = fla),  Vfe X"
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Proof. Let us define
o= [ Nelataa) o= [ ol o) (2:3.3)
Then, if f,g € X*
(D1 < fllxe [ el o) =l
By (f.0)l < [ 1£@) = ar(D)llg(e) = o 0)| 2 (o)

< [ fllx-

9llx- /X(H@“H +e1)?y(da) = (c2 + 3D fllx-llgllx--

To show that a, can be represented by an element a € X, by the general duality theory
(see e.g. [, VIII, Théoreme 8]), it is enough to show that the map f — a,(f) is weakly™
continuous on X*, i.e., continuous with respect to the duality o(X*, X). Moreover, since
X is separable, by [4, Theorem 3.28] weak* continuity is equivalent to continuity along
weak™ convergent sequences.

Let (f;) be a sequence weakly* convergent to f, i.e.,

fi(z) = f(x), Ve e X.
By the Uniform Boundedness Principle,

sup || flx+ < oo,
jeN

and by the Lebesgue Dominated Convergence Theorem, we deduce

lim a,(f;) = lim / fi(x)y(dx) / f(z x) = ay(f).
O

If X is a Banach space, it is easily seen that the space X* is contained in L?(X,~) and
the inclusion map j : X* — L?(X,7),

i) =Ff—a(f), feX® (2.3.4)

is continuous because ||7(f)[|r2(x,y) < (cé/2 + c1)]|fllx*, where ¢; and cg are defined in
(2.3.3)). If X is a Fréchet space, then the range of the function j defined in ([2.3.4)) is still
contained in L?(X,v). We define the reproducing kerne as the closure of the range of

the map j.

(W This terminology comes from the general theory of Reproducing Kernel Hilbert Spaces due to N.
Aronszajn, see Theory of Reproducing Kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404 and [29
§IIL.9].
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Definition 2.3.4 (Reproducing kernel). The reproducing kernel is defined by

* . *\ 2
X7 := the closure of j(X*) in L*(X,~), (2.3.5)

i.e. X} consists of all limits in L%(X,v) of sequences of functions j(fn) = fn — ay(fn)
with (fh) C X*.

For the moment we have defined the functions a., 4 in X* and the function B, in

X* x X*. Of course, using formulas (2.2.1), (2.2.2) and (2.1.1) a could be defined in
LY(X,7), B, could be defined in L?*(X,~) x L?*(X,~), and 4 could be defined in the space

of all measurable functions f, but we are not interested to study the extensions of a,, B,
and 4 to such domains. Our attention is restricted here to X7.
The extension of a, to X7 is trivial, since the mean value of every element of X7 is

zero. The extension of B, to X} x X7 is obviously continuous (X} x X7 is endowed with

the L%(X,~) x L*(X,~) norm), and since a, = 0 on X7,

g) = /X F@g@v(de) = (F. )20, fr g € X0

Concerning the extension of 4, still defined by

M) = /X 1@ (dr),

we have the following proposition.

Proposition 2.3.5. Let v be a Gaussian measure on a separable Banach space. Then,

~ 1
() =exo{ I Baxn } - VXS
Proof. Let f € X7 and let gp, = J(fn), fn € X*, be a sequence of functions converging to

fin L%(X,7). Then ay(gn) = 0 for all h € N Using the fact that the map ¢ — e is
1-Lipschitz, we have

|| explion(e)} =~ expif (@)} 2(do)] < [ explion(o)} = explif (@)} 2(do)
/ () — F(2)| 7 (dx)
< / on(2) - F() () 0

Therefore,

e T A L 1 _ 1
3(£) = lim F(gn) = Jim exp{ =By (om0 } = exo{ =2l fllzaoen |-
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Notice that if v is nondegenerate then two different elements of X* define two different
elements of X7, but if v is degenerate two different elements of X* may define elements
coinciding ~-a.e.

We define the operator R, : X3 — (X*)" by

Ry f(g) = /Xf(ﬂf)[g(ﬂ«“) —ay(g)ly(dx),  fe X ge X" (2.3.6)

Observe that
R’Yf(g> = <f7.g - a’y(g)>L2(X,'y)' (237)

It is important to notice that indeed R, maps Xj; into X, if X is a separable Banach
space. This is true also for Fréchet (and, even more genarally, locally convex) spaces, see
[3, Theorem 3.2.3], but the proof is more difficult and we do not need the result in its full
generality.

Proposition 2.3.6. Let X be a separable banach space. Then, the range of R, is contained
in X, i.e., for every f € X there is y € X such that R, f(g) = g(y) for all g € X*.

Proof. As in the proof of Proposition we show that for every f € X the map
g — R, f(g) is weakly* continuous on X*, i.e., continuous with respect to the duality
o(X*, X). By the general duality theory (see e.g. [I, VIII, Théoréme 8]) we deduce that
R, f € X. Recall that, since X is separable, weak® continuity is equivalent to continuity
along weak* convergent sequences. Let then (gr) C X* be weakly* convergent to g, i.e.,
gx(x) — g(x) for every x € X. Then, by the Uniform Boundedness Principle the sequence
(gx) is bounded in X* and by the Dominated Convergence Theorem and Proposition
ay(g1) = a,(g) and

R, f(ge) = /X F@)o(x) — as (i) v(dz)  — /X F@)o(x) - ay(g)] 1(dz) = R, f(9).

O]

Remark 2.3.7. Thanks to Proposition we can identify R, f with the element y € X
representing it, i.e. we shall write

Ryf(9) = g9(R\f), Vge X"

2.4 Exercises

Exercise 2.1. Prove that if 7 is a Gaussian measure and « is not a Dirac measure, then
for any r > 0 and z € X,
v(B(z,r)) < 1.

Exercise 2.2. Let X be an infinite dimensional Banach space. Prove that there is no
nontrivial measure p on X invariant under translations and such that p(B) > 0 for any
ball B. Hint: modify the construction described in the Hilbert case using a sequence of
elements in the unit ball having mutual distance 1/2.
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Exercise 2.3. Prove that a centred Gaussian measure on a Banach space is degenerate
iff there exists X* o f # 0 such that 4(f) = 1 and hence iff there exists a proper closed
subspace V C X with v(V) = 1.

Exercise 2.4. Let v be centred. Prove that for any choice fi,..., fq € X*, setting

P(z) = (fi(@), ..., fa(x)),

v o P71 is the Gaussian measure .4 (0,Q), with Q;; = (fi, fidrex - UL R? — R™ is
another linear map, compute the covariance matrix of vy o (Lo P)™".

Exercise 2.5. Let v = .4 (a, Q) be a nondegenerate Gaussian probability measure on R
Show that

[ Jaltatdn) = (T @ + 215(@2).
Rd
Hint: Consider the function F'(e) = fRd eamzv(dx) and compute F”(0).

Exercise 2.6. Let v be a centred Gaussian measure on a separable Banach space X.
Compute the integrals

/ ef(z)’y(dx), /(f(:c))k’y(da:), ke N
X X

for every f € X*.



Lecture 3

The Cameron—Martin space

In this Lecture X is a separable Fréchet space, and we present the Cameron-Martin space.
It consists of the elements h € X such that the measure v, (B) := (B — h) is absolutely
continuous with respect to . As we shall see, the Cameron-Martin space is fundamental
when dealing with the differential structure in X mainly in connection with integration
by parts formulas.

3.1 The Cameron—Martin space

We start with the definition of the Cameron—Martin space.

Definition 3.1.1 (Cameron-Martin space). For every h € X set
Bla = sup{ f(B) = f € X", [i(N)p2x <1, (3.1.1)

where j : X* — L%*(X,7) is the inclusion defined in (2.3.4). The Cameron-Martin space
1s defined by
H = {h €X: |hlw< oo}. (3.1.2)

If Xis a Banach space, calling ¢ the norm of j : X* — L?(X, ), we have

[Pllx = sup{f(h) : [fllx- <1} <sup{f(h): [(F)lr2xy) <cp =clhla,  (3.1.3)

and then H is continuously embedded in X. We shall see that this embedding is even
compact and that the norms || - ||x and |- |z are not equivalent in H, in general.

The Cameron-Martin space inherits a natural Hilbert space structure from the space
X through the L?(X,~) Hilbert structure.

Proposition 3.1.2. An element h € X belongs to H if and only if there is h € X2 such
that h = RJL. In this case,
(M = (Rl L2(x ) (3.1.4)

27
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Therefore Ry : XJ — H is an isometry and H is a Hilbert space with the inner product

[, k] = <ilvl%>L2(X,'y)
whenever h = RJL, k= Ryl%.
Proof. If |h|g < 0o, we define the linear map L : j(X*) — R setting
L@ () = f(h),  VfeX"
Such map is well-defined since the estimate
(W < 72 x ) 1Pl (3.1.5)

that comes from (3.1.1)), implies that if j(f1) = j(f2), then fi(h) = fa(h). The map L is
also continuous with respect to the L? topology again by estimate (3.1.5). Then L can
be continuously extended to X7; by the Riesz representation theorem there is a unique

h e X7 such that the extensmn (still denoted by L) is given by

gb Yh(z) y(dz), Vo € X2
In particular, for any f € X*,
£ = L) = [ A0 @hia) lde) = 77,1, (3.1.6)
therefore R,h = h and
(Bl = sup{ £(h) : f € X", 13(A) ez < 1) = Dhllezcxa)

Conversely, if h = RJL, then for every f € X* we have

f(h) = /Xj(f)(ﬂﬁ)il(w)v(dﬂf) < ol 2 x 132 x): (3.1.7)

by (3.1.6)), whence |h|g < oco. O

The space L?(X, ) (hence its subspace X7 as well) is separable, because X is separable,
see e.g. |4, Theorem 4.13]. Therefore, H, being isometric to a separable space, is separable.

Remark 3.1.3. The map R, : X7 — X can be defined directly using the Bochner integral
through the formula

Rf = /X (x — a) f(2) 7(dz),

where a is the mean of 7. We do not assume the knowledge of Bochner integral. We shall
say something about it in one of the following lectures.
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Before going on, let us describe the finite dimensional case X = R?. If 4y = A4 (a, Q)
then for f € R? we have

3y = [ o =) F A (@ Q)(da) = @) f

and therefore |h|p is finite if and only if A € Q(R?) and, as a consequence, H = Q(R?)
is the range of ). According to the notation introduced in Proposition if v is
nondegenerate, namely () is invertible, h = Rvﬁ iff h(x) = (Q'h,z)ga. Moreover, if
is nondegenerate the measures 7y, defined by ~,(B) = (B — h) are all equivalent to 7 in
the sense of Section [I.1] and an elementary computation shows that, writing v, = op7y, we
have

on(z) = exp{(Qilh) cx— %|h|2} = exp{iz(m) - %]h!Z}

In the infinite dimensional case the situation is completely different. We start with a
preliminary result.

Lemma 3.1.4. For any g € XJ, the measure

_ Lo
fg = eXp{g - §HQHL2(X,7)}7
is a Gaussian measure with characteristic function
~ . . 1.
fig() = exp{if (Ryg) + o (1) = 513D Becxny |- (3.1.8)

Proof. First of all, we notice that the image of v under the measurable function g : X — R
is still a Gaussian measure given by 4/(0, [|g||7. (x 7)) thanks to Proposition Indeed,

. _ L, 2.2
Y(tg) = ea:p{ §||g||2t } for all t € R,
and then 4(tg) can also be computed by
| explita(@)tdn) = [ explitryog™)dr = lyog™)0).

Therefore,

/X exp{lg(a)]} 7(dz) = /R el A0, 1lg132(x ) () < o0,

hence exp{|g|} € L'(X,7) and pu, is a finite measure. In addition, p, is a probability
measure since

1o(X) = [ exp{ota) = Flolfz (o)

1
:eXP{—2H9|%2(X,7)}/Ret°/’/(0, ||9||%2(X,7))(dt) = 1.
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In order to prove that (3.1.8)) holds, we observe that for every ¢ € R we have

exp{ ~3lola0x) } [ explitf@) ~ to(a))} 1 (da)
=exp{ S loll22(x 30~ 19)

1 , L.
= exp{ =3 19122x.) pexp{iay (f —t9) = 5 13(F ~t0)3ex) }

142

= exp{t/(Ryg) — 50l + aa() = 313D se -

As [y exp{alg(z)|}y(dz) < oo for all & > 0 (which can be proved exactly as at the
beginning of the proof of Lemma the functions

2 exp{ 2 lgl3ax ) /X exp{i(f(x) - 29(2))} 7(de)

1+ 22

. 1.
2 exp{2f(Rag) = —= N9l + i () = 5150y |

are entire holomorphic and coincide for z € R, hence they coincide in C. In particular,
taking z = ¢ we obtain

() = exp{ias (1)~ 13 P Baxsy +iRoa(F)

0
Theorem 3.1.5 (Cameron-Martin Theorem). For h € X, define the measure vy,(B) =
v(B —h). If h € H the measure 7y, is equivalent to vy and vy, = op7y, with
~ 1
on(z) = exp{h(w) - §|h|12q}, (3.1.9)

where h = R;lh. If h ¢ H then ~, L . Hence, v, = if and only if h € H.

Proof. For h € H, let us compute the characteristic function of ;. For any f € X* we
have

() = /X exp{if (2)} yn(de) = /X exp{if (z + h)} 7(da)

~ 1
= exp{if (R, h) +iay(F) = S1i(Paxsy }o - FEXT

Taking into account Lemma [3.1.4] and Proposition [2.1.2] we obtain ~, = gy, where the
density op is given by .

Now, let us see that if h ¢ H then ~, L ~. To this aim, let us first consider the
1-dimensional case. If v is a Dirac measure in R, then v, L «+ for any h # 0 and
|y — 41|(R) = 2. Otherwise, if v = .4 (a,0?) is a nondegenerate Gaussian measure in R,
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then ~y, < v with C%h( ) = exp{— Qh— At a)} We can apply Theorem [1.1.12| (Hellinger)
with A = 7, whence by Exercise [3.2]
h2
H(y,vn) = exp{—@}, (3.1.10)
and then ([1.1.7)) implies
1
Y — l(R) > 2 <l—exp{—&‘2h2}>. (3.1.11)

In any case, (3.1.11f) holds true.
Let us go back to X. For every f € X*, using just the definition, it is immediate to

verify that v, o f~1 = (yo f~ 1)f(h) and

Yo f™ = (vof ™) pmlR) < |y —l(X). (3.1.12)
If h ¢ H, there exists a sequence (f,) C X* with [l5(fn)|lr2(x,) = 1 and frn(h) > n. By

and we obtain
= Wl(X) 2 [(vo £ = (vo £ ) | (R) 2 2 (1 _eXp{_;fn(h)QD

1
>9(1- {—f 2} .
> ( expy —gn )
This implies that |y — v,|(X) = 2, hence by Corollary [1.1.13} v, L ~. O

From now on, we denote by B (0,7) the open ball of centre 0 and radius r in H and
by EH(O7 r) its closure in H. In the proof of Theorem we need the following result.

Proposition 3.1.6. If A € B(X) is such that y(A) > 0, then there is v > 0 such that
BH(0,r) c A—- A.

Proof. Let us introduce the function H 3 h s ¢(h) :=v((A+ h) N A), i.e

o(h) = /X Lz — h)lLa(x) 7(da).

We claim that
liminf ¢(h) > v(A).

|h‘H4>0
Assume first that A is open. For ¢ > 0 define
As ={x € A: dist (z, A°) > e}.
Then A. C (A+ h)N A for all h € X with ||h||x < &, and therefore

v(4Ae) < ﬁlﬁi inf $(h).
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Since v(A4¢) — 7(A) as € — 0, one obtains y(A) < liminf), 0 #(h).
To prove the claim for every measurable set A, notice that lim,|,, o v(A+h) = y(A).

Indeed, since the image measure of v under h is .4 (0, |h|%;), we have

V(A + h) — A(A4)] < /

X

<J.

and the right hand side vanishes as |h|g — 0 by the Dominated Convergence Theorem.

Let now A be a measurable set. We have seen in the proof of Proposition that
for any € > 0 there exists an open set Ac D A such that y(A: \ A) < e. Therefore, for
h € H we have

exp{ (o) = 311l }-1] 1) 2 (d2)

1
exp{ il - 21%}—1] (),

(A+h)ﬂAQ [(Ae+h)ﬂAe]\[((AS\A)+h)U(A6\A)]§

hence
Y((A+h)MA) = v((As + ) N Az) = 7((A \ A) + h) — (4 \ 4).

By the first part of the proof,

liminfy((A: + h) N As) > v(Ae)

|h|H—>0
and then
lminfy((A+h)NA) > v(Ae) —27(Ac \ A) > v(A) —2¢ >0

‘h‘H—>O

if e < y(A)/2. Then there is r > 0 such that ¢(h) > 0 for |h|g < r and therefore for any
|h|lg <7, (A+h)NA# 0, sothat BY(0,r) c A— A. O

We give the following technical result that we shall need for instance in the proof of
Theorem |3.1.9 it will be rephrased with a probabilistic language in the sequel.

Lemma 3.1.7. Let f,g € X* and set T : X — R?, T(z) := (f(x),g(z)). Then
yoT ™t =(yof )@ (yog™)
iff (f) and j(g) are orthogonal in L*(X,7).

Proof. We just compute the characteristic function. For every ¢ € R? we have

—

Vo Tol(E) = /X exp{i€(T ()} (dr) = /X expli(é1f + £29)(2)}y(da)

=exp {i&aw(f) + i62a4(9) — %Hj(flf + 529)”%2()(,7)} :
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On the other hand, if u = (yo f7!) ® (yo g~ 1), then

A6) = (Yo /)& (Y o g 1) (&)

. . &, &
= exp {151a7(f) +i&2a5(9) = SN2 x ) = S 1@ T20x )
whence the conclusion, since

561 f + &9)I72(x ) = ENTDIT2x ) + ENF (N 2(x 1)
if and only if (f, g)r2(x ) = 0. O

Let us show that it is always possible to consider orthonormal bases in X made by
elements of j(X™*); this fact can be useful in some proofs.

Lemma 3.1.8. There exists an orthonormal basis of X’ contained in j(X*).

Proof. Let F = {fx: k € N} be a dense sequence in j(X*), which is a pre-Hilbert space
when endowed with the L?(X,~) inner product. Starting from F, by the Gram-Schmidt
procedure (see e.g. [I8, Theorem V.2.1]), we can build an orthonormal basis of j(X*), say
{ex : k € N}. Then, {e; : k € N} is an orthonormal basis of X as well. O

Theorem 3.1.9. Let v be a Gaussian measure in a separable Banach space X, and let H
be its Cameron—Martin space. The following statements hold.

(i) The unit ball BH(0,1) of H is relatively compact in X and hence the embedding
H — X is compact.

(ii) If v is centred then H is the intersection of all the Borel full measure subspaces of

X.
(ii) If 7y is centred and X7 is infinite dimensional then y(H) = 0.

Proof. (i) It is sufficient to prove that B (0,r) is relatively compact in X for some r > 0.
Fix any compact set K C X with v(K) > 0 (such a set exists by Proposition ; by
Lemma @ there is 7 > 0 such that the ball B¥(0,r) is contained in the compact set
K — K, which implies that EH(O, r) is contained in K — K and the proof is complete.
(ii) Let V be a subspace of X with v(V') =1 and fix h € H; by Theorem

A 1
AV =) = (V) = [ exp{hia) - 51l } 2(do)
v
- 1
= [ expih(z) — =|h|%4 { y(dz) = 1.
| exo{ia) = 5init } )
This implies that h € V, since otherwise V N (V — h) = () and we would have

L= ~(X) =/ (V)+7(V —h) =2,
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a contradiction. Therefore, H C V for all subspaces V of full measure.

To prove that the intersection of all subspaces of X with full measure is contained in
H, fixed any h ¢ H, we construct a full measure subspace V' such that h ¢ V. If h ¢ H,
then |h|g = oo and there is a sequence (fy) C X* with ||j(fn)lz2(x,,) = 1 and frn(h) > n.
Since

> 7 [ @) < 32 i e <0
n=1

n=1

the subspace
oo
. 1. :
V.= {33 € X : the series E —5J(fn)(z) is convergent } (3.1.13)
n=1 n

(which is a Borel set, see Exercise has full measure, and h ¢ V.
(iii) Let us assume that X7 is infinite dimensional. Then, there exists an orthonormal basis
{fn: neN} C X* (seelemmaf3.1.8) of X7; in particular for any n € N, yof b= 4(0,1).
For every M > 0 and n € N we have

Y{zx e X ¢ |fu(z)| < M}) = A(0,1) (=M, M) =: apr < 1;
as a consequence, since the functions f,, are mutually orthogonal, by Lemma we have

Y{r e X |fu(x)| <M fork=1,...,n})=a}y;, -0 asn— oo

and then

7({:U€X: sup | fu(2)| gM}) :fy(ﬂ{zEX: | f()] gM,kzzl,...,n}> —0.

neN neN

Since {fn : n € N} C X* is an orthonormal basis of X7, for any h € H we have

BIE = 10032 = D fn M i2(xy = D fa(B).
n=1 n=1

Therefore

H = {x €X: ;fn(a:)Q < oo} c]\go{xeX: itelg\fn(x)l SM}

and it has measure 0. O

We close this lecture with a couple of properties of the reproducing kernel and of the
Cameron—Martin space. Then we see that the norm of the space X is somehow irrelevant
in the theory, in the sense that the Cameron—Martin space remains unchanged if we replace
the norm of X by a weaker norm.
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Proposition 3.1.10. Let v be a Gaussian measure on a Banach space X. Let us assume
that X is continuously embedded in another Banach spaceY , i.e., there exists a continuous
injection i : X — Y. Then the image measure vy := yoi ' in Y is Gaussian and the
Cameron—Martin space H associated with the measure v is isomorphic to the Cameron—
Martin space Hy associated with the measure vy in Y.

Proof. Let f € Y*; then f oi € X* by the continuity of the injection i. Moreover
e oi) = [ f)2td0) = [ £ () = ary (1)

Denoting by jy : Y* — Y* the inclusion of Y* into L3(Y,7y), we have j(foi) = jy(f)oi
and

13(f 0 D3axy = /X 3(f 0 1)(@) y(de) = / I (F) @) (dy) = 1y (DB

Y
We prove now that i : H — Hy is an isometry. First of all, i(h) € Hy for any h € H since
for any f € Y*

AR = 1(f o) (h)| < li(f o D)ll2(x ) bl
and then
|i(h) |y = sup{f(i(h)) : f € Y, liy (N)llr2(vmy) < 1} < [hlg < oo
Hence i(H) C Hy and
i(h)|ry < |Blm- (3.1.14)

We prove now the inclusion Hy C i(H); since i(X) has full measure in Y, we have
Hy C i(X) by statement (ii) of Theorem Then, for any hy € Hy, there exists a
unique h € X with i(h) = hy; since

(B —hy) =" (B) = h),
hy € Hy if and only if h € H. In this case

(B =) = [ expffin () = glhv i, } ()

. 1.
= [y el tite) = Slhr iy ()
is equal to
—1 ? Lo
W B - = [ exp{ile) — Al }(da).
i~}(B)

This implies

. 1 . 1

hy (i(x)) = 5 lhy i, = h(z) = Slhl (3.1.15)
for y-a.e. € X. By (3.1.14) we obtain hy (i(z)) — h(z) < 0 for y-a.e. € X, and then,

since

J (i)~ b)) 2o = [ ) av ) = [ i) (dn) <o

we conclude that hy (i(z)) = h(z) for v-a.e. = € X and then by (3.1.13) |hy|m, =
|i(h)|my = |hla- O
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3.2 Exercises 3

Exercise 3.1. Prove that the space V in (3.1.13)) is a Borel set.
Exercise 3.2. Show that (3.1.10]) holds.

Exercise 3.3. Let v be the measure on R? defined by
v(B)=m{x € R: (z,0) € B}), B € B(R?).
Prove that the Cameron—Martin space H is given by R x {0}.

Exercise 3.4. Let vy, u be equivalent Gaussian measures in X, and denote by H,, H,, the
associated Cameron-Martin spaces. Prove that for every x € X, v € H, iff z € H,,, and
if in addition v and 1 are centred, then X7 = X . Prove that if v, u are centred Gaussian
measures in X such that v L p, then v, L p,, for all z, y € X.

Exercise 3.5. Prove that the Cameron—Martin space is invariant by translation, i.e. for
any x € X, the measure

V2(B) =y(B—=z), VBeHAX)

has the same Cameron—Martin space as 7 even if v, L 7.



Lecture 4

Examples

In this Lecture we present two basic examples that provide in some sense the extreme
cases. The first one is R, which is not even a Banach space, but, being a countable
product of real lines, admits a canonical product Gaussian measure which generalises
Proposition The second example is a Hilbert space, whose richer structure allows
a more detailed, though simplified, description of the framework. After presenting the
relevant Gaussian measures in these spaces, we describe the Reproducing Kernel X and
the Cameron—Martin space H.

4.1 The product R*

The space R! of all the real functions defined in the set I is the only example of non Banach
space that is relevant in our lectures. Its importance comes both from some “universal”
properties it enjoys and (even more) from the fact that it appears naturally when dealing
with stochastic processes, in particular with the Brownian motion. Here, we restrict our
attention to the countable case, i.e., R® := RN, the space of all the real sequences. It is
obviously a vector space, that we endow with a metrisable locally convex topology coming

from the family of semi-norms pg(z) := |xg|, where x = (xg)reny € R*®. A distance is
defined as follows,
o~ Lz — il
dla,y) =S — Tk YRl
(#9) ;2k1+’xk_yk’

It is easily seen that under this metric every Cauchy sequence is convergent, hence R*
turns out to be a Fréchet space. Moreover, the subspace R2° of finite sequences, namely
the sequences (x) that vanish eventually, is isomorphic to the topological dual of R>,
under the obvious isomorphism (see Exercise [4.1](i))

RS® > (&) — f, flx) = kaxk (finite sum) .

k=1

37



38

The elements of R2® with rational entries are a countable dense set, hence R* is separable.
The cylindrical o-algebra & (R*°) is generated by the sets of the form

{x eR*: (z1,...,25) € B,B € %’(R”“)}.

According to Definition [1.1.10] we consider the cylindrical o—algebra & (R, F') with F' :=
{6j, j € N}, generated by the evaluations d;(x) := x;. By Theorem m, it coincides
with the Borel g-algebra. According to Remark [I.1.18] we endow R* with the product

measure

= ®’yl (4.1.1)

keN

where v, is the standard Gaussian measure. As in the Banach space case, we say that

a probability measure p in R* is Gaussian if for every & € RS the measure o £t is

Gaussian on R. Moreover, it is easily seen that Theorem holds in R* as well, see [3,
Theorem 2.2.4]. Finally, 7 is obviously a Gaussian measure.

Theorem 4.1.1. The countable product measure v on R* is a centred Gaussian measure.
Its characteristic function is

N . 1 G 21 _1 2 o]
A(8) = exp{ » 2l f=exp{-3lelR},  cerx, (41.2)
the Reproducing Kernel is

x;={f e A®R®9): f) = > G (6) € 2}

and the Cameron-Martin space H is (2.

Proof. We compute the characteristic function of 7. For f(z) = Y, &g, with 2 € R™
and £ € RZ° we have

A(f) = / _explif(z)}(dr) = /]R . exp{z‘;gkmk} §71<dx> (4.1.3)

I [ explizng) a(dm) = [Texo{~Li6} = exp{~Llei ).
k=1"R

k=1

According to Theorem v is a Gaussian measure with mean a, = 0 and covariance

B,(&,€) = Il
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Let us come to the Cameron-Martin space. Since the mean of v is 0, for every f =
(&) € R we have

0y = [ ]Zskwk] (@)= [ > fad + 3 urm | ()
pr
:Z&%/Rfvi%(dxk)+ijfk:/Rij'7(dxj)/Rﬂ3k’Y(d$k)
k

ik
=Y &=z
k

(we recall that all sums are finite) and this shows that X7, being the closure of j (X ) = X,
consists of all the functions f(z) = >, &g, with (&) € £2, see Exercise ii). On the
other hand, for any sequence h = (hy) € R*> we have

Bl =sup{ f(h) s € X*, (Nl <1}
- sup{zskhk ¢ERY, Z &2 <1} = hlle,

and then H coincides with £2. O

Remark 4.1.2. It is possible to consider more general Gaussian measures on R, i.e.,

=) A (ar, \r). (4.1.4)
k=1
In this case,
[o.¢] 1 o
£) = exp{i > = ZAkgg}, €= (&) € R®, (4.1.5)
k=1 k=1

where as before all the sums contain a finite number of nonzero terms. Let us show that
if (a) € £2 and Y, A\, < oo then p is concentrated on ¢2, i.e., u(¢?) = 1. Indeed

LS lonPutde) = 3 [l o nAe)ldn) = 3- A+ D e < oc.
R =1 k=1"R k=1 k=1

Then ||z]|,2 < 0o p-a.e in R*, hence u(¢?) =1

4.2 The Hilbert space case

Let X be an infinite dimensional separable Hilbert space, with norm || - ||x and inner
product (-,-)x. As usual, we identify X* with X via the Riesz representation.

We say that an operator L € £(X) is nonnegative if (Lz,x)x > 0 for all x € X. We
also recall that an operator L € L£(X) is compact if (and only if) L is the limit in the
operator norm of a sequence of finite rank operators. Then, we have the following result.
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Proposition 4.2.1. Let L be a self-adjoint nonnegative bounded linear operator on X . If
there is an orthonormal basis {fi : k € N} of X such that

Nk

T:= (Lfk, fr)x < oo (4.2.1)

b
Il

1

then L is compact.

Proof. Without loss of generality, assume that ||L[|;(x) = 1. For every n € N, let X, be
the linear span of {fi,..., fn}. Let P, be the orthogonal projection onto X,, and define
the finite rank operator L, = P,LP,. It is nonnegative and self-adjoint, ||Ln|lcx) < 1,
and the equality

(L frs fo)x = (Lfx, fr) x

holds for every k = 1,...,n. Denoting by LY/? the square root of L, we have HL}Z/kaH%( =
(Lfy, fr)x for k=1,...,n, whence

n
SOIL2felk <T VneN.
k=1

From ||Ly/?|ex) < 1 it follows that | Lo fil% < L& 1% LY fall% < [1L1 2 fill% for
k=1...,nand

n n
Do Iafeli < DI flk < te(L) VneN.
k=1 k=1

Notice that for £k = 1,...,m and n > m we have L, fi = P,Lf;. therefore, for every
m € N and lim,, .o L, fx = Lfr. Therefore, for every m € N we have

D ILfillk = lim Y | Lafillk <T
k=1 k=1

and then letting m — oo
o0
SN ILAl% < T (4.2.2)
k=1

Using (4.2.2)) we prove that L is compact. Let

oo

anZ@n,fk)ka — 0 weakly.
k=1

Then, (z,,) is bounded, say ||z,|x < M for any n € N. Moreover,

o0

Lan =Y (n, fi)x Lfx

k=1
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whence for every N € N we have

00 N 00
|Z@allx < D1 n fidxlILfilx = Y ans fe)xlIZFellx + 3 1@as fidxllLfillx
k=1 k=1 k=N+1
N 00 ) 1/2
<> Haws Sl + M (Y2 L)
k=1 k=N+1

and for every € > 0 there is N € N such that the second term is < ¢ because the series in
(4.2.2)) is convergent. Once this IV has been fixed, there is v > 0 such that the first term
is < ¢ for n > v by the weak convergence of the sequence (x,) to 0. So, (Lz,) converges
in X and L is compact. O

Let us recall that if L is a compact operator on X, the spectrum of L is at most
countable and if the spectrum is infinite it consists of a sequence of eigenvalues (\;) that
can cluster only at 0. If L is compact and self-adjoint, there is an orthonormal basis of X
consisting of eigenvectors, see e.g. [4, Theorem 6.11]. Moreover, L has the representation

o0
Lr=> Melz,er)x, 2€X, (4.2.3)
k=1

where {ej : k € N} is an orthonormal basis of eigenvectors and Ley = Agey for any k € N.
If in addition L is nonnegative, then its eigenvalues are nonnegative.

Lemma 4.2.2. Fvery operator that can be written in the form
o0
Lx = Zak<x’fk>kaa
k=1
for some orthonormal basis { fi : k € N} with (o) C R, limg_,00 o = 0, is compact.

Proof. Let us show that L is the limit in the operator norm of the sequence of finite rank

operators
n
Loz =Y apla, fi)x fi-
k=1
Indeed,
o0
|Lo = Lozlx = || 32 awle. fox | < suplaxlliz]x,
X k>n
k=n+1
whence ||L — Ly||g(x) < $upgs,, |ax| — 0 because ap — 0 as k — oo. O

It follows that if L is a nonnegative self-adjoint compact operator and {ey : k € N} is
an orthonormal basis of eigenvectors with Lep = Aper. We may define the square root of
L by

LY2g = Z )\llg/2<x, €k) X k-
k=1
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The operator L'/2 is obviously self-adjoint, and it is also compact by Lemma m

Let us show that if L € £(X) verifies the hypotheses of Proposition [4.2.1] then the
sum in is independent of the basis. Indeed, if {f; : k € N} satisfies (4.2.1)) and
{en : n € N} a the basis of eigenvectors, we have

> (Lfe fr)x = i<L(§:<fk,6n>X6n>, i(fk,€m>xem>x

8

k=1 k=1 n=1 m=1
- ZZ Z<<fkyen>XL€n, (fk,em>xem>X
k=1n=1m=1
- ZZ Z >\n<<fk,€n>X€n, <fk76m>X6m>X
k=1n=1m=1
_ZZ)\ fk)enX—ZAn
k=1n=1

The same computation with any orthonormal basis {gr : k € N} shows that the sum is
independent of the basis and is finite for any basis if it is finite for one. So, we may define
the trace-class operators.

Definition 4.2.3 (Trace-class operators). A nonnegative self-adjoint operator L € L(X)
is of trace-class or nuclear if there is an orthonormal basis {e : k € N} of X such that

[o¢]
Z Ley,er)x < 00
k=1

and the trace of L is
o0

tr(L) ==Y (Leg, ex)x (4.2.4)

k=1

for any orthonormal basis {ey, : k € N} of X.

For a complete treatment of the present matter we refer e.g. to [10, §VI.5], [I1} §§XI.6,
X1.9].

Let v be a Gaussian measure in X. According to Theorem [2.2.4] and (2.2.1f), (2.2.2)
we have

3(1) = exp{ia, () = 3B, (. D)}, fe X,

where the linear mapping a, : X* — R and the bilinear symmetric mapping B, : X™* X
X* — R are continuous by Proposition [2.3.3] Then, there are a € X and a self-adjoint

Q € L£(X) such that a,(f) = (f,a)x and B,(f,9) = (Qf,9)x for every f, g€ X* =X
(see Exercise [1.2). So,

(QFf.g)x = /X (f.z— ahxg,x — a)x1(dz), f, g€ X, (4.2.5)
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and

30 = eo{ilf by - 3 (@F f)x ) fex (126)

We denote by A4 (a,Q) the Gaussian measure vy whose Fourier transform is given by
. As in finite dimension, a is called the mean and (@ is called the covariance of ~.

The following theorem is analogous to Theorem but there is an important differ-
ence. In Theorem [2.2.4] a measure is given and we give a criterion to see if it is Gaussian.
Instead, in Theorem we characterise all Gaussian measures in X.

Theorem 4.2.4. If v is a Gaussian measure on X then its characteristic function is
given by , where a € X and Q is a self-adjoint nonnegative trace-class operator.
Conwversely, for every a € X and for every nonnegative self-adjoint trace-class operator @Q,
the function 4 in s the characteristic function of a Gaussian measure with mean
a and covariance operator Q.

Proof. Let v be a Gaussian measure and let 4 be its characteristic function, given by
(4.2.6). The vector a is the mean of v by definition, and the symmetry of ) follows from
the fact that the bilinear form B, is symmetric. By , @ is nonnegative, and for
every orthonormal basis {ej : k € N} we have

S (Qer ex)x Z / - a0k 1(dn) = [ o= ally (o)
k=1

which is finite by Corollary Therefore, @) is a trace-class operator.

Conversely, let @) be a self-adjoint nonnegative trace-class operator. Then @ is given
by

Qz =Y Mnlx, ex)xex,

k=1

where A\, > 0 for all k € N, >, Ay < oo and {e : k € N} is an orthonormal basis of
eigenvectors such that Qe = Apep for any k € N. Let us consider the measure p on R*®
defined by (4.1.4) and its characteristic function,

§)ZGXP{Z'Z&%—%Z)\M&!Q}; §eRT
k=1 k=1

(recall that the series contains only a finite number of nonzero elements). Let u : 2 — X
be defined by u(y) = Y 2o ykex (and extended arbitrarily in the p-negligible set R\ ¢2,
see Remark [4.1.2)). Let us show that v := pou~! and let us prove that v = 4 (a, Q) by
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computing its characteristic function. For z € R2°, setting z = u(y) we have

—

(pou=t)(x) = exp{i(z, S xrer) x } ( ou_l)(dz)
7 /X p ; rer)x } (1

- /Roo exp{ i yei b u(dy)
/gz eXp{ Zw’“yk} ®=/V ag; Ar)(dy)

k=1
= exp{izgvkak —3 Z)\k:r%}
k=1 k=1
= exp{i(x,a>x - %(Qaz,x)x}.

By Theorem (wowu=1) is the characteristic function of a unique Gaussian measure
with mean a and covariance Q. O

Remark 4.2.5. Since in infinite dimensions the identity is not a trace-class operator,
the function = — exp{—3|z||%} cannot be the characteristic function of any Gaussian
measure on X.

As a consequence of Theorem [4.2.4] we compute the best constant in Theorem [2.3.]]
(Fernique).

Proposition 4.2.6. Let v = A (a,Q) be a Gaussian measure on X and let (\;) be the
sequence of the eigenvalues of Q. If v is not a Dirac measure, the integral

/ explale]%} v(dz)
X

is finite if and only if

a < 1nf{ AR > O} . (4.2.7)

22Xk

Proof. Let {er : k € N} be an orthonormal basis of eigenvectors of @, and Qe = Apeg
for any k£ € N. For every a > 0, we compute

2 = ex « 3 > a
fewtaleliyatin = [ ew{ad et} @4 (o r@
-11 / exp{aat} A (ag, \e) (da)
= H exp{aai} H

k:Ap=0 k:Ap>0

m/exp{axk}exp{—s\(xk—ak) }dxk.




45

If o > (2\;)~! for some k € N then the integral with respect to dzy is infinite, and the
function z — exp{a/| z||?} is not in L(X,v). If < inf {ﬁ DA > 0} then each integral
is finite and we have

2
aay
— 20

} ! (4.2.8)

1
2 _ —a)? =
/ exp{axi} exp{ I (g — ag) } dzxy, exp{ . T an

1
V2 AL Jr

for every k € N. Therefore

| explallel}} (o)
X

—enfe 3 at}emfe 32 Yol 3 ()

k:2x=0 k:Ag>0 k:Ag>0
The convergence of the series follows from ), A < oo. O]

Let us characterise X7 and the Cameron-Martin space H. By definition, X7 is the
closure of j(X*) in L?(X,v). For the rest of the lecture, if v = A4 (a,Q) we fix an
orthonormal basis {ej : k € N} of eigenvectors of @) such that Qe = A\xey, for any k € N
and for every z € X, k € N, we set xy, := (z,ep)x

Theorem 4.2.7. Let v = A (a,Q) be a nondegenerate Gaussian measure in X. The
space X7 is

Mg

{f X SR f(z T — ag)2kAg /,zeX} (4.2.9)

k:l

and the Cameron-Martin space is the range of QY/2, i.e.,

H = {a: eX: Y ain'< oo}. (4.2.10)
k=1
For h=QY?z € H, we have
= (@ — an)zA, (4.2.11)
k=1
and
[h kg = (QY2h,Q Y?k)x VY hkeH. (4.2.12)

Proof. Let z € X. The sequence

n

fn(z) = Z(:E’f - ak)zk)\,;l/2

k=1
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converges in L?(X, ), since for m > n,

m

1 fm = fallZzx ) = Z A Zk/ ok — ag)? AN (ag, \e) (dag) = D 27,
k=n+1 k=n+1
and the limit function f(z) =Y o (zk — ak)zk)\;lﬂ satisfies
112 x ) = ZA;@ Zk/ wr, = ag)* A (ag, M) (dg) = ||2]% - (4.2.13)

Moreover, for every n € N, f,, = j(gn), with g, € X*,

- /
—-1/2
:E A zp T
k=1

So, denoting by V the set in the right hand side of , V' is contained in the closure
of j(X*) in L*(X,~), which is precisely X*.

Let us show that X7 C V. Let f € X and let (w™) C X be a sequence such that
ful@) = (& — a,w™)x converges to f in L?(X,7). Setting 2™ := QY2w™ we have
Falz) = 3200 (a — ar) 2V A, /%, and by [@213),

HZ ™) -z (m) HX = Hf'fl _meL2(X,’y)7 n, m € N,

so that (z(")) is a Cauchy sequence, and it converges to some z € X. Then, still by

1)
(1@ =S - zkxl/Q)ny(dx)

k=1
o) 2
L —1/2
= lim <Z zp—ak) (2, — 26) A\, > v(dzx)
k=1
Jim [|22 = 2[5 = 0,

so that fe V.

Let us come to the Cameron-Martin space. We know that H is the range of R, : X7 —
X, and that R, f = h iff (f,7(9))r2(x,4) = g(h) for every g € X™.

leenozjny fe Xy, flx) = Zk:l(l’k - ak)zk)\;l/g for some z € X, and g € X7,
g(x) = > 77 gkr, we have

o0

/ f(@)j(g)(@)y(dz) Z 2 — ap)2a N, P gry(de) = sz)\k/

X X k=1 k=1

This is equal to g(h) for h = > 77, zk)\k/zek, namely h = Q'/22. So, by definition R, f =
Q'Y2z, hence H = QY2(X) and for h = Q'/2z we have h(z) = Y opey (g ak))\ 1/2 2k,
nmely (4.2.11) holds. It implies that for every h,k € H we have [k, k]y = (h, k) 2(Xpy) =
<Q 1/2h,Q 1/2k> ) n
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4.3 Exercises

Exercise 4.1. (i) Prove that the dual space of R* is R2°.

(ii) Prove that the embedding ¢ : (€2,] - ||;2) = (RY,d) is continuous and is the unique
continuous extension of ¢+ : (RN, || - ||;2) = (RN, d).

Exercise 4.2. Let X be a real Hilbert space, and let B : X x X — R be bilinear, symmetric
and continuous. Prove that there exists a unique self-adjoint operator @) € £(X) such that
B(z,y) = (Qz,y)x, for every z, y € X.

Exercise 4.3. Let L : /> — (2 be the operator defined by Lz = (2,21, 74, 23....), for
x = (21,...7p,...) € £2. Show that L is self-adjoint and (Leg,ex),2 = 0 and that L is not
compact.

Exercise 4.4. Check the computation of the integral in (4.2.8]).

Exercise 4.5. Prove that if X is a separable Hilbert space, then h € R,(j(X™)) if and
only if h = Qz, x € X, and that in this case |h|g = || Qx| x.

Exercise 4.6. Modify the proof of Theorem [4.2.7] in order to consider also degenerate
Gaussian measures.

Exercise 4.7. Show that ¢2 is a Borel measurable subset of RY.
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Lecture 5

The Brownian motion

In this and in the next Lecture we present a very important example: the classical Wiener
space, which is to some extent the basic and main reference example of the theory. To do
this, we introduce the Wiener measure and we define the Brownian motion. With these
tools, in the next Lecture we shall define the stochastic integral and we shall use it to
characterise the reproducing kernel X when + is the Wiener measure on X = C([0, 1]),
the Banach space of real valued continuous functions. For the material of this chapter we
refer the reader for instance to the books [2, 0.

5.1 Some notions from Probability Theory

In this section we recall a few notions of probability theory. As in Definition [I.1.2] a
probability is nothing but a positive measure P on a measurable (or probability) space
(Q,.7) such that P(Q2) = 1.

Any measurable R%valued function defined on a a probability space (£2,.%,P) is called
random variable. Usually, random variables are denoted by the last letters of the alphabet.

Using the image measure, we call P o X! the law of the R%valued random variable
X : Q — R% The law of a random variable is obviously a probability measure.

Given a real valued random variable X € L'(Q,.%,P), we denote by

E[X] = /Q XdP

the average or the expectation of X. We also define the variance of the real random variable
X, in case X € L?(Q,.7,P), as

Var[X] = E[(X — E[X])?] = /Q(X — E[X])2dP.

Let us introduce the notion of stochastic process.

49
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Definition 5.1.1. A stochastic process (Xi)ier on a probability space (Q2,.7,P) indexed
on the interval [0,1] is a function X : [0,1] x Q@ — R such that for any t € [0,1] the
function X;(-) = X (t,-) is a random variable on (Q, F,P).

We give now the notion of independence, both for sets and for functions. Notice that
a measurable set is often called event in the present context.

Definition 5.1.2 (Independence). Let (2,.%,P) be a probability space. Two sets or events
A, B € F are independent if

P(AN B) = P(A) - P(B).

Two sub-o-algebras F1, Fo of F are independent if any set A € %1 is independent of any
set B € %y, that is

P(ANB) =P(A)-P(B), VAec.F,VBec P

Gwen a real random variable X and F' sub-o-algebra contained in F, we say that X
is independent of F' if the o-algebras o(X) and F' are independent . Two random
variables X and Y are independent if o(X) and o(Y') are independent. Two stochastic
processes (Xi¢)ier and (Yi)ier are independent if o(X;) and o(Ys) are independent for any
t,sel.

One of the first properties of independence is expressed in the following

Proposition 5.1.3. Let X andY be two independent real random variables on (Q, #,P).
If X,Y,X .Y € LY(Q,.Z,P), then

E[X - Y] =E[X] E[Y].

Proof. Splitting both X and Y in positive and negative part, it is not restrictive to as-
sume that X and Y are nonnegative. Let us consider two sequences of simple functions
(si)ien, (s})ien C 84 such that s; is o(X)-measurable and s} is o(Y)-measurable for any
i € N, and such that 0 < s; < X;,0< s, <Y, and

E[X] = lim E[s;], E[Y] = lim E[s}].
1—00 1—=00
We have
n; mg
si= D cnlag, =) cul,
h=1 h=1

with 4; , € 0(X), AL, € o(Y). Then (s;-s});cn is a sequence of simple functions converging

(DWe recall that o(X) is the o—algebra generated by the sets {w € Q : X(w) < a} with a € R.
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to X - Y and then, by independence

n,

E[X -Y] = lim E[s; - s; _zlggo];;cmcmE[]lAm Ly ]

n; m;
= Iim DD cinciP(Ain N AL)

h=1k=1

= Zlggo Z Z Ci,hC;,kP(Ai,h) : ]P’(A;,k)

h=1k=1

n; mg
= Zlggo Z ci,nP(Aip) Z C;,kP( )
h=1 k=1
= lim E[s;] - E[s}] = E[X] - E[Y].
1— 00

O]

Noticing that f(X) and ¢g(Y") are independent if X and Y are independent and f,g :
R — R are Borel functions, the following corollary is immediate.

Corollary 5.1.4. Let X and Y be two independent real random variables on (2,.7,P)
and let f,g : R — R be two Borel functions. If f(X),q(Y), f(X)-g(Y) € LY(Q,.Z,P),
then

E[f(X)-g(Y)] = E[f(X)] - E[g(Y)].

Remark 5.1.5. Using Corollary it is possible to prove that two random variables X
and Y are independent if and only if Po(X,Y)™! = (Po X 1)® (PoY 1), see Exercise
As a consequence, Lemma can be rephrased saying that for every f, g € X*, the
elements j(f),j(g) are orthogonal in X7 iff they are independent.

5.2 The Wiener measure P and the Brownian motion

We start by considering the space RI%| the set of all real valued functions defined on

[0,1]. We introduce the o—algebra .# generated by the sets
{we RO Pp(w) € B},

where F = {t1,...,t,} is any finite set contained in [0, 1], B € #(R™) and Pp : RO —
™ is defined by
Prp(w) = (w(t1),...,w(tm)).
We denote by @ the o-algebra P,'(#(R™)), and we define a measure pup on € by
setting, in the case 0 <1 < ... <ty

(an_mmfl)Q

_ 1 / 672zt11+ T 2(tm—tym_1) dSU;
27)5\/751(152 —t1) oo (tm — tm—1) JPr(4)

pr(A) =
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inthecase 0 =t < ... <t

1 _s3 . emoemo1)?
pr(A) = = / e T2 T Htm=tno1) g
2m) "2 o (b — tme1) J(Pr(A)0

where

(Prp(A))o = {2’ € R™1:(0,2') € Pr(A)}.

For F' = {0}, we set pioy = 0o, the Dirac measure at 0. In this way we have defined a
family of measures ur on the o—algebras €r.

We shall use the following result to extend the family of measure pp to a unique
probability measure on (RI%!,.#). It is known as the Daniell- Kolmogorov extension
theorem, that we present only in the version we need for our purposes. Its proof relies on
the following basic results.

Proposition 5.2.1. Let p be a nonnegative real valued finitely additive set function on
an algebra <. Then p is countably additive on <7 if and only if it is continuous at 0, i.e.

iy #lAn) =0
for every decreasing sequence of sets (Ap) C &/ such that (), ey An = 0.

Theorem 5.2.2. Let 1 be a nonnegative real valued countably additive set function on an
algebra 7. Then p may be extended to a unique finite measure on the o-algebra generated

by < .

The proof of Proposition [5.2.1] is left as an exercise, see Exercise [5.2 For Theorem
we refer to [9, Theorems 3.1.4, 3.1.10]).

Theorem 5.2.3 (Daniell-Kolmogorov extension). There exists a unique probability mea-
sure PV, called the Wiener measure on (RO, %) such that for every finite F C [0,1],
PW (A) = jp(A) if A € .

Proof. We notice that if F' = F U {t;41} with ¢, < t;,+1 < 1, then for any B € B(R™),
P.Y(B) = P, (B x R), so that

ur (PR (B)) = pp(PRH(B x R)).

This argument can be generalised to the case FF C G C [0,1], F and G finite sets with
cardinality m and n respectively, to conclude that if A = P'(B) = P;*(B'), B € B(R™),
B’ € B(R"), then pup(A) = ug(A). So, for A € €p, we can set

PYV(A) := up(A).
The set function PV is defined on the algebra

g = U Cr;

Fclo,1] finite



53

it is finitely additive since if A € €r and B € % are two disjoint sets, AU B € $ruc and

W(AUB) = prua(AUB) = prua(A) + proe(B) = pr(A) + pa(B)
=PV (A4) +PY(B).

Moreover, PV (]R[O’l]) = 1. To extend P to the o-algebra .%, we apply Proposition
and Theorem [5.2.2l Let us prove that PV is continuous at (). Assume by contradiction
that there are ¢ > 0 and a decreasing sequence (A,) C <7 of sets whose intersection is

empty, such that
PY(A,) >e, VneN.

Without loss of generality, we may assume that A, = P, (Bn) with F;, containing n
points and B,, € Z(R"), and that F,, C F, 1. Denote by 7Tn R™*t!1 — R™ the projection
such that m, o Pr, ., = Pg,. Since each measure ug, o P ", is a Radon measure in R",

for every n € N there is a compact set K, C B, such that PV (A4, \C’ ) < 5=, Where
Cn= P_I(K ). By replacing K, 11 by Kny1 = Kpp1Nmy, H(Ky), we get Ky C w7 (K).
In order to see that the K,, are nonempty, we bound from below their measure. Setting
as before C;, = P, (K ), we have

o Pp (IN{ )= Pw(én) = IPW(An) - PW(AH \ én)

> PV (A,) - PW(O A\ Cy) = PV (A,) - IP’W<CJ A\ Cy)

k=1 k=1
"~ 3}
25—227>0
k=1

n

Therefore, for any n € N we can pick an element
2™ = (:):(ln), M) e K.
(n)

Since K,, C 7, (K1), the sequence (z;") is contained in K, there is a subsequence

(ajgk”)) C K; converging to y; € K;. The sequence (mgk") :Bék")) is contained in K, then

up to subsequences, there exists yo such that it converges to (y1,y2) € K. Tterating the
procedure, and taking the diagonal sequence, we obtain a sequence (y,,) such that

(Y15 Yn) € K, Vn € N.
Then

PI;nl({(ylavyn)}) c Gy CAny Vn € N,
hence -
S = {w e RO w(tj) =y; Vj € N} C ﬂ A,
n=1

which is a contradiction, as S # (. Therefore, PV is continuous at (. By Proposition

PY is countably additive, and by Theorem it has a unique extension (still
denoted by P") to the o-algebra .# generated by 7. O
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Once the Wiener measure has been defined, we give a formal definition of the Brownian
motion.

Definition 5.2.4 (Standard Brownian motion). A real valued standard Brownian motion
on [0,1] is a stochastic process (By)ic(o,1] on a probability space (2, F,P) such that:

1. By = 0 almost surely, i.e. P—a.e.;

2. for any t,s € [0,1], s < t, the law of both random variables By — Bs and B;_s is
equal to A (0,t —s);

3. for any 0 <to <t <...<t, the random variables By,, By, — By,,..., B, — By,
are independent.

An explicit construction of a Brownian motion is in the following proposition.

Proposition 5.2.5 (Construction and properties of Brownian motion). Given the proba-
bility space (ROY, . Z PW), the family of functions By : ROYU — R defined by

Bi(w) = w(t), t€[0,1]
is a real valued standard Brownian motion on [0,1].
Proof. The proof relies on the equalities
By(w) = w(t) = Py (w).
First of all we notice that for any ¢ € [0, 1]
By ' (B(R)) = Cpy-

Then B; is Z-measurable and (By)ico,1) is a stochastic process.
By the definition of the Wiener measure, we have

PV (B € 4) = oy (P (4)) = 6o(4), VA€ B(R),

and then By = 0, P -almost surely. Let us now compute PV o B, 15, for t > s. For every

Borel set A C R,

PV (B € A) = PV (PLL,(4)) = oy (P, (4))

1 2?
= / @_mdx =
V2m(t—s) Ja

On the other hand, if we define h : R? — R, h(z,y) := y — x, then

N (0, — 8)(A).

{w e RO : Bi(w) — Bs(w) € A} = {w € RO (1) — w(s) € A}

= {w € ROM : h(Pp 1y (w)) € A} = P{;}t}(hfl(A)).



Hence

w -1 —1 7ﬁ+M
P ({Bt — Bs € A}) =H{st} (P{&t}(h (A))) e 2= 2=9) dxdy

_ 1 /
Com/s(t—s) Jn-1(a)

_(y=a)? 22
e 2t=s)dy le 2 dx

1 1
V%/R <\/27r<t — ) /w—lm»z
where
(1A ={yeR:(z,y) ch Y (A)}={ycR:y—xc A} = A+

As a consequence,

_(y—=)?

1 / 1 _w=a)?
N e 2(t—s) dy - / e 2(t—s) dy
2m(t — s) J(n=1(A)). V2r(t —s) Jata

1 22
= / e 2=9dz
2r(t —s) Ja

= A4(0,t—s)(A),

and therefore PV ({B, — Bs € A}) = A4 (0,t — 5)(A).
In order to verify independence, we fix 0 < s <t and A;, Ay € Z(R). Then

{Bs € A1} = Py(4) = P [y (A1 x R),

and

{Bi — By € Az} = P [y (h7'(42)),

so we have
PV ({B, € A1} N{B; — B, € Ay}) = PW(p{—S}t}(
= iy (P (AL x R) N A7 (As)

(A x R) N h™1(Ay))
)
:c2 (y—z)2

e 2 20-9) dxdy

1 1 /
27 \/m (A1xR)Nh~—1(As2)

1 1 22 _(y-)?

27 /s(t —s) /Re N (/((AlxR)ﬂh—l(Ag))z ¢ dy) o
1 1 _a? _==)?

- L (/A+ iy ) i

22
e_ 2(t—s) dz

1 / _2? 1 /
—_— Y A —
V2rs Ja, V2 (t —s) Ja,

=PV ({Bs € A1}) -PY({B; — Bs € Ay}).
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Now, we have a measure on (]R[O’l], Z ), but we are looking for a measure on a separable
Banach space. We now show how to define the measure PV on C([0,1]); this is not
immediate because C([0,1]) does not belong to .#. To avoid this problem, the main
point is to prove that the Brownian motion (B;) can be modified in a convenient way to
obtain a process with continuous trajectories. We prove something more, namely that the
trajectories are Holder continuous for PW-a.e. w € RO,

We need the following useful lemma. We recall that the limsup of a sequence of sets

(A,) is defined by
limsup A4,, := ﬂ U Ay

n—eo neN k>n

and it is the set of points w such that w € A,, for infinitely many n € N.

Lemma 5.2.6 (Borel-Cantelli). Let (Q2,.%,P) be a probability space and let (Ap)nen C F
be a sequence of measurable sets. If

> P4

neN

P (lim sup An) =0
n—oo

:UAk.

k>n

then

Proof. We define the sets

Then B,4+1 C B, for every n, and setting

ﬂ B, = limsup A,,

neN n—oo

by the continuity property of measures along monotone sequences (see Remark [1.1.3)

P(B) = lim P(B,).

n—oo

On the other hand,
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Now we state and prove the Kolmogorov continuity theorem; we need the notion of
version of a stochastic process. Given two stochastic processes Xy, Xy, ¢ € [0,1] on a
probability space (£2,.%,P), we say that X; is a version of X, if

P{X, # X,})=0, Vte[0,1].

We use also Chebychev’s inequality, whose proof is left as Exercise[5.3] For any 8 > 0, for
any measurable function f such that |f|® € L' (€, 1) we have

1
plIf1 =) < 55 [ 1Pan o,

Moreover, we use the classsical Egoroff’s theorem, see e.g. [9, Theorem 7.5.1].

Theorem 5.2.7. Let u be a positive finite measure on the measurable space (X,.%), and
forn € N let f, fn, : X — R be measurable functions such that f,(z) — f(x) for p-a.e.
x € X. Then, for very e > 0 there is a measurable set A with (X \ A) < ¢ such that
fn = f uniformly on A.

Theorem 5.2.8 (Kolmogorov continuity Theorem). Let (X¢).e(o,1] be a stochastic process
on a probability space (Q,.%,P) and assume that there exist o, f > 0, such that

E[| X, — X,|°] < Ot — s|'t, t, s€[0,1].

Then there exist a set A € . with P(A) =1 and a version ()N(t)te[o,l] such that the map
t— )N(t(w) is y—Holder continuous for any v < % and for any w € A.

Proof. Let us define

k n
@n:{%:k:O,...,Q } 7 =) Zn.

neN

We compute the measures of the sets

A, =< max
1<k<2n

using Chebychev’s inequality. We have

27L
1
P(An) ZP(U { X =X | 2 w})

k=1
2’I’L
< — _
_;P ({ Xp —Xia

2’71
< ZQWE [ X — Xia
k=1

1
Xr — Xi—1 >};

—1
o1 om | T 27m

|

14+«

—1
2'"/ 271

ko k-1

on - on

2n
<C Z gyns
k=1

— o —nla=P)
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As a consequence we obtain that the series

STR(4,) < 0 Y gnie)

neN neN

is convergent if v < % In this case, by the Borel-Cantelli Lemma the set

A=Q\limsup A4,

n—oo

has full measure, P(A) = 1. By construction, for any w € A there exists N(w) such that

max | X » (w) — X1 (w)| <2777 Vn > N(w).

k—
1§k§2n on oM

We claim that for every w € A the restriction of the function t — X;(w) to Z is y—Hélder
continuous, i.e.,

30O >0 suchthat |Xi(w)— X,(w)| < CJt—s|? (5.2.1)

for all t,s € 2. Indeed, it is enough prove that ([5.2.1]) holds for ¢,s € ¥ with |t — s| <
27N,

Fixed t,5 € 2 such that [t — s| < 27N there exists a unique n > N(w) such that
2771 < |t — 5| < 27" We consider the sequences s, < s, t, < t, sp,tx € 2, defined by
sop =ty =0, and for £k > 1

[2F5] [2F]
Sk = ok l = Tok
where [z] is the integer part of x. Such sequences are monotone increasing, and since
t,s € 9, they are eventually constant. Moreover,

1 1
Sk+1—$k§W7 tt1 — tk_2k+17 ke N.
Then,
Xi(w) — Xs(w) = X, (w) (W) + D> (XK, (@) = Xy (@) = D (K (W) = X (@)

k>n k>n

where the series are indeed finite sums. Hence

277" 277
<
1-277 = 1-277

| Xi(w) = Xs(w)] <277 42 Z o—v(k+1) _

k>n

|t — s|7.

So ) holds with C' = {255, for t,5 € Z with [t — s| < 2~ N(w ). Covering [0,1] by
a ﬁmte number of intervals with length 2~V we obtain that holds for every
t,s € Z (possibly, with a larger constant C'). In particular, the mapping t— Xy(w) is

uniformly continuous on the dense set Z; therefore it admits a unique continuous extension
to the whole [0, 1] which is what we need to define X;(w).
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Let us define for w € A

Xi(w) = Jlim X,(w),

and for w € A N
Xt(w) =0.

It is clear that P({X; # X;}) = 0 if t € 2. For an arbitrary ¢ € [0,1], there exists a
sequence (t5,) in & such that X;, converges to )N(t P-a.e. We use Egoroff’s Theorem
and for any € > 0 there exists E. € .# such that P(E,) < ¢ and X}, converges uniformly
to X; on \ E.. This implies convergence in measure, i.e. for any A > 0

lim P({|X,, — X;| > A}) =0.
h—o0

On the other hand, we know that

1 Clty, — t|HHe
P({1X;, ~ Xil > A}) < 5Bl — %7 < AT
and then
lim P({’Xth — Xt| > )\}) = 0.
h—00
We deduce that X; = X; P-a.e., see Exercise Hence (X;) is a version of (X). O

Our aim now is to define a Borel measure (the Wiener measure) on the Banach space
C([0,1]) endowed as usual with the sup norm. To do this we use the Brownian motion
(Bt)iefo,1) on (RO, 7).

Lemma 5.2.9. Let PV be the Wiener measure on (RIU, %) and let (Bt)iepo,1) be the
Brownian motion defined in Proposition[5.2.5. Then, for any k € N
0 if k is odd
E(B-B)={ .
— |t —s|2 if k is even.
(5)122

Proof. Let us take 0 < s <t < 1. Since the law of By — By is A47(0,t — s), we get

I, := E[(B; — Bs)"]|

1 _a?
= / zFe 2= dg.
V27r(t—s) Jr

As a consequence I = 0 if k is odd, whereas integrating by parts one obtains Iy = 1,
Iy = (t —s) and Isp, = (2h — 1)(t — s)Iop—o for h > 2. O

_ Lemma and Theorem yield that, fixed any v < 1/2, there exists a version
(Bt) of (By) such that the trajectories t + Bi(w) are y—Hélder continuous, in particular
they are continuous. For any ¢, the random variables B; and B; have the same law,
PV o Bi =PV o B;i'L. The map P : RO — R,

P(w) = (By, (w), ..., By, (w)) (5.2.2)
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is measurable for any choice of t1,...,t, € [0, 1], and the image measure of PW under the
map P is the same as the image measure of P under the map

w i (B, (w), ..., B, (w)).

Finally, for C' € €r, PV o P71(E) = up(E). We leave the verification of these properties
as an exercise, see Exercise

We recall some facts. The first one is the characterisation of the dual space (C([0, 1]))*.
We denote by .#([0,1]) the space of all real finite measures on [0, 1]; it is a real Banach
space with the norm ||u|| = |u|([0,1]), see Exercise

Theorem 5.2.10 (Riesz representation Theorem). There is a linear isometry between the
space A ([0,1]) of finite measures and (C([0,1]))*, i.e. L € (C([0,1]))* iff there exists
we A(0,1]) such that

L(f) = o fu(at), — vfec(o1]).
In addition || L|| = |p|(]0,1]).
We refer to [9, Theorem 7.4.1] for a proof.
On C([0,1]) we define the o—algebra 67, for F' = {t1,...,t,} as the family of sets
C={weC(0,1]) : (w(t1),...,w(tn)) € B},

where B € Z(R"). We also define the algebra

o = U G
Fclo,1], F finite

and we denote by .#’ the o—algebra generated by «/’. Using Theorem [5.2.10[ and the fact
that any Dirac measure d; is in (C([0,1]))*, it is clear that %’ C £(C([0,1])); indeed, if
F={t,...,t,} and B € #(R"), we have

C:={we C([0,1]) : (W(tr),...,w(ty)) € B}
={w e C([0,1]) : (8, (W), ..., 0, (w)) € B} € EC([0,1]), {64, ..., 06, }).

We have also the reverse inclusion, i.e. Z(C([0,1])) C .#'; the proof is similar to the
proof of Theorem Indeed, fix wy € C([0,1]), 7 > 0 and let & be the set in the
proof of the Kolmogorov continuity Theorem @L Note that w € B(wo,r) if and only if
lw — wolleo < 7, and by continuity this is equivalent to |w(t) — wo(t)| < r for any t € 2.
Then

B(wg,r) = ﬂ {w e C([0,1]) :w(%) € [r—w0<2ﬁn),r+wo(2i>}, Vk‘zO,...,T”}.

neN

The set in the right hand side belongs to .%#’. Since C([0,1]) is separable, as in the proof
of Theorem we deduce that Z(C([0,1])) C F#'.
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Now we use the Kolmogorov continuity Theorem there exists a set A € F with
P(A) = 1 and a version (Bi);c[,1) such that the map ¢ — Bi(w) is continuous for any
w € A. We define the restricted o—algebra

Fa={ENA:Ec%}
and the restriction IP’%V of P to .Z 4.
Proposition 5.2.11. The map B : (A,.Z4) — (C([0,1]), Z(C([0,1]))) defined by
B(w)(t) := By(w)

is measurable. The image measure PY o B!, called the Wiener measure on C([0,1]), has
the property that for any C' € ¢}, C' = C N C([0,1]) with C € €r, and

PY o B~Y(C") = pup(C). (5.2.3)

Proof. We know that Z(C([0,1])) = %/, so it is sufficient to prove that for every finite
set F'={t1,...,t,} C [0,1], we have

B~ NC") € Za, VC' €Cp.
Let E € #(R") and
C'={weC([0,1]) : (wtr),...,w(ta)) € E} =CNC([0,1]),
with C' € €F given by
C={weROY: (w(t)),...,w(t,)) € E}

Since for any t € [0,1] we have PV ({B; #Nét}) = 0, we can find A,,..., A, € F such
that PV (A,,) =1 for any i = 1,...,n and By, = By, in A;,. Then

B (C)={weA: (B, (w),...,B (w)) € E}

= AN m Ati N {w S R[O’I] : (W(tl)a v ,Q)(tn)) € E}
=1

:AﬁﬁAtiﬂC.
=1

Since (\1_, A, N C € .Z, we deduce B~1(C') € .Z4 and then B is measurable. The last
assertion follows from the fact that

®Y o BY)(C") = PV (A N (n] Ay, N c) =PV (0) = up(C).

=1
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5.3 Exercises

Exercise 5.1. Use Corollary to prove that two random variables X and Y on a
probability space (,.%,P) are independent if and only if Po (X,Y)™! = (Po X 1) ® (Po
Y1),

Exercise 5.2. Prove Proposition [5.2.1]

Exercise 5.3. Prove Chebychev’s inequality: if 5 > 0 and f is a measurable function such
that |f|# € L'(Q, u), we have for any A > 0

u{If] = AD) < Aiﬁ /Q P,

Exercise 5.4. Prove that the vector space .Z ([0, 1]) with norm given by the total variation
is a Banach space.

Exercise 5.5. Prove that the map P : RI%!U — R” defined by (5.2.2), is measurable.
Prove that PV o P~1 = PW o T~ with

T(w) = (w(t1),...,w(ty)) = (By (w), ..., By, (w)).
Prove in addition that if C' € €F, then
B o P1)(C) = ur(C).

Exercise 5.6. Let (X,,) be a sequence of random variables on a probability space (2, %, P)
that converge in measure to X and to Y. Prove that X =Y, P-a.e.



Lecture 6

The classical Wiener space

In this Lecture we present the classical Wiener space, which is the archetype of the struc-
ture we are describing. Indeed, any triple (X,~, H) (where X is a separable Banach
space, v is a Gaussian measure and H is the Cameron-Martin space) is called an abstract
Wiener space. In the classical Wiener space the Banach space is that of continuous paths,
X = C([0,1]), and all the objects involved can be described explicitly. The Gaussian
measure is the Wiener measure v defined in Lecture |5, the covariance operator is the
integral operator with kernel min{z,y} on [0,1]? and both the Cameron-Martin space H
and X7 are spaces of functions defined on [0, 1].

6.1 The classical Wiener space

We start by considering the measure space (X, 2(X),y") where X = C([0,1]), B(X) is
the Borel o—algebra on X and 4"V = PW o B! is the measure defined in Proposition

We give the following approximation result for measures in terms of Dirac measures.
For every real measure p € .Z([0,1]) and n € N we set

i = p({11)81 + 2nzlu ([;n l;f)) Sisa- (6.1.1)
=0

Lemma 6.1.1. The following statements hold:

(1) if p,v € A([0,1]) are two finite measures and (un), (vn) are two sequences of
measure weakly convergent to p and v respectively, then p, Q@ v, weakly converges to
HQv;

(ii) for every u € #([0,1]) the sequence (py,) defined in (6.1.1)) converges weakly to p;

Proof. (i) The statement is trivial for functions of the type ¢(z,y) = ¢1(z)p2(y) with
©1,p2 € C([0,1]). Since the linear span of such functions is dense in C([0,1]?) by the
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Stone—Weierstrass Theorem, the conclusion follows.
(ii) Let us fix f € C([0,1]). Then

0,1]

MM

S~ [ fpta) - ; /[ " (7(55") ~ 7(@)) ).

By the uniform continuity of f, for every € > 0 there is ng > 0 such that for n > ny we
have |f(45) — f(z)| < e for every @ € [i27™, (i + 1)27"] and for every i = 0,...,2" — 1,

whence for n > ng

2" —1

= [ o ((5) @ ) | <o

PICREDIO

and p,(f) — p(f).

Proposition 6.1.2. The characteristic function of the Wiener measure " is

—

T () = exp{ /[071]2 minfe,y}(: @ p)(d(z.v) ). pe (0.1)).

So, 7W 1s a Gaussian measure with mean zero and covariance operator
Bow(uy) = [ minfts}uen)ds). prea(0.1),
[0,1]2

Proof. We start by considering a linear combination of two Dirac measures
p= ads + B0

with a, 8 € R, s <t € [0,1]. Then

(6.1.2)

W () = /X expliad,(f) + i85,(f)}4" (df) = /X expliaf(s) + B0} (df).

Since vV =PY o B! with PW(A) = 1 and B is a version of the Brownian motion which

is continuous on A, noticing that (B),c[0,1) and (Bt).e[o,1] have the same image measure,

we obtain

—

AW (p) = /A exp{iaB(w)(s) + i8B(w)(t) )PV (dw) = /A exp{iaBs(w) + iBB;(w)}P" (dw)

- /RIOJ] expliaBy(w) + iBBy(w) P (dw) = + / exp{iaBy(w) + iBBy(w) }PY (dw)

RI[0,1]

= /R[O’l] exp{i(a + B)Bs(w) + if(By(w) — BS(W)}IP)W(dw).
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Since Bs and B; — B are independent, we may write
W) = [ explita+ B)Bw) + iB(Biw) — Bu@)}PY (do)
= [ explita+ HBIPV () [ explif(Biw) - Bulw) P (d)
RIO0,1] RI0,1]
— [ explita+ B2} N (0,5)(da) - [ explisy) A (0.t = )(dy)
R R
= exp {—;(a + ﬂ)Qs} exp {—;BQ(t — s)} = exp {—;((a2 + 2ap8)s + ﬁ2t> } .
We now compute the integral

[ minfeges i) = [ p@utds) = apls) + (o),
[0,1]2 [0,1]

where ¢(x) = f[o yymin{z, y}u(dy). We have

o) = [ minfs.bu(ds) = [ yu(ds)+s [ ptdy) = as -+ ps

(0,1] 0,s (s,1]
oty = [ min{t,y}u(dy) = / ypi(dy) + t / w(dy) = as + Bt,
[0,1] [0,¢] (1]

whence

/[0 e min{z, y}(u @ p)(d(z,y)) = (o + 2a8)s + 5.

So, the assertion of the theorem holds if y is a linear combination of two Dirac measures.
Let us show by induction that the same assertion holds true if y is a linear combination
of a finite number of Dirac measures.
For 0 <t <ty <...<t, <1 we define the matrix

t1 t1 ... t1 t1
t1 to ... to to
Qtl,...,tn =
t1 t2 ... tp—1 th—
t oty ..ty Ly
For a e R", a = (a1,...,ay)

n
p= Z ;05
j=1

one has

/[01]2 min{z, y}(u @ p)(d(z,y)) = Qiy...tha - Q.
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We are now going to show by induction that

—

YW (n) = exp { - %Qtl,...,tna : a}. (6.1.3)

This is immediate for n = 1. Assume that it is true for n. Let 0 < 1 < ta < ... < t, <
tn+1 S ]-a
n+1

W= Z ;o
j=1

Then, by the induction hypothesis and using the independence of By, , — By, with respect
to {Bs;0 < s <t,}, we obtain

o n+1

AW () = /R[o,u exp {z Z a; By, (w)}PW(dw)

j=1

n—1
= /[O ; exp {2 Z ;B (w) + (n + any1) By, (w)}IP’W(dw)-
RIO, °
7j=1

. /Rlo,l] P {a”+1(Btn+1(w) — B, (w))}Pw(dw)

1,

1 N
= eXp{ - iQtl,m,tna ta— §an+1(tn+l - tn)}

1
= eXp{ - §Qt1,...,tn+1a - Q, }
where we have set & = (a1,...,Qn—1,0n + apt1). In the general case we conclude by

using Lemma Indeed, if u, is the approximation of y defined in (6.1.1)), then for
any f € X,

lim o (f) = lim (@)pn(de) = | f(x)p(dr) = p(f)-

Hence exp{iun(f)} converges to exp{iu(f)} for any f € X, so by the Lebesgue Dominated
Convergence Theorem

YW (1)

[ explin(e)12" () = b [ explin (1Y @)
X X

n—+4o00o

= lim exp {—; /[071}2 min{z, y}(tn ® py)(d(z, y))}

1 .
= exp {—2 /[071}2 min{z, y}(p ® p)(d(z, y))} -

Then we conclude applying Theorem |2.2.4 O
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We notice that the space

Co([0,1]) = {f € C([0,1]) : f(0) = 0} = & ({0})
is a closed subspace of C([0,1]). Since

—_

’YW((SO) = exp {_; /[0 1)2 min{x, y}(50 ® 50)(d(x7 y))} =1,

YW oyt = 4(0,0) = &y, and so

YW (Co([0,1])) = (v 0 65 1) ({0}) = 1.

Then 4" is degenerate and it is concentrated on Cy([0, 1]).

6.2 The Cameron—Martin space

In order to determine the Cameron—Martin space of (C([0,1]),7"), we use the embedding
v :C([0,1]) — L?(0,1), «(f) = f, which is a continuous injection since

() L20,1) < [1f lloo-

If we consider the image measure 7" := 4" 0,=! on L2(0, 1), the Cameron—Martin spaces
on C([0,1]) and on L?(0, 1) are the same in the sense of Proposition The fact that
L%(0,1) is a Hilbert space allows us to use the results of Section

By using the identification (L%(0,1))* = L?(0,1), the characteristic function of the
Gaussian measure 7"V is

0= [ e{ithamon} @) = [ erlit). oot @)

c([0,1])

Let us compute (.(f),g)12(0.1)- If we denote by +* : L*(0,1) — .#([0,1]) the adjoint of «,
then

()9 20,1y = ¢ (9)(])- (6.2.1)
Since ¢(f)(z) = f(z), (6.2.1) yields
1
/ f(@)g(x)dx = f(@)(g)(dz),  Vfe(0,1]).
0 [0,1]

Hence t*(g) = gA1, where A1 is the Lebesgue measure on [0, 1]. Therefore, according to
Proposition [6.1.2

W (g) =W (1*g) = exp {—; /[O . min{z, y}g(z)g(y) d(, y)}
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so that 3" is a Gaussian measure with covariance

)

1
Byw(f,g) = /[0 . min{z,y} f(z)g(y)d(z,y) = /O Qf(v)g(y)dy,

where .
Qf() = | minfo.ybf(@)da
is the covariance operator Q : L?(0,1) — L?(0, 1) introduced in Section
Theorem 6.2.1. The Cameron—Martin space H of ¥V on (L*(0,1), 8(L?(0,1))) is
H([0,1]) := {f € L*(0,1) : ' € L*(0,1) and £(0) = 0}.

Proof. As the Cameron-Martin space is the range of Q'/2, see Theorem we find the
eigenvalues and eigenvectors of Q, i.e., we look for all A € R and f € L?(0,1) such that
Qf = Af. Equality Qf = A\f is equivalent to

1 x 1
A (z) = /O min{z, y} f(y)dy = /0 yf()dy + / £(v)dy (6.2.2)

for a.e. x € [0,1]. If (6.2.2)) holds, f is weakly differentiable and

1
A(z) = / f(w)dy.

For A = 0, we get immediately f = 0. For A # 0 we get that f’ is weakly differentiable
and

A" (x) = —f(x) a.e.
Moreover, the continuous version of f vanishes at 0 and the continuous version of f’
vanishes at 1. We have proved that if f is an eigenvector of () with eigenvalue A, then f
is the solution of the following problem on (0, 1):

A"+ f=0,
f(0) =0, (6.2.3)
f(ay=o.

On the other hand, if f is the solution of problem (6.2.3)), integrating between = and 1

1
A () = / f(v) dy,

whence, integrating again between 0 and x

T 1 1 1
M(z) = /0 / F(y) dy dt = /0 0.0 (1) /0 1oy (0) f () dy dt
1 1 1 1
:/0 f(y)/o ﬂ(o,x}(t)ﬂ(t,1](y)dtdy=/o f(y)/o Wi,y (o) U, 1) (y) dt dy

1
_ /0 min{z, y} f(y) dy = Qf (z).
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We leave as an exercise, see Exercise to prove that if X is an eigenvalue, then there
exists k € N such that A = A\, where

1
Me=—— keN (6.2.4)

72 (k‘—I—%)27

and Qex, = Areg, [lexllr2(0,1) = 1 if and only if

er(x) = \@sin(\/i)\i) = \/isin(%:;L 1773:). (6.2.5)

Let us now take f € L?(0,1) and write
F=> feew,  fro="{frer)r20p) (6.2.6)
k=1
with ej given by (6.2.5). Applying (4.2.10]), we see that f € H if and only if
> > 2k + 12
St =wY i () <
k=1 k=1
This condition allows us to define the function
= fx T = 2k+1 2k + 1
(S () e )
g(z) \f; v cos Now W\f; fx 5 cos | 27| —
and to obtain that g € L?(0,1) is the weak derivative of f. Indeed, for any ¢ € C°((0, 1)),

[ s = ifm [ sin (=) o

__ g % /01 cos (\/‘%) o(2)ds = — /01 o(2) () dz.

In conclusion f € H'(0,1) and, by (6.2.6)), its continuous version vanishes at 0, whence
f € Hy([0,1)).
Finally, from the equality

|flir = 11Q7 2 fllx,

we immediately get |fa = [|f'l|22(0,1)- O

Remark 6.2.2. We have used the notation H{ ([0, 1]) to characterise the Cameron—Martin
space; we point out that this space is not the closure of C°(0,1) in H*(0,1).



70

6.3 The reproducing kernel

In this section we determine the reproducing kernel, both for X = C([0,1]) and for X =
L?(0,1). To do this, we need to introduce an important tool coming from probability, the
stochastic It6 integral.

Let (£2,.7,P) be a probability space and let (W;),c[0,1) be a Brownian motion, i.e., a
stochastic process on (€2, .#,P) satisfying the conditions of Definition m

If f is a simple function, i.e.,

n—1
t) = Z Ciﬂ[ti,ti+1)(t)
=0

with¢; € R, 0=ty < ... <t, =1, we define the random variable on )

/0 1 f#)dWi(w) := n_: i (Wi (W) = Wi, (W) (6.3.1)
We claim that 1 ) 1
E !(/0 f(t)th) ] = /0 |f(2)]?dz. (6.3.2)
Indeed, we have
/ f(t th ZO GGE[(Wy — We)(Weyy — W)
i.j
— z_: E[(W,y — Wi,)?] +2 z; > e Bl(Why,, — Wi) (W, — Wi,)]
: parier

~
I
_.o

3

M

12 [|Wt1+1 t; ‘ + QZZCZCJ th+1 - Wtj] 'E[Wti+1 - Wti]

=0 =1 j<i
n—1

= 3" s — 1) /\f )Pda,
=0

where we have used the fact that Wy, , — W, is independent of Wy, , — W, if j < i and
the fact that Wi, , — W}, has the same image measure as Wy, ¢, given by A47(0, ;11 —1;).
For the next Theorem, we refer to [3].

Theorem 6.3.1 (It Integral). There ezists a unique continuous map Ig : L*(0,1) —
L?(2,P) such that

E[|Io(f /|f )dz,  Vfe L*0,1) (6.3.3)

f) = /0 f(yam,

and such that

if f is a simple function.
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Proof. Let .#([0,1]) be the linear subspace of L?(0, 1) consisting of the simple functions.
The map Iq : .7([0,1]) — L*(Q,P),

Io(f)(w) = / F(H)dW,(w)

is a linear operator, defined on a dense subset of L?(0,1). Since it is continuous in the
L?(0,1) topology by (6.3.2), it has a unique continuous extension to L?(0,1). O

The map defined in Theorem [6.3.1] is called the [t6 integral of f with respect to the
Brownian motion; such procedure can be performed also using different stochastic pro-
cesses and more general classes of functions f. Identity is called Ito isometry and
the Ito integral is denoted by

1
Io(f) = /0 FOdw,  f e L20,1).

In order to apply Theorem we need to define Brownian motions on the probability
spaces (C([0,1]), Z(C(]0,1])),7"V) and (L2(0,1), B(L*(0,1)),7"). We leave as an exercise
(see Exercise the verification that the evaluation map W; : C([0,1]) — R defined by

Wi(f) = f(t), (6.3.4)

is indeed a standard Brownian motion on C([0, 1]).

In the next Lemma we define the Brownian motion on L?(0,1) using the embedding
12 C([0,1]) — L?(0,1).
Lemma 6.3.2. The space C([0,1]) belongs to B(L*(0,1)). As a consequence the maps

W, : L2(0,1) — R defined by

- Wi(w) if f=1(w)
Wi(f) = (6.3.5)
0 otherwise

define a stochastic process on L?(0,1) and such process is a Brownian motion.

Proof. In order to see that C([0, 1]) is a Borel set in L?(0, 1), for a fixed p € [1, 00] and for
any m,n € N and 1,72, 51,82 € [0, 1]NQ with 7} < 79,81 < S92, |11 — 12| < %, |s1—s2] < %,
|ndr2 — sidse) < L define the set

Bpnmrra,s1,s0 1= {f € LP(0,1): ) ! /: ft)dt — ! /: f(t)dt‘ < %}

| §2 — 51

It is enough to notice that for any 1 < p < oo the set By m ri ro,51,s0 15 Borel in L?(0,1)
and the space C([0,1]) is a countable union of Borel sets,

c([o,1]) = ﬂ U ﬂ Bpnm,ryra,1,50-
meNneN 71,792,851, 82 € [0, 1] nNQ
ry <71e,81 < S2
Iri—ro| < L |sy — sl <1

ri+re _ s1+82 1
2 2 S n
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Hence, the function defined in (6.3.5) is measurable. The fact that W; is a Brownian
motion readly follows by the fact that W} is a Brownian motion and 3%V =+W o ,~1. O
We pass now to the characterisation of the reproducing kernels X*,,, and XZ,, .
gl gl

Proposition 6.3.3. Let us consider the Gaussian measures vV and 3"V on C([0,1]) and
on L*(0,1), respectively. Then

Xiw = oo (L2(0,1))

and
XZw = I12(0,1)(L7(0,1)).

Proof. Let us consider the simple function
g(x) = aljg g (z) + Bl = (@ + B)jg 5 () + Bl (2),
s <t e€[0,1]. Let (W;) be the Brownian motion defined in (/6.3.4). Then by (6.3.1])

1
Ieqo(9) = /0 g(t)dWy = (a + B)W, + B(W; — W) = oW, + W,

Therefore,
oo (9)(f) = af(s) + Bf(t)
for yW-a.e. f € C([0,1]). On the other hand, setting

o= O[(Ss +55t7

since j(u)(f) = af(s) + Bf(t) for any f € C([0,1]), we obtain I (o,1))(9) = j(u) 7" ~ace.
Moreover, by

2
I91172(0,1) = B [(Ic([o,m(g)) } = Ieqoa (@72 o)
= ||j(M)”%2(C([0,1]),wW)'

For any simple function g € (|0, 1])

g(x) = Z cill ¢,y (),
=1

a similar computation yields ||gl[z2(0,1) = Il7(1)ll L2(c(jo.17),,w) With

n
= Z Ci0,;,
=1

W_a.e.. Approximating any g € L?(0,1) by a sequence of simple

and Icqo1p)(9) = J(1) v
functions gn, Io((0,1])(gn) converges to Ic(o,1)(g) in L?(C([0,1]),4") by the It6 isometry

" Since Ic([gyl])(gn) S j(%([o, 1])) for every n € N, we have Ic([oyl])(g) S X:;W.
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This proves that Ioo17)(L*(0,1)) C Xw-

For the reverse inclusion, we use Lemma [6.1.1] Let us take p € .#([0,1]) and let (u,)
be the approximating sequence defined by 16.1.1: . Then YW-a.e. j(un) = Ie(o,))(9n),
where

i) =u(11) + 3 1 ([2 i;f)) 1o 2321 (7)
1=0
B = (1 i1 < e
=p({1}) + 2 “<{2n’ on ))j_o]l[;n,%)( )
on_1 2n—127—1 .
= 2 sl g @)+ “(Uﬁ;)) 1350 ()
=0 j=0 i=j
= - ij]l[éim%)(l'), (636)
j=0

where

=)+ L ([ 5)) = (1)

i=j

The functions j(u,) converge to j(u) in L2(C([0,1]),~4") since

117 Cpen) — j(#)||%2(c([o,1]);yW) = [l7(pn — .U)H%%c([o,u)ﬁvv) = Bw (pn — ps fin — 1)

= [ i) (= ® o= 1) 0 )
= [ min{e,) (e © p)dle) 2 [ winge,y) (@ 0)(de,)
[0,1]2 [0,1]2
+ [ minfeghue m(d)
[0,1]2

As p, converges to u weakly, u, ® pu and pu, ® w, converge to u ® u weakly, we obtain

. . . 2 o
nETOO 117 Cpen) — J(M)Hm(c([o,u)ﬁW) =0.
Hence j(u) is the limit in L(C([0, 1)),7") of j(1tn) = Ioqoy)(9n), whence j(#((0, 1])) €
Ic([o,l])(LQ(O,l)). Hence X7y C IC([O,I])(LQ(O, 1)), and this concludes the proof of the
equality X*y = Io(po,1))(L*(0,1)).

We now prove equality X;W = ILQ(OJ)(LZ(O, 1)). For this purpose, let us define J :
L*(0,1) — L?(0,1)

1
J(f)(s) == / f(r)dr.
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If f =Ty, then J(Tjg4)(s) = hi(s) = (t — s)Tg4)(s). On the other hand

J(F)(9) = i(T)(g) = /0 o(r)dr.

We claim that Ir2(01)(J(Tjos)) = j(Tjos). In order to prove that, we approximate hy
using the simple functions

n—1

n—i—1
hn(s) = ZtTﬂ[%t(iZil)t)(s).

=0

Since h,, converges to h in L2(0, 1), I12(0,1)(hn) converges to Ir2(g 1)(ht) in L%(L%(0,1),7")

)

thanks to (6.3.3)). Let us consider now w € Cy([0,1]) and g = ¢(w); then
n — 11— 1
IL2 01 Z/ [zf (1+1)t)( )dW( )

_ Z tn_TH (Wme (9) = Wa (g))

=0

= Ztn_TZ_l <W(z+1 (w) — W% ("‘)))

=0
S i1 (e it :”‘100@3
_;t n (( n ) (n)) — <n>n

As a consequence,

nll_{glo I12(0,1)(hn)(9) —/0 g(7)dr, Vg € «(Co([0,1])).

Since YV (Cp([0,1])) = 1, we can conclude that I12(0,1)(he)( fo 7)dr for 3V
g€ L%0,1).
Let us now show the equality Xz, =1 £2(0,1)(L?(0,1)). From what we have proved, it
follows
Xaw = j(L3(0,1)) C I12(0,1)(L*(0,1)).

On the other hand, we have that C}(0, 1) is dense both in L2(0,1) and J(L?(0,1)). Then

I120.1)(L*(0,1)) = Ir2(01)(CL(0,1)) C I120,1)(J(L?(0,1))) = §(L2(0,1)) = Xiw
O

Remark 6.3.4. By Proposition a function f € C(]0,1]) belongs to the Cameron—
Martin space H if and only if it belongs to the range of R,w, namely if and only if
=R, w(lgqo)(g)) for some g € L?(0,1). In this case, by (3.1.4) we have

|l = eqo,) (D L2 o,17),47)
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and by the It6 isometry (6.3.3))
|fla = HQHLQ(OJ)'

The same argument holds true for f € L?(0,1).

We close this lecture by characterising the spaces

Ryw (j(((0,1])))

o

and
Rsw (§(L*(0,1))) = Q(L*(0,1)),

The latter is easier to describe. We have indeed the following result.

Proposition 6.3.5. Let 3"V be the Wiener measure on L?(0,1). Then
Q(L*(0,1)) = {u € Hy([0,1]) N H2(0,1) : /(1) = 0}

and for any f € L*(0,1), u = Qf is the solution of the problem on (0,1)

W' = —f
u((())): 0, (6.3.7)
w'(1)=0

Proof. If u=Qf, then

U(fv)ZQf(fv)Z/O min{z,y}f(y)dy.

Then w is weakly differentiable and

i) = [ sy

Hence v’ admits a continuous version such that «/(1) = 0; ' is also a.e. differentiable with

On the other hand, arguing as in the proof of Proposition [6.2.1] if u is a solution of
(6.3.7), integrating twice we obtain

1
) = [ mine. g )dy = Q1 (o)
and this completes the proof. O

To prove a similar result in the case of ¥V on C([0, 1]), we need the following lemma.
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Lemma 6.3.6. Let v € L%(0,1) be such that v' = p € #([0,1]) in the sense of distribu-
tions, i.e.,

1
| v @ds == [ pauldn), Ve clo.
0 [0,1]
Then there exists ¢ € R such that for a.e. x € (0,1)
v(x) = p((0,2]) + c. (6.3.8)

Proof. Let us set w(x) = u((0,z]). We claim that w’ = pu is the sense of distributions.
Indeed, for any ¢ € C1(0,1), by the Fubini Theorem

/01 w(z)e' (x)dr = /01 1((0, )¢’ (x)dx = /01 (/(071) (g4 (y),u(dy)) o (z)dx
- /(071) ( /0 1 Lo (y)#'(z) dfﬂ) p(dy) = — /( o (y)u(dy).

As a consequence, the weak derivative of v — w is zero and the conclusion holds. ]

Definition 6.3.7. Letv € L?(0,1) be such that v’ € .#(]0,1]) in the sense of distributions.
Then, writing v(x) = p((0,z]) + ¢ for a.e x € (0,1) as in (6.3.8)), we set

v(17) = e+ u((0, 1)).
We close this lecture with the following proposition.
Proposition 6.3.8. Let v be the Wiener measure on C([0,1]). Then

Row(j(#([0,1])) = {u e H([0,1)) 3 € A4 ([0,1]) s.t. v = —p on (0,1)
in the sense of distributions, u'(17) = ,u({l})}

and w = R.w(j(p)) if and only if u is the solution of the following problem on (0,1)

w/(17) = p({1}).
w (j(i)). Then for any v € ([0, 1]) we have

//: ,LL
u(0) = 0, (6.3.9)
oo

Proof. Let u =R,

v(u) = v(R,w(j(u))) _/0(01 (W) ()i @) (YWY (df)
/ / p(dz) [ fy)v(dy)y" (df)
c([0,1]) J[0,1] [0,1]

_/ </ Wx(f)Wy(f)WW(df)> (n@v)(d(z,y))
(0,12 \ /C([0,1])
:/ min{z,y}(n @ v)(d(z,y)),

(0,1]2
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where we have used the fact that W; is a standard Brownian motion. Indeed, since if
r <y, Wy and W, — W, are independent,

/ W (F)W, ()" (df) = / Wo(F) (W, () — Wal )W (df)+
([0,1]) c([0,1])
+ / Wa(f)24" (df)
c([0,1])
_ / W ()" (df) - / (W, () — Wa(£)7" (df)+
c([0,1]) ([0,1])

+ / W (f)22" (df) = .
C([0,1])

Then

u(y) = Ryw (j(1)(y) = o min{z, y}u(dz). (6.3.10)

We claim that for a.e. y € (0,1)

u'(y) = p((y,1]) = —p((0, y]) + u((0,1]) (6.3.11)
and that v’ € L%(0,1). Indeed, for any ¢ € C}(0,1),

/01 u(z)y' (z)dz :/[01 /1 min{z,y}¢' (z)dzx p(dy)

/ / x)dx p(dy) = / / 1o p(dy) dx
[0,1] [0,1]
1
—/ / 1, 1] w(dy) dx = — / o(x ]) dz.
0 [0,1] 0

It is readily verified that u/(x) = u((x,1]) belongs to L?(0,1); in addition v’ = —u on
(0,1) in the sense of distributions. Indeed for any ¢ € C1(0,1)

/ dx—/[ol]/ (0) ()¢ (x)da pu(dy)

/ culdy) = [ o)u(dy),
[0,1]

(0,1)
where the last equality follows from the fact that ¢(0) = ¢(1) = 0. Comparing (6.3.11)
with (6.3.8]) in Lemma we obtain

lim u'(y) = p({1}).

y—1—

On the other hand, if u is a solution of (6.3.9)), then since u” = —u, by (6.3.8)) in
Lemma we have for a.e. x € (0,1)

u'(z) = —pu((0,2]) + ¢ = p((x,1)) = n((0,1)) +c
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Then «/(17) = p({1}) if and only if ¢ = p({1})+x((0,1)), and in this case v'(z) = p((x,1])
for a.e. x € (0,1). Integrating v’ between 0 and x, we get

u<m>:/0xu<<t,u>dt:/0nm)( (¢, 1))dt = //[0 0.0y (D) 01y () a(dy) dt

1
_ / Loy () 0y ()t p(dy) = | min{e, y}pu(dy),
[0,1] [0,1]

and then u = R,w (j(¢)). This completes the proof. O

6.4 Exercises

Exercise 6.1. Let u € .#([0,1]) and let u,, be the sequence defined by (6.1.1]); prove that
|| ([0, 1]) < 4l ([0, 1]).

Exercise 6.2. Verify that the eigenvalues of () in Theorem are given by (6.2.4) and
that the eigenfunctions with unit norm are given by (6.2.5)).

Exercise 6.3. Prove that the stochastic processes defined in ([6.3.4)) are standard Brownian
motions, i.e., they satisfy Definition

Exercise 6.4. Prove that the function g, in formula (6.3.6) is given by

gMﬂf)zn([%ﬁJD,

where [2"x] is the integer part of 2"z. Prove that if u € .Z([0,1]), j(1) = Ic(oa})(9)
where
g(z) = p([z,1]), for a.e. x € [0,1].

Exercise 6.5. Prove that for any pu € #([0,1]), the function

u(y) = min{xv y}u<dx)7 Y€ [07 1]7
[0,1]

is continuous.



Lecture 7

Finite dimensional approximations

In this Lecture we present some techniques that allow to get infinite dimensional results
through finite dimensional arguments and suitable limiting procedures. They rely on
factorising X as the direct sum of a finite dimensional subspace F' and a topological
complement Xp. The finite dimensional space F' is a subspace of the Cameron-Martin
space H. To define the projection onto F', we use an othonormal basis of H, so that we
get at the same time an orthogonal decomposition H = F @ F1 of H. Throughout this
Lecture, X is a separable Banach space endowed with a centred Gaussian measure ~.

7.1 Cylindrical functions
In analogy to cylindrical sets discussed in Section cylindrical functions play an impor-
tant role in the infinite dimensional Gaussian analysis.

Definition 7.1.1 (Cylindrical functions). We say that ¢ : X — R is a cylindrical func-
tion if there are n € N, q,...,¢, € X* and a function ¥ : R" — R such that ¢(x) =
V(01 (x),. .., lo(z)) forallx € X. Fork € N, we write ¢ € FCF(X) (resp. p € FOFX(X)),
and we say that ¢ is a cylindrical k times (resp. infinitely many times) boundedly differ-
entiable function, if, with the above notation, 1 € CE(R™) (resp. ¢ € CP°(R™)).

We fix now an orthonormal basis {h; : i € N} of X>. By Lemma we may

assume that each h; belongs to j(X™), i.e., hi = j(¢;) with £; € X*. We recall that the set
{h; : i € N}, with h; = Ryh;, is an orthonormal basis of H.
We need a preliminary result; let us denote by

N ={B € &(X):(B) =0}
the family of Borel sets of null measure. We recall that by Theorem E(X)=AB(X).
Proposition 7.1.2. The following equality holds:
E(X)=0(&(X,{t;: ieN})UAN),

79



80

where (X, {l;: ie N))UAN ={F=EUB: FEec&X,{{;: ieN}), Be #/}. In
addition, for any E € &(X) and € > 0 there exist F € &(X,{¢; : i € N}) and B € N
with y(EA(FUB) < e.

Proof. The inclusion &(X) D o(&(X,{l; : i € N}) U ./ is trivial, so let us prove the
reverse inclusion. Let z* € X* and let z;, be a finite linear combination of elements of
{¢; i € N} such that j(x%) — j(z*) in L?(X,v) and j(x}) — j(z*) a.e. Then there
exists N € .4 such that Ix\nj(z;,) = Ix\nj(2") pointwise. The function lx\nj(z7,) is
o (& (X, {li}ien) U A )-measurable for all n € N, and therefore 1x\ nj(2*) is o(&(X, {¢; :
i € N}) U A )—measurable. The &(X)-measurability of j(x*) implies that Lnj(z*) is
also o(&(X,{¢; : i € N}) U .4 )-measurable, hence j(z*) = Ix\nj(z*) + Iyj(z*) is
o(&(X,{l; : i € N})U A )—measurable. In conclusion, z* is o(&(X,{¢; : i € N}) U A )-
measurable too. Since this holds for all z* € X*, we obtain the desired inclusion.

For the last assertion, notice that the Carathéodory extension of the restriction of ~

to &(X,{¢;: i € N})U .4 is v again. O
We define .
Pyz =) hi(x)hi, neN, zeX. (7.1.1)
i=1

Note that every P, is a projection, since by Ei(hl) = 9;;. Moreover, if x € H, then
hi(z) = [z, hi]g so that P,z is just a natural extension to X of the orthogonal projection
of H onto span{hy,...,hy}.

We state (without proof) a deep result on finite dimensional approximations.

Theorem 7.1.3. For v-a.e. z € X, lim P,z = =.

n—o0

The proof of theorem may be the subject of one of the projects of Phase 2.
However, it is easy if X is a Hilbert space, v = 47(0,Q), and we choose as usual an
orthonormal basis {¢; : ¢ € N} of X consisting of eigenvectors of @, Qer = A\rer. Let us

first assume that ) is nondegenerate, i.e. Ay > 0 for any k € N. Then {h; = /\;/zei, i € N}
is an orthonormal basis of H and we have h;(z) = (z, ei>/)\2/2 for every z € X. Indeed,
for every x € H,

hi(z)hi = [z, hilirhi = (Q Y2z, Q7Y2QY %)) QY %e; = (z,e;)es. (7.1.2)

Since for every x € X we have z = "7 | (z, ex)e, and the partial sums of this series are
in H, the space H is dense in X. Therefore, equality holds for every z € X and
P,z is the orthogonal (in X) projection of = onto span{ey,...,e,} = span{hq,..., hy,},
which goes to x as n — oo for every x € X. Let now @ be degenerate and set

X; =span{ey : A\, > 0}, Xo = Xi.

We can then define v, on X as
n=Q) A0 )
A>0

and 79 = dp on X5. A direct computation shows that v and 71 ® 2 have the same
covariance operator, and then they are equal.
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7.2 Some more notions from Probability Theory

In this section we recall some further notions of probability theory, in particular conditional
expectation. We use the notation of Lecture
Let us introduce the notion of conditional expectation.

Theorem 7.2.1. Given a probability space (2, #,P), a sub-c-algebra ¢ C F and X €
LY(Q, 7, P), there exists a unique a random variable Y € L' (2,4, P) such that

/YdIP’:/Xd]P’, VAe 4. (7.2.1)
A A

Such random wvariable is called expectation of X conditioned by ¥, and it is denoted by
Y =E(X|9). Moreover, |[E(X|9)| <E(|X||9).

Proof. The map B +— [ X dP, B € ¢, defines a measure that is absolutely continuous
with respect to the restriction of P to &. The assertions then follow from the Radon-
Nikodym Theorem [1.1.11 O

Remark 7.2.2. Using approximations by simple functions, we have that (7.2.1]) implies

/ngIP‘:/gE(XKf)d}P’
Q Q

for any bounded ¢¥—measurable functions g : Q@ — R.

We list some useful properties of conditional expectation. The proofs are easy conse-
quences of the definition and are left as an exercise, see Exercise [7.3

Proposition 7.2.3. The conditional expectation satisfies the following properties.

1. If 9 = 10,9}, then E(X|¥9) = E[X].

2. E[E(X|9)] = E[X].

3. For any X,Y and o, € R, E(aX + fY|¥9) = aE(X|9) 4+ SE(Y|9).

4. If X <Y, then E(X|9) <E(Y|9); in particular, if X > 0, then E(X|¥4) > 0.
5. If A C 9 is a sub-o-algebra of 4, then

E(E(X|9)|#) = E(X|#).

6. If X is 4-measurable, then E(X|¥) = X.
7. If XY, X -Y € LYQ,.Z,P) and X is 4-measurable, then

E(X -Y|¥) = X -E(Y|9).

8. If X is independent of ¢4, then E(X|¥9) = E[X].
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The following result allows to handle conditional expectations in LP spaces, 1 < p < oo.
Theorem 7.2.4 (Jensen). Let (2,.7,P) be a probability space, let 4 C F be a sub-o-
algebra, let X € L' (2, .7, P) be a real random variable, and let p : R — R be a convex C*
function such that ¢(X) € L*(Q,.Z,P). Then,

E(po X|¥9) > oo E(X|9). (7.2.2)
Proof. As ¢ is convex, we have that for any z,y € R

p(x) = y) + ¢ ) (@ —y).
We use this inequality with # = X and y = E(X|¥) and we obtain

P(X) = ¢(E(X|9)) + ¢ (E(X|9))(X - E(X|9)). (7.2.3)
Since p(E(X|¥)) is ¥—measurable, by property 6 of Proposition we have that
E(E(p(X)|9)|¥9) = E(p(X)|¥). In the same way, E(X|¥) is ¥—measurable and then
E(X —E(X|9)|¢) = 0. Since also ¢/(E(X|¥)) is ¥—measurable, by property 7 of Propo-
sition [[.2.3] we also have
E(cp/(E(X\g))(X ~ E(X|9)) ‘g) = J(B(X|9)) - E(X — E(X|¥)|%) = 0.
Then, taking conditional expectation in (7.2.3)), we have
E(¢(X)|9) 2E(p(E(X|9))I9) + E (¢ (B(X|9))(X - E(X|9))|¢) = p(E(X|9)).

O]

Corollary 7.2.5. Let X € LP(Q, #,P), 1 < p < o0, be a real random variable. Then,
its conditional expectation E(X|¥) given by Theorem belongs to LP(Q, F#,P) as well,

and |E(X,9)||lr,2,p) < 1 X 1r(0,2.p)-

Proof. Let us first consider the case 1 < p < co: Theorem with ¢(x) = |z[P yields

/ B(X|9)[P dP < / E(|X[P|) dP = / IX|P dP. (7.2.4)
Q Q Q
The case p = oo follows by 4. of Proposition [7.2.3] O

Notice that the properties of the conditional expectation listed in Proposition [7.2.3]
hold also in LP(X,v), 1 < p < oo.
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7.3 Factorisation of the Gaussian measure

In this section we describe an important decomposition of v as the product of two Gaussian
measures on subspaces. The projections onto finite dimensional subspaces generate a
canonical decomposition of the Gaussian measure as follows. Let F' C R(j(X*)) be an
n—dimensional subspace and let us denote by Pr the projection onto X with image F
(which is given by P, of with a suitable choice of an orthonormal basis of H).
Define the measure yp =y o P, ' and notice that vz(F) = 1 since P (F) = X. For any
(e X

() = / expliC(Pp(z))} (dz) = / exp{iPEC(x)} 1(dx)
X X
—exp {35, P30 |
hence yr is a centred Gaussian measure by Corollary (i), with
By (G G2) =By (PiGr, Pica) = /X Py (2) PpCa()y (de)
- / (1 (Pra)a(Pra) 7(dz) = / G1(2)Ca(2) r(d2)
X X
- /F G (2)ea(2) 1 (d2) = (1, ) 12 (Fme (73.1)

for any (1,{> € X*. In the same way we define the measure v# = vy o (I — Pr)~! and
notice that v5(Xp) = 1 where Xp := ker Pr. This measure is again a centred Gaussian
measure with

B,1 (¢, ¢2) =By((I = Pp)"C1, (I — Pr)"G2) = / (I = Pp)*Gi(2)(I = Pp)"Ca(x)y(dx)

X

— /X G = PrD)a((T = Prontd) = [ Gl)amid)
= <<1’C2>L2(XF77#)7 (7.3.2)

for any (1, (2 € X™*. The explicit computations of B, and vié imply that the Cameron—

Martin spaces of vp and ’y}% are respectively equal to F and F=, the last being the
orthogonal complement of F' in H.

Since «y is centred, we have that j(f)(z) = f(z) for any f € X*. To simplify the
notation, we shall write f instead of j(f) also when considered as an element of X7; in
this way we may think to X* as a subset of XJ. Let us assume that F' = span{hi, ..., hy}
with hi,...,h, orthonormal and such that hy € R,(X*). In this way we may use the
explicit expression for Pp given by . We can state and prove the following result.

Lemma 7.3.1. For any f € X*, we have

Pp(Ry(f)) = By(Prf), (I—Pr)(Ryf)=Ry((I—-Pr)°f).
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As a consequence
By (DB = PR By + I = Po)* Fl2axy s (7.3.3)

Proof. We know that for any g € X*, by (7.1.1)) and Remark

n

9(Pe(Ry(£)) =D hi(Ry(£))g(hi) =Y {F i) 29 ().
k=1

k=1
On the other hand, we also have

n n

Ppf(z) = f(Pra) =Y hy(x)f(hy) = Z(f: Bk)LQ(X;y)iLk(x)'

k=1 k=1
Hence for any g € X*

9(Ry(Prf)) =g <R’Y<Z<fv h) £2 () P )

k=1

=g <Z (f, ) 2 X—y)hk) = (f b r2(x 9 (hae),
k=1

k=1
and then Pr(R,(f)) = R,(Pf). In addition
(I - PF)Rv(f) = R’y(f) - PF(Rv(f)) = Rv(f) - R’Y<Pl:’k‘f)R’Y((I - P;;)f)
Since H = F & F*, for f € X* we have

R fl3 =IPrRy fIf + |(I — Pr)Ry fI
=l1Pef T2 + 1T = Pe) FlT2xp 0

We have the following result.

Proposition 7.3.2. Let 4 the restriction of yp to B(F) and ?I% the restriction of ﬁ: to
B(Xp). Then equality yr @ 73 = v holds.

Proof. We use the fact that X = F' @& Xr and then for any £ € X*

o —

T ® (€)= /F expli(z +)Vir © T (=)

— [ explig(eelds) - [ explig)hrkay
F

XF

—ow{ - (Br€.9+ B 60) |
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Taking into account ([7.3.1) and ([7.3.2)), we obtain that

Be(6.) + By (6.6 = [ e@Pn(as) + [ cwirian)

XFE
= [ (e(Pra) + €T = Pr))?) (a0
IPEE ey + I = P E g,
= IR ()} = By (6,6),

where we have used identity (7.3.3]). O

As a consequence, by the Fubini theorem, setting for every A € #(X) and z € F (as
in Remark [1.1.16) A, = {y € Xr: (z,y) € A}, we have A, € #B(XF); in the same way,
setting, for any y € Xp, AY ={z € F: (z,y) € A}, AY € B(F) and we have

+(A) = /F A (AL) v (dz) = / i (AY) 7 (dy).

XF

7.4 Cylindrical approximations

Now we are ready to study the approximation of a function via cylindrical ones, taking
advantage of the tools just presented.

We fix an orthonormal basis {hg, k € N} of H, hy = Rvﬁk with hy € j(X*) for all
k € N, see Lemma For every f € LP(X,v), n € N, we define E,, f as the conditional
expectation of f with respect to the o-algebra 3, generated by the random variables
ﬁl, cee B Using Proposition we can explicitly characterise the expectation of a
function f € LP(X,~) conditioned to 3.

Proposition 7.4.1. Let 1 <p < oo. For every f € LP(X,v) and n € N we have
®.0)@) = [ F(Pu+ (= Pypr(ds), 7€ X, (7.4.1)
Proof. Let us define
fa(z) = /X f(Poz+ (I —Pyy)y(dy), neN, zeX.

Using the factorisation v = 4p ® ’?ﬁ, we may also write

fulx) = (Pox + y)75 (dy).

f
XF
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Since for any B € ¥, 1g(x) = 1p(P,x), we have
/Bf(as)’y(das) = [ 1g(Pyz)f(Pyx + (I — Py)z)vy(dx)
15 (2).f (2 +y)iF © 7p(d(z,9))

1) ([ £z +9)iF(dy)) Fr(d2)

Xr

I(2) ( /X flz+ y)ﬁ(dy)) A (dz)

= [1G)([ 56+~ Pown(an) r(a:)

— /X llB(z)</X flz+ I - Pn)y)'y(dy)> vr(dz)

- / (o) / f(Paz + (I = P)y)y(dy) ) ~(de)
X X

- / 1 (2) fu(2)1(da).
X

T TSI
=

By Theorem we deduce that f,, = E(f|X,).
O

Let us come back to the space R* described in Subsection Through R*°, we give
a description of &(X).

Lemma 7.4.2. A set E C X belongs to &(X) if and only if there are B € B(R*) and a
sequence (fp)nen C X* such that

E= {x €X: fla):=(fulz)) € B}. (7.4.2)

Proof. For every fixed sequence (f,) C X* the sets of the form are a g-algebra, see
FExercise Then, the family of the sets as in are in turn a o-algebra (let us call
it .#) and the cylinders belong to .#, whence &(X) C .Z.

On the other hand, for any fixed sequence f = (f,) C X*, the family ¢} consisting
of all the Borel subsets B C R* such that the set E described in belongs to
&(X) contains all the cylinders in R*°, hence ¢y D &(R*°). But, since the coordinate
functions in R*° are continuous and separate the points, from Theorem it follows
that ZB(R*>°) = &(R*°). Therefore, the family of sets E C X given by with B € ¥
is contained in &(X) for every f as above. Then &(X) D .% and the proof is complete. [

Lemma easily implies further useful approximation results.

Lemma 7.4.3. For every A € &(X) and ¢ > 0 there are a cylinder with compact base
C and a compact set B C R* such that v(CAA) < ¢ and the set E defined via (7.4.2))
verifies E C A and y(A\ E) < ¢.
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Proof. Let A be as in . For every € > 0 there is a cylinder Cy such that v(AAC)) <
g/2: for instance, define By, = {y € R®: y; = fij(z), x € A, j <k} and Cy, = f~1(By),
and take Cy = O} with k large enough. Since Cy = P~1(Dy) for some Dy € %(R") and
a linear continuous operator P : X — R", it suffices to take a compact set K C Dy such
that yo P~Y(Dp \ K) < ¢/2 and C = P71(K).

By Proposition the measure v o f~! is Radon on R™, hence for every ¢ > 0
there is a compact set K C B such that yo f~}(B\ K) < ¢ and it suffices to choose
E = f~1(K). O

Proposition 7.4.4. For every 1 < p < oo and f € LP(X,) the sequence E, f converges
to f in LP(X,~) and v-a.e. in X.

Proof. Let us fix f € LP(X,v). We know that for any € > 0 there exists a simple function
Se,

sszz:ci]lAi, A€ B(X),ci € R\ {0},
=1

such that [|f — sc|[zr(x,,) < €. By Proposition for any ¢ = 1,...,m there exists
A; € E(X, {l;}Yien) with v(A;AA;)) = 0. Here £; € X* is such that j(¢;) = h; for any
i € N. Since & (X, {¢; }ien) is the o—algebra generated by the algebra

{g(X, F):neN,F,={,... ,zn}},

for any ¢ = 1,...,m there exists n; and C; € &(X, F,,) with 'y(fliACl-) < #Z;AP The
choice of the sets C; implies that, defining

m
gs = E C’L']lcia
i=1

we have

m
sz = Sell oy < Y leilllla, — el e
i=1

m
= ey (AACH) =e.
i=1
Let n > max{n; : ¢ = 1,...,m}. Since §. is &(X, F,)—measurable, by property 6 of
Proposition we have E,, 5. = 5. and then
Hf - IE:anLP(X,«/) §||f - SEHLP(X,"/) + ||5€ - 58||LP(X,'y)+
+ [|5: — EnSaHLP(X,y) + [|Ens: — I[i‘janLID(X,y)
<If = sellrx ) + 1Ise = Sellr(x )+
+ |En(8e = se)llze(x,q) + 1Bn(se — F)llze(x )
<2||f = sellze(x ) + 2

Se — §€HLP(X,’V) < 4e,
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where we have used the contractivity property of the conditional expectation. The proof

is then completed.
O

As a consequence of the above results, we have the following approximation theorem.
Notice that the conditional expectations E,, f of a function f is invariant under translations
along kerP,, hence it can be identified with a function defined on F = P, X setting

fa(y) =Enf(z), y € F, y = Pz
Theorem 7.4.5. For every 1 < p < oo the space FC°(X) is dense in LP(X,7).

Proof. Fix p and f € LP(X,~). Assume first that f € L>°(X,~) (this hypothesis will be
removed later). Set

fa(§) = /X (S ghy+ (T Py)a(dy), € B
j=1

and notice that f,, € LP(R",y o P;!). Given ¢ > 0, fix n € N such that

If = fallzr(xy) < e

Since f,, € LP(R™, v o P, 1), there exists g € C°(R™) such that

||fn - g”LP(Rn,’yOP_l) <Eé&.

n

Each f, can be approximated in LP(R™ v o P, ) by a sequence (i, ;) of functions
in Cy°(R™), e.g. by convolution. Defining the FC;°(X) functions gy, j(z) = ¥ j(Paz),
it is easily checked that the diagonal sequence g, ,, converges to f in LP(X,~). In order
to remove the assumption that f is bounded, given any f € LP(X,7), just consider a
sequence of truncations f = max{—k, min{k, f}}, k € N, and proceed as before. O

7.5 Exercises

Exercise 7.1. Let X be a separable Banach space endowed with a centred Gaussian
measure y. Prove that for any choice hy,...,hg € H, the map P : X — RY, P(z) =
(hi(x), ..., hq(z)) is a Gaussian random variable with law v o P~1 = .4(0,Q), Qij =
[his il

Exercise 7.2. Let ¢ : R — R be a convex function. Prove that there are two sequences
(an) € RY and (b,) C R such that

o(x) = sup{an - v + by }.
neN

Use this fact to prove Theorem for any convex function ¢ : R — R.

Exercise 7.3. Prove the properties of conditional expectation stated in Proposition [7.2.3
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Exercise 7.4. Prove that if Q = (0,1)? with .# = %((0,1)?) and P = )\, the Lebesgue
measure in €2, then by considering ¢4 = %((0,1)) x (0,1)

1
E(X|9)(z,y) = / X(z,0)d\ () Vye (1),
0
Exercise 7.5. Prove that for every fixed sequence (f,) C X* the family of sets defined
in (7.4.2)) is a o-algebra.

Exercise 7.6. Prove that if ¢ € C°°(X) has compact support in an infinite dimensional
Banach space then ¢ = 0.
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Lecture 8

Zero-One law and Wiener chaos de-
composition

In this Lecture we introduce the Hermite polynomials, which provide an orthonormal basis
in L?(X,v). Accordingly, L?(X,~) is decomposed as the Hilbert sum of the (mutually
orthogonal) subspaces X generated by the polynomials of degree k € N, see Proposition
Knowing explicitly an orthonormal basis in this not elementary setting is a real
luxury! The term chaos has been introduced by Wiener in [2§] and the structure that
we discuss here is usually called Wiener chaos. Of course, the Hermite polynomials are
used in several proofs, including that of the zero-one law. The expression “zero-one law”
is used in different probabilistic contexts, where the final statement is that a certain event
has probability either 0 or 1. In our case we show that every measurable subspace has
measure either 0 or 1.

We work as usual in a separable Banach space X endowed with a centred Gaussian
measure 7. The symbols R,, X7, H have the usual meaning.

8.1 Hermite polynomials

As first step, we introduce the Hermite polynomials and we present their main properties.
We shall encounter them in many occasions; further properties will be presented when
needed.

8.1.1 Hermite polynomials in finite dimension

To start with, we introduce the one dimensional Hermite polynomials.
Definition 8.1.1. The sequence of Hermite polynomials in R is defined by

(=" 2 /0 A 2
Hy(x) = T exp{z /2}@ exp{—z*/2}, keNU{0}, z e R. (8.1.1)

91
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Then, Ho(w) = 1, Hi() = @, Ha(z) = (a2 — 1)/v2, Hy(x) = (a* — 32)/V/6, etc.
Some properties of Hermite polynomials are listed below. Their proofs are easy, and left
as exercises, see Exercise [8.1]

Lemma 8.1.2. For every k € N, Hy, is a polynomial of degree k, with positive leading
coefficient. Moreover, for every x € R,

(i) Hj(z) = VkHy_1(2) = cHy(z) — Vk + 1Hgyq(2), 1o
8.1.2
(it) Hj(x) — aH(x) = —kHy(x).

Note that formula (ii) says that Hy, is an eigenfunction of the one dimensional Ornstein—
Uhlenbeck operator D? — xD, with eigenvalue —k. This operator will play an important
role in the next lectures.

Proposition 8.1.3. The set of the Hermite polynomials is an orthonormal Hilbert basis
m L2 (R, ’yl) .

Proof. We introduce the auxiliary analytic function
F:R? SR, F(tz):= e /2t

Since
o

Fa,t) = Z;(—t; + tx)k,
k=0

for every x € R the Taylor expansion of F' with respect to ¢, centred at ¢ = 0, converges
for every t € R and we write it as

Ft, 2) = e/~ (=22 _ 2/22 '8t” o~ (t=2)2/2
n

S e 4
_T;)n!e:E (=1 dzn© Z\F

So, for t, s € R we have

t=0

m

Zfr

n,m=0

F(t,2)F(s,x) = e~ 57/ 24 (t4s)e () Hyn ().

Integrating with respect to x in R and recalling that [ My (d) = N /2 for every A € R

we get

> thgh
M

[ )P (s,0) p(dn) = 1072 [ v, () — s =
R

R n=0



93
as well as
= s
F(t,x)F(s,x)v1(dz) = /anHmaﬁ’yldm.
JFeareomn = 3 o [ Hola) o) mids)
Comparing the series gives, for every n, m € NU {0},

/ Hon () Hon () 1 (di5) = G,
R

which shows that the set of the Hermite polynomials is orthonormal.

Let now f € L?(R,~1) be orthogonal to all the Hermite polynomials. Since the linear
span of {Hy : k < n} is the set of all polynomials of degree < n, f is orthogonal to all
powers x™. Then, all the derivatives of the holomorphic function

o(z) = /R explizz} f(z) dy ()

vanish at z = 0, showing that ¢ = 0. For z =t € R, ¢(¢) is nothing but (a multiple of)
the Fourier transform of = — f(x)e~*"/2, which therefore vanishes a.e. So, f(z) = 0 a.e.,
and the proof is complete. O

Next, we define d-dimensional Hermite polynomials.

Definition 8.1.4. If o = (av, ..., aq) € (NU{0}? is a multiindex, we define the polyno-
mial H, by

Hy(x) = Hoy (1) -+ Hoy(zd), = (x1,...,24) € RL (8.1.3)
Proposition 8.1.5. The system of Hermite polynomials is an orthonormal Hilbert basis in
L?%(R%,~y). Moreover, for every multiindex o = (a1, ..., aq) the following equality holds,
d
AHo(z) — (2, VHy(2)) = —(Z aj>Ha(a:). (8.1.4)
j=1

Proof. Since ~4 is the product measure of d copies of 1, and every H, is a product of
one dimensional Hermite polynomials, Proposition yields (Hq, Hp) L2(Riyy) = 1 if
a = (3 and (Hq, Hg)r2(ra 4,) = 0 if @ # B. Completeness may be shown by recurrence
on d. By Proposition the statement holds for d = 1. Assume that the statement
holds for d = n — 1, and let f € L?(R",,) be orthogonal to all Hermite polynomials in
R™. The Hermite polynomials in R™ are all the functions of the form H,(x1,...,2,) =
Hy(x1)Hg(z2,. .., 2,) with k € NU{0} and 8 € (NU{0})"L. So, for every k € NU {0}
and 3 € (NU{0})"! we have

0= (f, Ha) L2(Rn ) Z/R(Hk(wl)/w_lf(why)Hﬁ(y)%—l(dy)>71(dx1)-

Then, the function g(z1) = [gn-1 f(z1,y)Hp(y)ym-1(dy) is orthogonal in L?(R,~1) to all
Hy. By Proposition [8.1.3] it vanishes for a.e. x1, which means that for a.e. 1 € R the
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function f(z1,-) is orthogonal, in L2(R"~1,~,_1), to all Hermite polynomials Hgz. By the
recurrence assumption, f(r1,y) vanishes for a.e. y € R*~1,
For d = 1 equality (8.1.4) has already been stated in Lemma For d > 2 we have

D;Hy(x) @) [T Hon ()
h#j
d d
AHo(w) = Hely () || oo wn) =3 {“’jH&j (z) — ajHa, (ij)} 11 He ()
J=1 h#j j=1 oy
d d d
=3 4y — (3 o) Hala) = (@, V(@) — (Do) H
j=1 =1 ot

O]

Let us denote by Xj the linear span of all Hermite polynomials of degree k. It is a
finite dimensional subspace of L?(R?, ~4), hence it is closed. For f € L2(R%,~,), we denote
by Ir(f) the orthogonal projection of f on Xj, given by

Ik(f) = Z <fa Ha>Ha~ (8.1.5)

|a|=F

We recall that if « = (a1,...,ay) then |a| = a3 + ... + ay, so that the degree of H,, is
|ar|. By Proposition we have

=Y Ik(f), (8.1.6)
k=0

where the series converges in L2(R?, 7).

8.1.2 The infinite dimensional case

Let us define Hermite polynomials in infinite dimension.

Let us fix an orthonormal basis {h; : j € N} of XJ with h; = ¢; € X* so that
{h; : j € N} is an orthonormal basis of H. We introduce the set A of multi-indices
a € (NU{OPY, a = (a ), with finite length |a| = > jq oy < oo. Alis just the set of all
N U {0}-valued sequences, that are eventually 0.

Definition 8.1.6. (Hermite polynomials) For every o € A, a = (), we set
i ~
H o, (h( zeX. (8.1.7)

Note that only a finite number of terms in the above product are different from 1.
So, every H,, is a smooth function with polynomial growth at infinity, namely |H,(x)| <
C(1+ ||z|!*). Therefore, H, € LP(X,~) for every 1 < p < oo.
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Theorem 8.1.7. The set {H, : a € A} is an orthonormal basis of L*(X, 7).

Proof. Let us first show the orthogonality. Let «, 8 be in A, and let d € N be such that
a; = B; =0 for every j > d. We have (by Exercise

d
/X Ho Hy dy = /X jE[lHaj@(x»Hﬂj(f%j(x»v(daz)

d
- /R T Ha, (6 Hs (€)vatde)
j=1

which is equal to 1 if a;j = §; for every j (namely, if @ = ), otherwise it vanishes. The
statement follows.

Next, let us prove that the linear span of the H, with a € A is dense in L?(X,7).
By Theorem the cylindrical functions of the type f(z) = p(h1(2),. .., hq(z)) with
d € N and ¢ € Cy(R%,~4) are dense in L?(X, 7). So, it is sufficient to approximate such
functions. To this aim, we recall that the linear span of the Hermite polynomials in R? is
dense in L?(R%,~4), by Proposition more precisely the sequence

n n
d
SIP@=3 Y (e Hd) gt
k=0 k=0 ae(NU{0})4, |o|=k

converges to ¢ in L*(R%, ~4) as n — co. Set

fn(‘r) = Z Z <303 Ha>L2(Rd,7d)Ha(iLl($)a R ]Ald(x))v ne N7 xz e X.
k=0 ae(NU{0})1, [a]=k

Since y o (hy,...,hg)"" is the standard Gaussian measure 74 in R?,

1 = Fallzzgea = [0 = Y210 0) nen,
k=0

b
L2 (Rdvryd)

so that f, — fin L*(X,~). O

Definition 8.1.8. For every k € NU {0} we set

X =span{H, : a € A, |a| = k},
where the closure is in L?(X,7).

For k = 0, Xg is the subset of L?(X,~) consisting of constant functions. In contrast
with the case X = R%, for any fixed length k& € N there are infinitely many Hermite
polynomials H, with |a| = k, so that X is infinite dimensional. For k = 1, Xy is the
closure of the linear span of the functions izj, j € N, that are the Hermite polynomials H,,
with |a| = 1. Therefore, it coincides with X7.
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Proposition 8.1.9. (The Wiener Chaos decomposition)

LX,y= & x%.

keNU{0}

Proof. Since (Ha,H5>L2(X,,Y) = 0 for a # 3, the subspaces X are mutually orthogonal.
Moreover, they span L?(X,~) by Theorem O

As in finite dimension, we denote by I the orthogonal projection onto X. So,

Ik(f) - Z <f7 Ha)LQ(X,'y)Ha7 f € LQ(X77)7 (818)
a€A, |a|=k
F=Y L)), feL*(X,y), (8.1.9)
k=0

where the series converge in L?(X,7).

8.2 The zero-one law

We start this section by presenting an important technical notion that we need later, that
of completion of a o-algebra.

Definition 8.2.1. Let .7 be a o-algebra of subsets of X and let v be a measure on (X,.F).
The completion of F is the family

%:{Ecx; IBy1,By € F such that B, C E C By, 7(32\31):0}.

We leave as an exercise to verify that .7, is a o-algebra. The measure v is extended
to #, in the natural way. From now on, unless otherwise specified, a set £ C X is called
measurable if it belongs to the completed o-algebra (X ), = &(X),. The main result of
this section is the following.

Theorem 8.2.2. IfV is a measurable affine subspace of then (V') € {0,1}.
We need some preliminary results.

Proposition 8.2.3. If A € #A(X), is such that y(A + h) = ~v(A) for all h € H, then
7(4) € {0,1}.

Proof. Let {h;}jen be an orthonormal basis of H. Then, for every n € N the function

n R 1 n
Ftr, .. tn) = YA —tihy + ... — tyhy) = /Aexp{ztjhj(x) . iz:t?}'y(daz)
j=1 j

(1>By measurable affine subspace we mean a set V = Vj + xo, with Vo measurable (linear) subspace and
xo € X.
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is constant. Therefore, for all a,...,a, not all 0 we get
aa1+~~~+anF

oo
1.0ty

Arguing as in the proof of Proposition [8.1.3] we get

0) = 0.

A~

= Ho, (h1(2)) - ...  Ha, (hn(z))

ti ==t =0

Hart+an L 1 5
ot otar exp{ 3 tihy(w) - 2 >}
1 j=1 j=1

(where H,; are the 1-dimensional Hermite polynomials), whence

/X Hg, (hi(z)) - ... Ho, (hp(z)14(z)y(dz) = 0.

It follows that the function 14 is orthogonal to all nonconstant Hermite polynomials and
then by Theorem [8.1.7|it is constant, i.e., either 14 =0 or 14 =1 a.e. ]

Corollary 8.2.4. If A € B(X)y is such that y(A\ (A+ h)) =0 for every h € H, then
7(4) €{0,1}.
Proof. Since if h € H also —h € H, we deduce that v(A\ (A —h)) =0 for all h € H and
then by Theorem v((A+h)\ A) = 0. In conclusion

WA+h)=~(4), VheH
and we conclude by applying Proposition [8.2.3 O

Corollary 8.2.5. If f is a measurable function such that f(x + h) = f(z) a.e., for all
h € H, then there exists ¢ € R such that f(x) = c for a.e. v € X.

Proof. By Proposition for every t € R either y({z € X : f(z) < t}) = 1 or
v{z € X : f(z) < t}) = 0. Since the function t — y({z € X : f(z) < t}) is increasing,
there exists exactly one ¢ € R such that y({z € X : f(z) < t}) = 0 for all ¢ < ¢ and
y{z € X : f(x) <t})=1forallt > c. Then,

’y({:BEX:f(x):c}):nli_{glo'y({xeX:c—%Sf(:v)<c+%}>:1.

Now we prove our main theorem.

Proof. of Theorem[8.2.4Let us assume first that V is a linear subspace. If y(V) = 0 there
is nothing to prove. If (V') > 0, then there exists A, B € #(X) with A C V C B and
v(B\ A) = 0. By Proposition there exists r > 0 such that

BIO,r)cA—AcV -V =V,

and then H C V. Hence V + h =V for every h € H and by Proposition ~(V)=1.
Let now V be an affine subspace. Then, there is zg such that Vj = V 4+ x( is a
vector subspace, hence, applying the result for Vj to the measure 7., we obtain (V')

Yoo (V + 0) = 720 (Vo) € {0, 1}. -
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8.3 Measurable linear functionals

In this section we give the notion of measurable linear functionals and we prove that such
functions are just the elements of X7.

Definition 8.3.1 (Measurable linear functionals). We say that f : X — R is a measurable
linear functional or y—measurable linear functional if there exist a measurable subspace
V C X with v(V) =1 and a y-measurable function fy: X — R such that fo is linear on
V oand f = fo v-a.e.

In the above definition f = fy v-a.e., so we may modify any measurable linear func-
tional on a negligible set in such a way that the modification is still mesurable, as the
o-algebra Z(X) has been completed, it is defined everywhere on a full-measure subspace
V and it is linear on V. This will be always done in what follows. As by Theorem (ii),
which is easily checked to hold for all measurable subspaces and not only for Borel mea-
surable subspaces, the Cameron-Martin space H is contained in V', all measurable linear
functionals will be defined everywhere and linear on H.

Example 8.3.2. Let us exhibit two simple examples of measurable linear functionals
which are not continuous, except trivial cases.

(i) Let f:R* — R be the functional defined by

flx) = Z CrTy
k=1

where (ci,) € ¢2. Here, as usual R is endowed with a countable product of standard
1-dimensional Gaussian measure, see (4.1.1)). Indeed, the series defining f converges
y-a.e. in R®. If {k: ¢ = 0} = oo, only the restriction of f to R is continuous.

(ii) Let X be a Hilbert space endowed with the Gaussian measure v = .4°(0, @), where
@ is a selfadjoint positive trace-class operator with eigenvalues {\; : k € N}. Let
{ex : k € N} be an orthonormal basis of eigenvectors of @ in X with Qex = Apex
for all k € N. Fix a sequence (c;) C R such that the series Y, c2)\g is convergent
and define the functional

f@) = crlz,en)x.
k=1

Then, f is a measurable linear functional on X which is not continuous if (c) ¢ ¢2,
see Exercise 8.4

We shall call proper measurable linear functionals the measurable linear functionals
that are linear on X.

Proposition 8.3.3. Let f be a measurable linear functional and let V' be a full measure
subspace such that [ is linear on V. If X \'V # () then there is a modification of f on the
v-negligible set X \ V' which is proper.
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Proof. If V is a complemented subspace, just put f = 0 on the complementary space.
If not, we use the existence of a vector (or Hamel) basis in X, i.e., an infinite (indeed,
uncountable) linearly independent set of generators, see [I12, Theorem 1.4.5]. Notice that
the existence of such a basis is equivalent to the axiom of choice or Zorn Lemma. Fix a
Hamel basis of V, say B = {e, : a € A} for a suitable set if indices A. Then, complete
B in order to get a basis of X and extend fy, setting f = 0 on the added generators.
The extension of fjy is different from f on a y-negligible set and is linear on the whole of
X. O

The first result on the measurable linear functionals is the following.

Proposition 8.3.4. If f : X — R is a measurable linear functional, then its restriction
to H is continuous with respect to the norm of H.

Proof. Setting V,, = {f < n}, n € N, since X = U,V,, there is ng € N such that
¥(Vi) > 0. By Lemma there is 7 > 0 such that By (0,r) C V,, — Vy,, and therefore

sup |f(h)] < 2nyg.
hGBH(O,T)

O]

For the statement of Proposition to be meaningful, f has to be defined every-
where on the subspace V' in definition because H is negligible. Nevertheless, proper
functionals are uniquely determined by their values on H.

Lemma 8.3.5. Let f be a proper measurable linear functional. If f € X7 then

A~

T = [Byfibl = | f(@)h@)r(do),  vheH (8.3.1)

Proof. The second equality is nothing but the definition of inner product in H. In order
to prove the first one, consider a sequence (f,,) C X* converging to f in L?(X,~) and fix
h e H. By -, writing as usual h = R, h we have

fulh) = fu(RoE) = /X faul@)h(z) (dz).

The right hand side converges to the right hand side of ({8.3.1)), hence (up to a subsequence
that we do not relabel) f, — f a.e. Then

L={zcX: f(z) = lim fu(x)}

is a measurable linear subspace of full measure, hence L contains H thanks to Proposition
3.1.9(ii). Therefore, f(h) = lim, o fn(h) and this is true for all h € H. O

Corollary 8.3.6. If (f) is a sequence of proper measurable linear functionals converging
to 0 in measure, then their restrictions f, g converge to 0 uniformly on the bounded subsets

of H.
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Proof. Let us first show that the convergence in measure defined in (|1.1.4)) implies the
convergence in L?(X,~). Indeed, if f, — 0 in measure then

1 .
exp{ = 5l fallfacey = 90) 1.

whence || fn|lz2(x,y) — 0. Therefore, by Lemma

[fu()] < /X [fu(@) ()] v(de) < || fall 2x bl Vhe H.

To show that the sequence ( Inl p) converges uniformly on the bounded sets, it is enough
to consider the unit ball:

sup | fra (W) < [ full2(x,y) = 0-
heH, |h|g<1

O

Proposition 8.3.7. If f and g are two measurable linear functionals, then either v({f =
g})=1or~v({f=g})=0. We havev({f =g}) =1 if and only if f =g on H.

Proof. According to Proposition [8.3.3] we may assume that f and g are proper; then
L = {f = g} is a measurable vector space. By Theorem [8.2.2]either (L) = 0, or y(L) = 1.
If v(L) = 1 then H C L by Proposition [3.1.9(ii) and then f = g on H. Conversely, if
f = ¢ in H then the measurable function ¢ := f — g verifies p(x + h) = ¢(x) for every
h € H. By Corollary @ = c a.e., but as ¢ is linear, ¢ = 0. O

Notice that, as a consequence of Proposition if a measurable linear functional
vanishes on a dense subspace of H then it vanishes a.e. Indeed, any measurable linear func-
tional is continuous on H, hence if it vanishes on a dense set then it vanishes everywhere
in H.

Theorem 8.3.8. The following conditions are equivalent.

(i) feX.

(i1) There is a sequence (fn)neny C X* that converges to f in measure.

(iii) f is a measurable linear functional.
Proof. (i) = (ii) is obvious.
(i) = (iii) If (fn) € X* converges to f in measure, then (up to subsequences that
we do not relabel) f, — f a.e. and therefore defining

V={reX:3lim f,(x)},
n—oo

V is a measurable subspace and (V') = 1, hence we may define also the functional

fo(x) = lm fu(z), x€V.
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V and fy satisfy the conditions of Definition and therefore f is a measurable linear
functional.

(ili) == (i) Let f be a measurable linear functional; then by Proposition its
restriction to H is linear and continuous with respect to the norm of H. By Riesz-Frechet
Representation Theorem, there exists g € X such that

f(h)=[Ryg,hlu,  VheH.

By (3.1.7) [Ryg,hlg = g(h), and then f = g on H. By the implications (i)==-(ii) and
(ii)==>(iii) we know that g is a measurable linear functional, and then by Proposition[8.3.7]
we deduce that f = g y-a.e. and then f € XJ. O

8.4 Exercises

Exercise 8.1. Prove the equalities (8.1.2)).

Exercise 8.2. Verify that the family %, introduced in Definition is a o-algebra.
Prove also that the measure v, extended to .%, by v(E) = v(B1) = v(B2) for E, By, By
as in Definition [8.2.1} is still a measure.

Exercise 8.3. Prove that if A is a measurable set such that A4rh; = A up to y-negligible
sets with r € Q and {h; : j € N} an orthonormal basis of H, then v(A) € {0,1}.
Hint: Use the continuity of the map h +— y(A+ h) in H.

Exercise 8.4. Prove that the functionals f defined in Example [8:3.2] enjoy the stated
properties.
Hint: For the case (ii), prove that f € L?(X, ).
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Lecture 9

Sobolev Spaces I

9.1 The finite dimensional case

We consider here the standard Gaussian measure v4 = .4#(0,1;) in R%. As in the case of
the Lebesgue measure Ag, for 1 < p < oo there are several equivalent definitions of the
Sobolev space WHP(R?, ~4). It may be defined as the set of the functions in LP(R?,v,)
having weak derivatives D;f, i = 1,...,d in LP(R%, ~,), or as the completion of a set of
smooth functions in the Sobolev norm,

1/p 1/p
T :=< / Iflpd%z> +< / |Vf\pdwd> . (0.1.1)
R4 Rd

Such approaches are equivalent. We will follow the second one, which is easily extendable
to the infinite dimensional case, and in the infinite dimensional case seems to be the
simplest one. To begin with, we exhibit an integration formula for functions in CZ} (R9), the
space of bounded continuously differentiable functions with bounded first order derivatives.

Lemma 9.1.1. For every f € Cl}(Rd) and for every i =1,...,d we have

[ s w@mtdn) = [ s @) (), (9.1.2)
R R4

a 0x;

The proof is left as an exercise. Applying Lemma to the product fg we get the
integration by parts formula

[ rgtdu=— [ o5Laut [ roe@etdo. 1 oeClE), (013

which is the starting point of the theory of Sobolev spaces.
We recall the definition of a closable operator, and of the closure of a closable operator.
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Definition 9.1.2. Let E, F be Banach spaces and let L : D(L) C E — F be a linear
operator. L is called closable (in E) if there exists a linear operator L : D(L) C E — F
whose graph is the closure of the graph of L in E x F. Equivalently, L is closable if

(xn) € D(L), lim z, =0in E, lim Lz, =2 in F = 2=0. (9.1.4)
n—oo n—oo
If L is closable, the domain of the closure L of L is the set
D(L) = {:c € E: J(z,) C D(L), li_)m Tn = x, Lx, converges in F}
mn o

and for z € D(L) we have

Lx = lim Lax,,
n—oQ

for every sequence (z,) C D(L) such that lim, o x, = . Condition 4)) guarantees
that lim,, o, Lz, is independent of the sequence (z,). Since L is a closed operator, its
domain is a Banach space with the graph norm = — ||z||g + || Lz F.

For every 1 <p < oo weset asusual p’ =p/(p—1)if 1l <p<oo,p =0ifp=1.

Lemma 9.1.3. For any 1 < p < oo, the operator V : D(V) = C}(R?) — LP(RY, vy RY)
is closable in LP(R?, ~q).

Proof. Let f, € CH(R?) be such that f,, — 0 in LP(R%,~,) and Vf,, = G = (g1, ...gq) in
LP(R?, v4: RY). For every i = 1,...,d and ¢ € C}(R?) we have

T L /gisod%z,
Rd

n—o0 Rd axz

since

Ofn
< ox;

J.

On the other hand,

)| dva < 100/02s = gil ot 19 1 R

/ gfngp Vd = — / fn (pd7d+/ wzfn( ) ( )Vd(dx)v ’nGN,

so that, since f,, — 0 in LP(R? ~,4) and the functions x — 9p/dz;(z), x + x;p(z) are
bounded,

lim 8fng0d'yd =0.
n—o0 Rd 8{1}‘2
So,
/ gipdia=0, ¢eCi(RY
R4
which implies g; = 0 a.e. O

Lemma allows to define the Sobolev spaces of order 1, as follows.
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Definition 9.1.4. For every 1 < p < oo, WIP(R? ~y,) is the domain of the closure of
V i CHRY) — LP(RY, yg;RY) in LP(RY, g; RY) (still denoted by V). Therefore, f €
LP(R%,~,) belongs to WHP(RY, ~g) iff there exists a sequence of functions f, € CL(R?)
such that f, — f in LP(R%,~y) and Vf, converges in LP(R%,~v4;RY), and in this case,
Vf =lim, 00 Vfn. Moreover we set Of /0xi(x) ==V f(x) e, i=1,...d.

WLP(RY, ~,) is a Banach space with the graph norm

Hf”leP(R‘i,'yd) = HfHLP(Rd;yd) + HVfHLP(Rd,'yd;Rd)

1/p 1/p
_ < / Iflpd7d> +< / |Vf|pdvd> |
Rd Rd

One could give a more abstract definition of the Sobolev spaces, as the completion
of CL(R?) in the norm (9.1.1). Since the norm is stronger than the LP norm,
every element of the completion may be identified in an obvious way with an element f
of LP(R%,~,). However, to define Vf we need to know that for any sequence (f,,) of c}
functions such that f, — f in LP(R? ~4) and V f, is a Cauchy sequence in LP(R?, v4; R?),
the sequence of gradients (V f,) converges to the same limit in LP(R?, ~4; R?). In other
words, we need Lemma [9.1.3

Several properties of the spaces WP (R%, ~,) follow easily.

(9.1.5)

Proposition 9.1.5. Let 1 < p < 0o. Then

(i) the integration formula (9.1.2)) holds for every f € WYP(X,vq), i =1,...,d;

(i) if 0 € CHRY) and f € WIP(RY,v,), then 6o f € WIP(RY,v,), and V(0 o f) =
(0" fIV];

(iii) if f € W'P(RY,~q), g € WH(R, ~g) with 1/p +1/q = 1/s < 1, then fg €
WhHs(RY, ~g) and
V(fg) =gVf+fVy;

(iv) WHP(R?, ~y) is reflezive;
(U) Zf fn — f in Lp(Rdvf}/d) and SUPpeN ”fTLHWLp(Rd,’Yd) < 00, then f € Wl’p(Rdafyd)'

Proof. Statement (i) follows just approximating f by a sequence of functions belonging to
C’,}(Rd), using for every approximating function f, and letting n — oc.

Statement (ii) follows approximating fo f by 6o f,, if f, € C}(R?) is such that f, — f
in LP(R%,v4) and V£, — Vf in LP(RY, ~v4; RY).

Statement (iii) follows easily from the definition, approximating fg by fng, if f, €
CL(R?) are such that f, — f in LP(R% ~g), Vf, — Vf in LP(RY, vg;RY), g, — g, in
LI(R?, ~g), Vg, — Vg in LI(RY, v4; RY).

The proof of (iv) is similar to the standard proof of the reflexivity of W1P(R? \y).
The mapping u — Tu = (u, Vu) is an isometry from W1P(R? ~4) to the product space
E = LP(R% ~4) x LP(R?, ~v4;RY), which implies that the range of T is closed in E. Now,
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LP(R?, ~4) and LP(RY,~v4;RY) are reflexive so that E is reflexive, and T(W1'P(R?, ~4)) is
reflexive too. Being isometric to a reflexive space, WhP(R?, ~,) is reflexive.

As a consequence of reflexivity, if a sequence (f,,) is bounded in W1P(R?, ~,) a subse-
quence fy, converges weakly to an element g of WhP(RY, ~,4) as k — oo. Since fro, = f
in LP(R%,v,), f = g and statement (v) is proved. O]

Note that the argument of the proof of (ii) works as well for p = 1, and statement
(ii) is in fact true also for p = 1. Even statement (i) holds for p = 1, but the fact that
r — zf(x) € L'(RYy,) for every f € WHL(R?, 4,) is not obvious, and will not be
considered in these lectures.

Instead, W11(R?, v4) is not reflexive, and statement (v) does not hold for p = 1 (see
Exercise .

The next characterisation is useful to recognise whether a given function belongs to
WP(R?, ~,4). We recall that LP (R?) (resp. I/Vli’f(Rd)) is the space of all (equivalence
classes of) functions f such that the restriction of f to any ball B belongs to LP(B, \g)
(resp. WIP(B,\y)). Equivalently, f € L} (R9) (resp. f € I/Vlz’cp(]Rd)) if f0 € LP(R?, \y)
(resp. f0 € WHLP(RY, \y)) for every 0 € C°(R?). For f € Wlif(Rd) we denote by D; f the
weak derivative of f with respect to z;, 1 =1,...d.

Proposition 9.1.6. For every 1 < p < oo,

WHP(RY, vq) = {f e WLP(RY) : f, Dif € LP(RY7q), i =1,. ..d}.
Moreover, for every f € WYP(RY, ~vq) and i = 1,...,d, Of/0x; coincides with the weak
derivative D; f.

Proof. Let f € WYP(R,~,4). Then for every g € C}(R?), still holds: indeed, it is
sufficient to approximate f by a sequence of functions belonging to C’b1 (RY), to use
for every approximating function f,, and to let n — oo.

This implies that 0f/0x; is equal to the weak derivative D;f. Indeed, for every ¢ €

C2(RY), setting g(z) = p(z)el*"/2(2m)4/2, (9.1.3) yields

oo 99 _ of _ / of
Rd f@x, daj o /Rd f <8$1 ng> d’)/d o /Rd 8:)%9 d’}/d o R4 8.%'1 Y dx‘

So, Of/0x; = D;f, for every i = 1,...,d. Since LP(R% ~,) C LfOC(Rd), the inclusion

WLP(Rda’Yd) - {f € Wli)f(Rd) 2 fy Dif € Lp(Rdvlyd)v t=1,... d} is proved.
Conversely, let f € VVli’f(Rd) be such that f, D;f € LP(R% ) fori = 1,...d. Fix
any function § € C°(R?) such that @ = 1 in B(0,1) and § = 0 outside B(0,2). For every

n € N, we define

fal@) = b0(z/n)f(zx), z€R%

Each f,, belongs to W1P(R9, v,), because the restriction of f to B(0,2n) may be approx-
imated by a sequence (¢y) of C! functions in W1P(B(0,2n), \¢), and the sequence (uy)
defined by ug(z) = 0(x/n)pr(z) for |x| < 2n, ux(x) = 0 for |z| > 2n is contained in
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CL(R?), it is a Cauchy sequence in the norm (9.1.5), and it converges to f,, in LP(RY, ~4)

since

. ) o gy < e
Ll [ oG - e < oo |

|f — oxlPda.
2n)
In its turn, the sequence (f,,) converges to f in LP(R%,~,), by the Dominated Convergence
Theorem. Moreover, for every i = 1,...,d we have 0f,/0x;(x) = n~'D;0(x/n)f(z) +
0(x/n)D;f(z), so that 0f,/0x; converges to D;f in LP(R? ~,), still by the Dominated
Convergence Theorem. Therefore, f € WIP(R?, ~,). O

By Proposition if a C! function f is such that f, D;f belong to LP(R? ~4)
for every i = 1,...,d, then f € W'P(R? ~,). In particular, all polynomials belong to
WhP(RY, ~,), for every 1 < p < oo.

9.2 The Bochner integral

We only need the first notions of the theory of integration for Banach space valued func-
tions. We refer to the books [§], [29, Ch. V] for a detailed treatment.

Let (£2,.%#) be a measurable space and let p : .# — [0, 00) be a positive finite measure.
We shall define integrals and LP spaces of Y-valued functions, where Y is any separable
real Banach space, with norm || - ||y

In the following sections, 2 will be a Banach space X endowed with a Gaussian mea-
sure, and Y will be either X or the Cameron—Martin space H. However, the definitions
and the basic properties are the same for a Gaussian measure and for a general positive
finite measure.

As in the scalar valued case, the simple functions are functions of the type

F(SU) = Z ]lrz(x)ylv x €,
=1

withn e N, T; € #, y; € Y forevery i = 1,...,n and I'; NT'; = () for ¢ # j. In this case,
the integral of F' is defined by

/Q F()a(de) = 3 T (9.2.1)

It is easily seen that the integral is linear, namely for every «, 8 € R and for every couple
of simple functions F}, Fy

[ (@Fi(e) + Fo@)ntdo) = a | Filau(do) +5 [ Fala)u(d) (9.22)
Q Q X

and it satisfies

H /Q F(z)y(dz) y < /Q |F(z)||ly~y(dz), (9.2.3)

for every simple function F' (notice that x — || F(z)||y is a simple real valued function).
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Definition 9.2.1. A function F' : Q — Y is called strongly measurable if there exists
a sequence of simple functions (F,) such that lim, | F(z) — Fn(2)|ly = 0, for u-a.e.
x € Q.

Notice that if Y is separable then this notion coincides with the general notion of
measurable function given in Definition m see [27, Proposition 1.1.9]. If Y = R, see
Exercise Also, notice that if F' is strongly measurable, then || F(-)||y is a real valued
measurable function. The following theorem is a consequence of an important result is
due to Pettis (e.g. [8, Thm. I1.2]).

Theorem 9.2.2. A function F : Q — Y is strongly measurable if and only if for every
f e Y™ the composition foF :Q — R, z— f(F(x)), is measurable.

As a consequence, if Y is a separable Hilbert space and {yy : k € N} is an orthonormal
basis of Y, then F': Q — Y is strongly measurable if and only if the real valued functions
x +— (F(x),yr)y are measurable.

Definition 9.2.3. A strongly measurable function F : Q — 'Y is called Bochner integrable
if there exists a sequence of simple functions (Fy) such that

lim / |F(x) — Fo(@) |y p(da) = 0.

n—oo

In this case, the sequence fQ F,du is a Cauchy sequence in'Y by estimate (9.2.3)), and we
define

/QF(SU) p(dz) := lim [ F,(x)p(dz)

n—oo QO

(of course, the above limit is independent of the defining sequence (F},)). The following
result is known as the Bochner Theorem.

Proposition 9.2.4. A measurable function F : Q2 — Y is Bochner integrable if and only
of
L IF@)yntdo) < .

Proof. If F is integrable, for every sequence of simple functions (F,,) in Definition
we have

/ |F(@)llyude) < / 1P () — Fu(a)ly u(de) /HF Yy (dz),

which is finite for n large enough.

To prove the converse, if [, [|F(z)|lyu(dz) < oo we construct a sequence of simple func-
tions (F,) that converge pointwise to F' and such that lim,_,o [, [|F(2) = Fy(2)|ly p(dx) =
0.

Let {yx : k € N} be a dense subset of Y. Set

Op(z) = min{||F(x) —yklly : k=1,...,n},
kn(x) :=min{k <n: O,(x) = [|F(x) — yx|lv },
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and
Fo() =y, (), z€X.

Then every 0,, is a real valued measurable function. This implies that F;, is a simple
function, because it takes the values y1, ...y, and for every k = 1,...,n, F;1(y;) is the
measurable set I'y = {x € Q: 0,(z) = ||F(z) — ykllv }-

For every = the sequence | F,(z) — F(x)|ly decreases monotonically to 0 as n — oc.
Moreover, for every n € N,

[1Fn(z) = F(@)lly <llyr = F(@)lly < lwilly +1F@)]y, =X (9.24)

By the Dominated Convergence Theorem (recall that p is a finite measure) or else, by the
Monotone Convergence Theorem,

T [ () = F@)lyp(da) =0,
]

If FF: Q — Y is integrable, for every E € .% the function 1gF is integrable, and we

set
| F@utdo) = | 1P n(do)
E Q

The Bochner integral is linear with respect to F', namely for every o, 8 € R and for every
integrable Fy, Fy, (9.2.2) holds. Moreover, it enjoys the following properties.

Proposition 9.2.5. Let F : Q) — Y be a Bochner integrable function. Then
(i) | Jo F (@) pldz)lly < [o [IF(2)ly p(dx);

(ii) limu(E)Ho fE (z) u(dx) =0
(117) If (Ey) is a sequence of pairwise disjoint measurable sets in Q and E = UpenEnp,

then
é p(dz) }:/

neN

(iv) For every f € Y*, the real valued function x — f(F(x)) is in L'(, n), and

1 [ Fautan) = [ s i) (9.2.5)

Proof. (i) Let (F,,) be a sequence of simple functions as in Definition [9.2.3| By (9.2.3) for
every n € N we have || [, Fr(x) p(dz)|ly < [q [[Fa(2)||yp(dz). Then,

HAF@MM) hm/F()ux

< hmsup/ | E(z)]ly p(dx)

n—00 n—00
< lim / |Fu() — F(a)ly p(da) / |F(@)lly u(de)

- / IF(@)lly uldz).
Q
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Statement (1) means: for every € > 0 there exists § > 0 such that p(E) < ¢ implies
| [z F( dz)|ly < e. Since lim, g0 [ [|F(2)|ly p(dz) = 0, statement (ii) is a conse-
quence of ( )

Let us prove statement (iii). Since, for every n,

] [ Fen)| <

the series > o /| o ) 1(dz) converges in Y, and its norm does not exceed

/ VP (@)lly pdz),
E,

/ |F(@)lly ulda).
Q

Since the Bochner integral is finitely additive,

H / F(w)u(dx)—g; [ (@) utan

where limy, o0 1(Up,,, 11 En) = 0. By statement (i), the right-hand side vanishes as
m — 00, and statement (iii) follows.

Let us prove statement (iv). Note that holds obviously for simple functions.
Let (F},) be the sequence of functions in the proof of Proposition Then,

1 [ Futan) = (g [ £ utan)

= tin ([ F@)utan)) =t [ 5050 atio)

n—oo n—oo 0

- H /. Pl ()

n=m-1 Y

On the other hand, the sequence (f(F,(z))) converges pointwise to f(F(z)), and by (9.2.4)

[F(En(@)] < 1 fllv= 1 (@) lly < I flly=(1Fn(z) = F@)lly + [F(@)]y)
< A lly=lyally + 21 F () [ly)-

By the Dominated Convergence Theorem,

fim [ (@) utdo) = [ F(Pa) i),

n—oo Q
and the statement follows. O

Remark 9.2.6. As a consequence of (iv), if Y is a separable Hilbert space and {yy : k €
N} is an orthonormal basis of Y, for every Bochner integrable F': Q — Y the real valued
functions = +— (F(x), yx)y belong to L'(, i), and we have

/QF( (d) Z/ ) Yk)y p(d) yi
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The LP spaces of Y-valued functions are defined as in the scalar case. Namely, for every
1 <p < oo, LP(Q,1;Y) is the space of the (equivalence classes) of Bochner integrable
functions F : Q — Y such that

1/p
I1F | Lo,y (/ | F ()5 )) < 0.

The proof that LP(Q, u;Y) is a Banach space with the above norm is the same as in the
real valued case. If p =2 and Y is a Hilbert space, LP(Q, u;Y') is a Hilbert space with the
scalar product

<F¢»Lag#y>:=/£quxc%x»yu«m>
As usual, we define

L™®(Q,u;Y) = {F : Q — Y measurable s.t. ||F[| oo uy) < oo},

where

|Fll ey = nf{ M > 0 pu({a : |F(@)lly > M}) =0},

Notice that if Y is a separable Hilbert space, which is our setting, the space LP(€, u;Y)
is reflexive for 1 < p < oo, see [8, Section IV.1].

The first example of Bochner integral that we met in these lectures was the mean a of
a Gaussian measure y on a separable Banach space X. By Proposition there exists
a unique a € X such that ay(f) = f(a), for every f € X*. Since v is a Borel measure,
every continuous F' : X — X is measurable; in particular F'(z) := z is measurable,
hence strongly measurable. By the Fernique Theorem and Proposition it belongs to
LP(X,~; X) for every 1 < p < oo, and we have

o= /X 2r(dz).

Indeed, for every f € X™*, we have

N/wvm> | f@)td) = ar (1)

by ([9.2.5). Therefore, a = [y x~(dx).

9.3 The infinite dimensional case

9.3.1 Differentiable functions

Definition 9.3.1. Let X, Y be normed spaces. Let T € X and let ) be a neighbourhood of
T. A function f:Q —Y is called (Fréchet) differentiable at T if there exists £ € L(X,Y)
such that

If (@ +h) = f(@) = €h)lly = o([[hllx) ash—0in X.

In this case, { is unique, and we set f'(T) := L.
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Several properties of differentiable functions may be proved as in the case X = R"”,
Y = R™. First, if f is differentiable at T it is continuous at . Moreover, for every v € X
the directional derivative

Of (0 v gy ST ) £ (E)

ov t—0 t

exists and is equal to f/(T)(v).

IfY =R and f: X — Ris differentiable at Z, f'(T) is an element of X*. In particular,
if f € X* then f is differentiable at every T and f’ is constant, with f/(Z)(v) = f(v) for
every T, v € X. If f € FCHX), f(z) = p(l1(z),..., 0 (x)) with £, € X*, p € CLR™), f
is differentiable at every T and

Z agk v (@)l (v), T, veX.

If f is differentiable at x for every x in a neighbourhood of Z, it may happen that the
function X — L£(X,Y), z — f'(z) is differentiable at T, too. In this case, the derivative
is denoted by f”(T), and it is an element of £(X,£L(X,Y)). The higher order derivatives
are defined recursively, in the same way.

If f:X — R is twice differentiable at Z, f”(Z) is an element of £(X, X*), which is
canonically identified with the space of the continuous bilinear forms £®(X): indeed, if
v € L(X,X*), the function X? — R, (z,y) — v(x)(y), is linear both with respect to x
and with respect to y and it is continuous, so that it is a bilinear form; conversely every
bilinear continuous form a : X2 — R gives rise to the element v € £(X, X*) defined by
v(z)(y) = a(x,y). Moreover,

v(z)(y)] la(z, y)|
||UHLX,X* = Sup . — Sup 72”@\ (2) .
X 20z0 [2lx [9llx — az0.g20 2] x [yllx LX)

Similarly, if f: X — R is k times differentiable at z, f(* ( ) is identified with an element
of the space £*)(X) of the continuous k-linear forms.

Definition 9.3.2. Let k € N. We denote by C¥(X) the set of bounded and k times
continuously differentiable functions f : X — R, with bounded ||fU HL(J> ) for every
j=1,...,k. It is normed by

Hf”cg Z SUP 2 @)l e (x);

j=07€X

where we set fO)(z) = f(x). Moreover we set

P(X) =) Cchx

keN
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If X is a Hilbert space and f : X — R is differentiable at T, there exists a unique
y € X such that f'(Z)(x) = (x,y), for every x € X. We set

V@) :=y.

From now on, X is a separable Banach space endowed with a norm || - || and with a
Gaussian centred non degenerate measure v, and H is its Cameron-Martin space defined
in Lecture 3.

Definition 9.3.3. A function f : X — R is called H-differentiable at T € X if there exists
by € H* such that

|f(Z+ h) — f(T) = Lo(h)| = o(|h|g) ash— 0in H.

If f is H-differentiable at T, the operator ¢y in the definition is called H-derivative of
f at T, and there exists a unique y € H such that {y(h) = [h,y]g for every h € H. We set

Vuf(@) =y.
Definition differs from in that the increments are taken only in H.

Lemma 9.3.4. If f is differentiable at T, then it is H -differentiable at T, with H-derivative
given by h — f'(Z)(h) for every h € H. Moreover, we have

V(@) = R, f(@). (9.3.1)
Proof. Setting ¢ = f'(Z) we have

o @R = f@ =) @) — f@) - h)] ]

|l —0 2 Il —0 |IR]] res

0,

because H is continuously embedded in X so that the ratio ||h||/|h|g is bounded by a
constant independent of h. This proves the first assertion. To prove , we recall
that for every ¢ € X* we have p(h) = [R,¢, h|g for each h € H; in particular, taking
¢ = f'(T) we obtain f(z)(h) = [Ryf(Z),hlu = [Vuf(Z),h]y for each h € H, and
therefore Vi f(Z) = R, f'(T). O

If f is just H-differentiable at T, the directional derivative %(E) exists for every v € H,

and it is given by [V f(Z),v]n. Fixed any orthonormal basis {h, : n € N} of H, we set

0, f(T) == 3}{ (z), ieN.
So, we have
Vaf(@ =Y 0if(@)hi, (9.3.2)
=1

where the series converges in H.
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We warn the reader that if X is a Hilbert space and f is differentiable at z, the gradient
and the H-gradient of f at T do not coincide in general. If v = A47(0, Q), identifying X*
with X as usual, Lemma implies that Vg f(Z) = QV f(T).

We recall that if v is non degenerate, then @) is positive definite. Fixed any orthonormal
basis {e; : j € N} of X consisting of eigenvectors of @, Qe; = Aje;, then a canonical
orthonormal basis of H is {h; : j € N}, with hj = \/Aje;, and we have

0
%Wh%mém,mN

9.3.2 Sobolev spaces of order 1

As in finite dimension, the starting point to define the Sobolev spaces is an integration
formula for C’l} functions.

Proposition 9.3.5. For every f € C}(X) and h € H we have
of / -
—dy= [ fhdy. 9.3.3
an = fhdy (9.3.3)

Consequently, for every f, g € C’l} (X) and h € H we have

of

P .
[ hedr=- Xafbfd7+/)(fghdv. (9.3.4)

Proof. By the Cameron-Martin Theorem for every t € R we have
[t thyatdn) = [ flapeth e E s ),
X X

so that, for 0 < |t| <1,

x ~ flx eth(@) =123 /2 _
J A ) = [ ) T a),

As t — 0, the integral in the left-hand side converges to [  0f/0h dy, by the Dominated

Convergence Theorem. Concerning the right-hand side, (eth(’”)_mh'%/ 2_1)/t = h(z) for
every z € X. For [t| <1, we estimate

‘ +
t t
€7t2|h|%{/2 — 1

t

eft2|h|§{/2(eth(z) — 1) eftz‘h|§-1/2 — 1’

th(a)—t2|hf2, /2 _ 1‘
t

()@ 4+ sup
0<t<1

IN

)

where the function z +— |B(m)|e|ﬁ($)| belongs to L*(X,~) since h is a Gaussian random
variable. So, applying the Dominated Convergence Theorem we get the statement. O
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Notice that formula is a natural extension of (| - to the infinite dimensional
case. In (R?,~,) the equahty H = R holds, and for every h € R? we have h(z) =h -z =
[h7 ‘T] H

We proceed as in finite dimension to define the Sobolev spaces of order 1. Next step
is to prove that some gradient operator, defined on a set of good enough functions, is
closable in LP(X,~). In our general setting the only available gradient is V. We shall
use the following lemma, whose proof is left as an exercise, being a consequence of the
results of Lecture 7.

Lemma 9.3.6. Let ¢ € L'(X,v) be such that

/ Yody=0, ¢eIFCHX).
X

Then ¥ =0 a.e.

Proposition 9.3.7. For every 1 < p < oo, the operator Vi : D(Vy) = FCH(X) —
LP(X,~; H) is closable as an operator from LP(X,~v) to LP(X,~; H).

Proof. Let 1 < p < co. Let f, € FC}(X) be such that f,, — 0in LP(X,v) and Vg fr — G
in LP(X,v; H). For every h € H and ¢ € FCL(X) we have

lim Ofn
n—oo fx ah

ol = /X (G (2), Waro(x) (de),

since
1/p
[ @801~ Gt) el ar <l ([ 19uta = Gl ) Mol oy
On the other hand,
/ fn d7+/ faphdy, neN,

so that, since f,, — 0 in LP(X,~) and 8¢/0h, he € L' (X, ),

. Ofn
e Jx on £ =0
So,
/X (G(x), Mup()y(dx) =0, o € FCL(X), (9.3.5)

and by Lemma [0.3.6, [G(z),h]y = 0 a.e. Fix any orthonormal basis {hj, : k € N} of H.
Then J,ente : [G(), hi]g # 0} is negligible so that G(z) = 0 a.e.

Let now p = 1. The above procedure does not work, since he ¢ L(X,~) in general,
although it belongs to LI(X, ) for every ¢ > 1. Let (f,,) be a sequence in FCL(X), f,, — 0
in LY(X,7), Vg fn — G in LY(X,~; H). We want to show that G = 0.
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Without loss of generality we may assume that f,, — 0, Vg f, — G a.e., and that there
exists g € L1(X,~) such that |Vgf.lg < g a.e. for any n € N (just take a subsequence
which we do not relabel such that | fullL1(x,,) < oo and set g =3, |fal).

Let 0 € C{(R) be such that (0) = 0, §'(0) = 1. Then 6o f,, — 0(0) = 0 a.e., and
therefore in LP(X,~) for all 1 < p < oo, because 6 is bounded. Also

Viu(@o o) =00 f)Vifa — 000G =G

a.e. and therefore in L'(X,~; H) by the Dominated Convergence Theorem. These conver-
gences imply that the proof of G = 0 can be carried out in the same way as for 1 < p < oo.
Indeed, for any h € H, using the integration by parts formula (9.3.4)), for every n we have

(0o fp - 0
/X((f)hf)sod'y—/X(%fn)[hso—(f;;]dm

Letting n — 0o, we obtain

/X[G(ﬂ:),h]w dy=0, ¢ecJFOLHX).

O]

The proof of Proposition for p = 1 is more complicated than the proof of Lemma
[0.1.3] where we could use compactly supported functions ¢.

Remark 9.3.8. Note that in the proof of Proposition we proved that for every
h € H the linear operator d), : D(8;) = FCL(X) — LP(X,) is closable as an operator
from LP(X,~) to LP(X,~; H).

We are now ready to define the Sobolev spaces of order 1 and the generalized H-
gradients.

Definition 9.3.9. For every 1 < p < oo, WHP(X,v) is the domain of the closure of
Vi : FCHX) — LP(X,v; H) in LP(X,~) (still denoted by V). Therefore, an element
[ € LP(X,~) belongs to WIP(X,~) iff there exists a sequence of functions f, € FCLH(X)
such that f, — f in LP(X,~) and Vgf, converges in LP(X,~;H), and in this case,

WLP(X,~) is a Banach space with the graph norm

1/p 1/p
T ufumm+HvauLp<X,7;H>:( /X f\pd’v> +( /X |va\1;{de) .
(9.3.6)

For p = 2, Wh2(X,~) is a Hilbert space with the natural inner product

(f ghwra == /X fgdy+ /X Vit f, Viagludy,

which gives an equivalent norm.
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For every fixed orthonormal basis {h; : j € N} of H, and for every f € WLP(X, ),
we set

9 f(x) == [Vu f(x),hjlu, jEN.
More generally, for every h € H we set

Onf(z) = [Vuf(z),hln.

By definition,

J Vsl = [ (gw, >p/2d7_ /. (fj(ajff)mdv.

J=1

Moreover, if f, € FCL(X) is such that f, — f in LP(X,v) and Vpf, converges in
LP(X,~; H), then

li_>m (Vi fn, hjlog = h_)m Oifn=0;f, in LP(X,7).

As in finite dimension, several properties of the spaces WP(X, ) follow easily.
Proposition 9.3.10. Let 1 < p < co. Then
(i) the integration formula (9.3.3)) holds for every f € WYP(X,~), h € H;

(i) if 0 € CH(X;R) and f € WIP(X,~), then 0o f € WIP(X,~), and V(0o f) =
(0" 0 f)Vuf;

(iii) if f € WIP(X,7), g € WNI(X,5) with 1/p+1/q = 1/s < 1, then fg € W*(X,7)
and
a(f9) =Vufg+ fVnug;

(iv) WHP(X5) is reflexive;
(v) if fo = [ in LP(X,7) and sup,ey | fullwiv(x) < 0o, then f € WHP(X, 7).

Proof. The proof is just a rephrasing of the proof of Proposition [9.1.5

Statement (i) follows approximating f by a sequence of functions belonging to FC} (X),
using ) for every approximating function f, and letting n — oo.

Statement (ii) follows approximating @ o f by 6 o f,, if (f,) C FCL(X) is such that
fo— fin LP(X,vy) and Vg f, — Vgf in LP(X,~; H).

Statement (iii) follows from the definition, approximating fg by fngn if (fn), (gn) C
FCLH(X), are such that f, — f in LP(X,v), Vufn = Vuf in LP(X,v;H), g» — ¢ in
LY (X,7), Vign — Vg in LV (X,~; H). Then lim, o0 fugn = fg in L¥(X,~), and the
sequence (Vg (fngn)) converges to gV f+ fVigin L*(X,v; H).

Let us prove (iv). The mapping u — Tu = (u, Vyu) is an isometry from W1P(X, )
to the product space E := LP(X,v) x LP(X,~; H), which implies that the range of T
is closed in E. Now, LP(X,v) and LP(X,~; H) are reflexive (e.g. [8, Ch. IV]) so that



118 Lecture 9

E is reflexive, and T(WP(X,)) is reflexive too. Being isometric to a reflexive space,
WhP(X, ) is reflexive.

As a consequence of reflexivity, if a sequence (f,) is bounded in W1P(X,v) a subse-
quence fp, converges weakly to an element g of WYP(X,~) as k — oo. Since fn, = fin
LP(X,~), f = g and statement (v) is proved. O

As in finite dimension, statement (ii) holds as well for p = 1.

Remark 9.3.11. Let X be a Hilbert space and let v = 47(0,Q) with > 0. For every
[ € FCH(X) we have Vy f(z) = QV f(z), so that

Vi f(@)} = (Q72QVf(2),Q72QVf(z)) = |Q*V f(x)|%
and

1/p
1 lwiocen = 1l + ( /X ||Q1/2Vf(x)llpd7> .

Fixed any orthonormal basis {e; : j € N} of X consisting of eigenvectors of @, Qe; = Aje;,
then a canonical basis of H is {h; : j € N}, with h; = \/Aje;, 0;f(x) = \/\;0f/0e;, and

0 of 2\ p/2 1/p
Hfuwmm=\|f||Lp<X,7>+( /X (ZA(8)> m) |
J=1

One can consider Sobolev spaces WP (X,~y) defined as in Definition with the
gradient V replacing the H-gradient V. Namely, the proof of Proposition|9.3.7]yields that
the operator V : FC} (X) — LP(X,v; X) is closable; we define W'*(X,~) as the domain
of its closure, still denoted by V. This choice looks even simpler and more natural; the
norm in WP is the graph norm of V and it is given by

1/p 1/p
sy = ([ 1orar) "+ ([ 1wem)
1/p oo of 2\ 1/p 1/p
= () T+ (L(2@G)) o)

J=1

(9.3.7)

Since limy_s00 Ak = 0, our Sobolev space WP (X, ~) strictly contains lep(X, ), and the
embedding W1P(X,~) € WlP(X, ) is continuous.

9.4 Exercises

Exercise 9.1. Prove Lemma [0.1.1]

Exercise 9.2. (i) Prove that statement (v) of Proposition is false forp =1,d = 1.
(Hint: use Proposition and the sequence (fy,) defined by f,(z) =0 for x <0,
fo(z) =nx for 0 <z <1/n, fo(x) =1 for x > 1/n).
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(ii) Using (i), prove that WH1(R, ~1) is not reflexive.

Exercise 9.3. Let (€2,.7) be a measurable space, and let x be a positive finite measure
in Q. Prove that a function f : 2 — R is measurable if and only if it is the pointwise a.e.
limit of a sequence of simple functions.

Exercise 9.4. Prove Lemma [0.3.6
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Lecture 10

Sobolev Spaces 11

In this Lecture we go on in the description of the Sobolev spaces W' (X, ~), and we define
the Sobolev spaces W2P(X,v). We give approximation results through the cylindrical
functions E,, f, and we introduce the divergence of vector fields; formally, the divergence
operator is the adjoint of the H-gradient. We use the notation of Lecture 9. So, X is a
separable Banach space endowed with a centred nondegenerate Gaussian measure -, and
if {hj: j € N} C R (X™) is an orthonormal basis of the Cameron-Martin space H, then
for every f € WIP(X,~) we denote by 9, f(x) = [V f(z), hj]lg the generalised derivative
of f in the direction h;.

10.1 Further properties of W'? spaces

Let f € W'P(X,5), 1 < p < oo. For every h € H, 9, f plays the role of weak derivative
of f in the h direction. Indeed, by Proposition [9.3.10, for every f € W%P(X,~) and

¢ € CL(X), applying formula (9.3.3) to the product fyo we get
| @orrar=- [ wonars [ ¢riar
b's X X

The Sobolev spaces may be defined through the weak derivatives. Given f € LP(X,~)
and h € H, a function g € L'(X,~) is called weak derivative of f in the direction of h if

/(8h90)fd7:_/ wgdwr/ ¢ fhdy, Ype CpX).
X X X

The weak derivative is unique, because if fX ¢ gdy =0 for every ¢ € C}(X), then g =0
a.e. by Lemma [9.3.6
We set

GYP(X,) = {f € LP(X,~): 3V € LP(X,~; H) such that for each h € H,

[¥(-), h]p is the weak derivative of f in the direction h}.
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If f € G'?(X,~) and ¥ is the function in the definition, we set

Duf =9, |fllerrxq) = Ifllzecxq + 1 oexqy;m)-

Theorem 10.1.1. For every p > 1, G*?(X,v) = WYP(X,5) and Dy f = Vg f for every
f e WLP(X, 7).

The proof may be found e.g. in [3, Cor. 5.4.7].

Let us come back to the approximation by conditional expectations introduced in
Subsection We already know that if f € LP(X,v) then E,f — f in LP(X,v) as
n — 0.

Proposition 10.1.2. Let 1 < p < oo and let f € WIP(X,v). Then, E,f € WHP(X )
for alln € N and:

(i) for every j € N
E.(0;f) ifj<n,
0;(Enf) :{ 0 (9]) ifi>n (10.1.1)
(i) [[Enfllwiexqy < [fllwiecxqys
(i) lim E,f = f in WP (X, 7).
Proof. Let f € FCL(X). Since Pz =Y 1, hi(z)h; and g—ﬁ;(:):) = §;; for every x, for every

y € X the function  — f(P,x + (I — P,)y) has directional derivatives along all h;, that
vanish for 7 > n and are equal to g—}{;(an + (I — P,)y) for j <n.

Since z — g—,{j(Pna: + ({ — P,)y) is continuous and bounded by a constant independent of
y, for 7 < n we get

O f(z) = ai /X F(Pa 1 (I — Ba)y)(dy) = /X 5,{j<m+ (I~ Pyy)(dy).

In other words, (i) holds, and it yields

ViEnf(z) = / PoVirf (Pt + (I — Pa)y)y(dy),  Va € X. (10.1.2)
X
So we have
V4
IV HEnf = Vit f oy = / \ / (PaVirf(Paz+ (I — Po)y) — Vi f(@)y(dy)| ~(de)
X X H

< / / PV it f (Pt + (I — Po)y) — Vi f(2) [, ~(dy) (de).
XJX
Notice that

lim |P,.Vgf(Pwx+ (I—-P,)y)—Vuf(z)g =0, YRy —ae. (z,y).

n—-+0o00
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Indeed, recalling that || P ¢y < 1,
[PV f(Poz+ (I = Po)y) =V f(z)|n
Po(Vaf(Paz + (I = Pa)y) = Virf (@))| 2+ |PaVirf(@) = Vi f (@)
< |Vaf(Pax+ (I = Po)y) = Vaf(@)|a+ (P — DV f(2)|n
and the first summand vanishes as n — +oo for v ® y—a.e. (z,y) since by Theorem

<

lim P+ (I —-P)y==

n—-+o0o

for v ® y-a.e. (z,y) and Vg f is continuous; the second addendum goes to 0 as n — oo
for every x € X. Moreover,

|PaV i f(Pa + (I = Po)y) = Vi f(x)|n < 2sup [V f(2)|u-

zeX
By the Dominated Convergence Theorem,
lim VyE,f=Vgf
n——+0o0o
in LP(X,~; H), and taking into account Proposition
lim E,f=f
n——+00

in WlP(X,v). So, f satisfies (iii). Moreover,

P

VB Wy = [ | [ PaT0S (P (1 = Poyusta)| ()
H

S/X/X’anHf(Pnl""(I_Pn)y)‘zl){V(dy>7(dx>
< /X /X Vaf(Puz + (I = P)y)E(dy)y(de)

- /X IV 0 £ () () (10.1.3)

where the last equality follows from Proposition

Estimate (10.1.3) and (7.2.4) yield (ii) for f € FCL(X).

Let now f € W'P(X,v), and let (f;) C FC!(X) be a sequence converging to f in
WP(X,~). By estimate , for every n € N the sequence (E, fi)r converges to
E,f in LP(X,7), and by (i) (E,fi)r is a Cauchy sequence in W1P(X v). Therefore,
E,f € WHP(X,v) and

VyE,f = lim VyHE,fr
k—+o00
in LP(X,~; H) so that
HvHEﬂf”LP(X,W;H) :kkr—ir-loo ||vH]Enfk||LP(X,'y;H) < kll)rfoo HvakHLP(X,'y;H)

=IVaflloexq:m)-
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Therefore (ii) holds for every f € W1P(X,~) and then (iii) follows from (ii) and from the
density of FC}(X) in WIP(X,~).
(i) follows as well and in fact we have

VH]Enf = En(anHf) Vn € N,

where the right-hand side has to be understood as a Bochner H-valued integral. Indeed,

by we have
VHEnfi(z) = /X PV fie(Paz + (I — Po)y)(dy)

for every k € N. The left hand side converges to VyE, f in LP(X,~v; H) as k — +oo. The
right hand side converges to E, P,V f as k — 400 since

/‘/Pvﬂfk— P (Paz + (I~ Pyl <dy> +(dx)
< /X /X wak—f><an+<I—Pn>y>|';m<dy>w<dw>
- /X Va(fi— £)(@)Ey(de)

by Proposition [7.3.2] O

Regular LP cylindrical functions with LP gradient are in WP (X, ~), see Exercise m
The simplest nontrivial examples of Sobolev functions are the elements of XJ.

Lemma 10.1.3. X C W'(X,7) for every p € [1,400), and Vih = h (constant) for
every he X3,

Proof. Fix 1 < p < co. For every h e Xj/k, there exists ¢,, € X* such that lim,,_yoc £, = h
in L?(X,~). For every n, m € N we have

=ty = [ IEPA O Elas) @) = [ 1A (0.1 (@)=l

so that (¢,) is a Cauchy sequence in LP(X,~). Its L%limit h coincides with its LP-limit,
if p £ 2.

As /0, is in X*, Vg/{, is constant and it coincides with R.¢,, see (9.3.1). Since
limy,_yo0 £ = h in L?*(X,v) and R, is an isometry from X7 to H, H — lim,_00 Ryl =
va} = h. Therefore,

/ \Vil, — hlbdy = |Ryl, — hlf, - 0 asn — oc.
X

It follows that h € W'?(X,~) and Vgh = h. O



Sobolev spaces 11 125

An important example of Sobolev functions is given by Lipschitz functions. Since a
Lipschitz function is continuous, it is Borel measurable.

Proposition 10.1.4. If f : X — R is Lipschitz continuous, then f € WHP(X,v) for any
1 <p<+o0.

Proof. Let L > 0 be such that

|f(x) = fy)| < Lilxz —y|| Va,yeX.

Since |f(x)| < |f(0)|+L||z||, by Theorem [2.3.1| (Fernique) f € LP(X,~y) for any 1 < p < oo.
Let us consider the conditional expectation E,, f.
Let us notice that

Enf(z) = vo(hy(z),. .., ho(z)),
with v, : R™ — R an Li-Lipschitz function since

n

Enf (Zn: zihi + z": ﬁihi) - Enf(z Zihi)
i—1 :

1=1 ) 1=

< /X ’f(i zih; + i 77#%) + (I - Pn)y) - f(z zih; + (I — Pn)!/) ‘v(dy)
=1 i=1 —

zn:mhz'

i—1

where we have used (3.1.3)), |||l < c|h|g for h € H, and we have set L; := cL. By the
Rademacher Theorem, v, is differentiable A,—a.e. in R™ and |Vu,(z)[gn < Ly for a.e.
z € R"™. Hence v, € Wlicl (R™), and

(2 +n) —vn(2)] =

—_

<Ly = Li|n|gn,

H

L Vo) i) < I

~

We use now the map T}, : X — R”, T,,(x) = (hy(x), ..., hn(x)). If 2 € X is a point such
that vy, is differentiable at T, (x), then

0 if h € Fir
Voo (Tn(x)) - T (h) if h € F,
where F,, = span{hi,...,h,} As a consequence, we can write

IVuEaf (@)} =Y 0B f (@) = Y 10Enf (@) = |Vou(Tu(@))|fn-
i=1 i=1

We claim that for y—a.e. x v, is differentiable at T, (x). Indeed, let A C R™ be such that
An(A) = 0 and v, is differentiable at any point in R™ \ A. Since 7, < An, 7 (A4) = 0 and
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then v(7,1(A)) = 0 because v o T,; ! = ~,, see Exercise Hence vy, is differentiable at
any point T, (x), where x € X \ T, }(A).
We know that E,, f — f in LP(X,~) and we have

[ VB @) = [ V(T urtde) = [ 190 hrn(d:) < 21
X n

By Proposition [9.3.10(v) f € WHP(X,4) for every 1 < p < oo and by inclusion f €
WHH(X, ). O

Further properties of WP functions are presented in Exercises [10.3] [10.4 [10.5]

10.2 Sobolev spaces of H-valued functions

We recall the definition of Hilbert—Schmidt operators, see e.g. [11l §XI.6] for more infor-
mation.

Definition 10.2.1. Let Hy, Ho be separable Hilbert spaces. A linear operator A €
L(Hy, Hs) is called a Hilbert-Schmidt operator if there exists an orthonormal basis {h; :
j € N} of Hy such that

o0

> AR |1, < oo (10.2.1)
j=1

If A is a Hilbert-Schmidt operator and {e; : j € N} is any orthonormal basis of Hj,
{y; : j € N} is any orthonormal basis of Ha, then

o [o.¢]
[AesliF, =D (Aej,un)tr, = Y (es, A yn)
k=1 k=1

so that

Zl 1 Ae; |7, = Zkz ej, A ZZ ej, A*yr) Z 1A ykIF,
= =1 k=1

k=1 j=1

So, the convergence of the series ((10.2.1)) and the value of its sum are independent of the
basis of H;. We denote by H(H;, Hs) the space of the Hilbert—Schmidt operators from

Hy to Hs, and we set
(9] 1/2
Al = (3 1AnslE )

j=1
for every orthonormal basis {h; : j € N} of H;. Notice that if Hy = R", Hy = R™, the
Hilbert—Schmidt norm of any linear operator coincides with the Euclidean norm of the
associated matrix.

The norm ((10.2.1) comes from the inner product

o0

<A7 B>9{(H1,H2) = Z<Ahj7 th>H27
j=1
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where for every couple of Hilbert—Schmidt operators A, B, the series on the right-hand side
converges for every orthonormal basis {h; : j € N} of Hy, and its value is independent of
the basis. The space H(H;, Hs) is a separable Hilbert space with the above inner product.
If H = Hy = H, where H is the Cameron—-Martin space of (X,~), we set H :=
H(H,H).
It is useful to generalise the notion of Sobolev space to H-valued functions. To this
aim, we define the cylindrical E-valued functions as follows, where F is any normed space.

Definition 10.2.2. For k € N we define FCF(X, E) (respectively, FC°(X, E)) as the
linear span of the functions x +— v(x)y, with v € ITC’{f(X) (respectively, v € FC°(X)) and
yeE.

Therefore, every element of FCF(X, E) may be written as

n

v(x) = vi(z)y; (10.2.2)

J=1

for some n € N, and v; € S"Cf(X ), yj € E. Such functions are Fréchet differentiable
at every z € X, with v'(z) € L(X, E) given by v'(z)(h) = > i_, vkj'(z)(h)y; for every
heX.

Similarly to the scalar case, we introduce the notion of H-differentiable function.

Definition 10.2.3. A function v : X — FE is called H-differentiable at T € X if there
exists L € L(H, E) such that

|v(@+h) —v(@) — L(h)||g = o(|h|g) ash— 0in H.
In this case we set L =: Dpgv(T).

If v € FOL(X,E) is given by v(-) = ¢(-)y with ¢ € FCH(X) and y € E, then v is
H-differentiable at every T € X, and

Dyo(z)(h) = [Vuy(T), hlm y.

In particular, if E = H and {h; : j € N} is any orthonormal basis of H we have
|Dro(@) (hy)l3r < [V av (@), hilH ylE
so that Dgv(T) is a Hilbert—Schmidt operator, and we have
o0
|Dpo(z \9{—2|DHU ZVH¢ hiltlylir
j=1

= ’vH¢($)‘H’y|H'

Moreover, z — Vgt (z) is continuous and bounded. In addition, the operator J : H — K,

(Jk)(h) := [k, h]ny, k,he H
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is bounded since

[ Tk[3e = > |k hylaylir = k[ |yl F-
j=1

Then x — Dyv(z) = J(Vay(x)) is continuous and bounded from X to H. In particular,
it belongs to LP(X,~y; H) for every 1 < p < oo.

The procedure to define Sobolev spaces of H-valued functions is similar to the proce-
dure for scalar functions. Namely, we show that the operator Dy, seen as an unbounded
operator from LP(X,~; H) to LP(X,~; H) with domain FC (X, H), is closable.

Lemma 10.2.4. For every 1 < p < oo, the operator Dy : FCH(X, H) — LP(X,~v;H) is
closable in LP(X,~v; H).

Proof. Let v(-) = (-)y, with ¢ € FCH(X), y € H, and let h,k € H. Then
Vialv(), k= [y, laVa (),
and

(Vulv(), hlakla = [y, alVav(-), kg = [[Vay (), klay, o
= [Du(()y)(k),hlg = [(Dgv(-))*h, k.

As this holds for all k¥ € H one obtains
Vi), g = (Dgv(-))*h, h e H. (10.2.3)

Taking linear combinations one obtains ((10.2.3)) for all v € S’Cbl (X; H).
Let (vy,) be a sequence in FCL (X; H), v, — 0in LP(X,~v; H), Dyv, — @ in LP(X, v; H),
and let h € H. Then [v,(-),h]g — 0 in LP(X,~), and (10.2.3) implies
Va[on(-), hlz = (Davn(-))"(h) = @(-)*(h)

in LP(X,~; H). Indeed
/ Vi [on(), Wl — B () () [y () = / (Daron(2))* (h) — B(x)* (W) (de)
X X
<1ty [ NDrvn(@) = B(a) oy o)
< [l /X (D))" = D)% gy d),
where we have used the relations

IAllecey < 1 Allsecry, 1A ey = IAll3ccm-

Since Vp is closable as an operator from LP(X,v) to LP(X,~; H), by Proposition m
one obtains ®(-)*h = 0. As this holds for all h € H, and H is separable, one concludes
that ®(z)* =0 for a.e. x € X, and therefore & = 0. O



Sobolev spaces 11 129

Definition 10.2.5. For every 1 < p < oo we define W'P(X,~; H) as the domain of
the closure of the operator Dy : FCH(X,H) — LP(X,v;H) (still denoted by Dp) in
LP(X,v; H).

Then, WP(X,~; H) is a Banach space with the graph norm

Wlhwoocam = ([ V@ln) "+ ([ 1Davila) "
~(/ (;W), i) ) (i;wmx)(m),hjﬁf)p/iv)”’”.

Let v € FCL(X, H),

n

v(@) = er(@)yr,

k=1
with ¢ € FCL(X) and y; € H. Then v may be written in the form

)= vi(@)h
j=1

where the series converges in W1P(X,~; H). Indeed, setting
n
vj(z) = [v(@), hyln = Zwk(x)[yk, hila, j€N
k=1

the sequence s,(z) = Y.7°, vj(x)h; converges to v in WHP(X,~; H), because for each

j=1
k = 1,...,n, the sequence > 7", ¢(x)[yk, hj]ln converges to px(z)y in WP (X, ~; H).
Moreover,

Dpov(zx Z VHU] wh;
7=1
so that, as in finite dimension,
[Drv(z)(hi), hjla = [Vavj(2), kilp = Oiv;().

10.2.1 The divergence operator

Let us recall the definition of adjoint operators. If X;, X, are Hilbert spaces and T :
D(T) € X1 — X2 is a densely defined linear operator, an element v € Xa belongs to
D(T™) iff the function D(T') — R, f +— (T f,v)x, has a linear continuous extension to the
whole X7, namely there exists g € X; such that

<Tf7U>X2 = <fvg>X17 fe D(T)
In this case g is unique (because D(T') is dense in X;) and we set

g="T".
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We are interested now in the case X1 = L?(X,v), Xo = L*(X,v;H) and T = V. For
feWh?(X,y), ve L?(X,v; H) we have

TS0 = [ [Faf@). o)l (o)
so that v € D(T*) if and only if there exists g € L?(X,~) such that
/X[VHf(x)a ()] g y(de) = /X f(@)g(x)y(dz), feWH(X,y). (10.2.4)
In this case, in analogy to the finite dimensional case, we set
divyv := —g

and we call —g divergence or Gaussian divergence of v. As FC} (X)) is dense in Wh2(X, ),

(10.2.4]) is equivalent to
[ s, ewlun) = [ s, esoix),
X X

The main achievement of this section is the embedding W'2(X,~; H) Cc D(T*). For its
proof, we use the following lemma.

Lemma 10.2.6. For every f € WY2(X,v) and h € H, fhe L*(X,v) and
[ wipar<a [ @upraveang [ £ (10.2.5)
X X X

Proof. We already know that h € Wh2(X,~). Then, for every f € SrC,}(X) we have
f2h € Wh2(X,~) and

[ gy = [ (Piyhay= [ o)y (by Proposition 0 ()
X X X
- /X (2f Ot b+ F20n(R))dry
_ 7 2 2
=2 [ phontay+nfy [ £y
1/2 1/2
7\2 2 2 2
§2</X(fh) d7> </X<ahf> dv) +|h|H/Xf .
Using the inequality ab < a?/4 + b%, we get
22 1 22 2 2 2
J iy < 5 [ iz [@upian e [ o

so that f satisfies (10.2.5)). Since FC}(X) is dense in W12(X, ), (10.2.5) holds for every
fewh?(X,). O
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Theorem 10.2.7. The Sobolev space Wh2(X,~; H) is continuously embedded in D(div.,)
and the estimate

Hlery’UHLQ(X;y) S ||’UHW1’2(X7'Y;H)

holds. Moreover, fizing an orthonormal basis {h, : n € N} of H contained in R,(X*),
and setting vy, (z) = [v(z), hy)g for every v € WH2(X,~y; H) and n € N, we have

divvv(x) = Z(anvn(l“) - Un(x)iln(x))7
n=1

where the series converges in L*(X,7).

Proof. Consider a function v € W12(X,v; H) of the type
v(x) = Zvi(a:)hi, z e X. (10.2.6)
i=1

with v; € WH2(X, 5).
For every f € WH2(X,~) we have [V f(x),v(x)]lg = >, 0;f(z)vi(x), so that

/X[VHf,v]Hdvz/X<;8ifvi>d7:/X;(—awi—kviﬁi)fd*y

which yields

n

diVA/U = Z(aﬂ)z — }Alz'l}z)

i=1
Now we prove that
/ (div,v)?dy = / |v|3;dry + / Z 0ivj Ov; dry, (10.2.7)
X X ij=1
showing, more generally, that if u(xz) = ;" ; u;(x)h; is another function of this type, then
/ (divyv divyu)dy = / [u, v]gdy + / Z Oiuj 0jv; dy. (10.2.8)
b's X X 52

By linearity, it is sufficient to prove that ((10.2.8) holds if the sums in » and v consist of a
single summand, u(z) = f(x)h;, v(z) = g(z)h; for some f, g € WH?(X,v) and i, j € N.
In this case, (|10.2.8)) reads

/ (Oif — hif)(Dig — hjg)dy = / fodiy dy + / 9,1 0ig d. (10.2.9)
X X X
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First, let f, g € .’f"Cg(X). Then,
/X(&;f — hif)(0;9 — hjg)dy = — /X £0:(9;g — hjg)dy
= —/ faijgdwr/ f90ij d’v+/ fhidigdy
X X X
= [0t =hspagar+ [ sosgar+ [ fhoigdn
X X X

so that holds. Since FC?(X) is dense in W2(X,~), see Exercise [10.6] (10.2.9)
holds for f, g € WH2(X,~). Summing up, (10.2.8)) follows, and taking u = v, 10.2.?}
follows as well. Since the linear span of functions in (10.2.6) is dense in W12(X,~; H)
both equalities hold in the whole W'2(X,~; H). Notice also that (10.2.7) implies

/X(diVWU)Qd’YS/X|U‘%Jd7+/x||DHU”§Cd’Y- (10.2.10)

If v € WH2(X,~; H) we approximate it by the sequence

For every f € W12(X,v) we have

/[VHf,vn]Hd*y:—/ fdivyvy, dy. (10.2.11)
X X

By estimate (10.2.10)), (div,vy,) is a Cauchy sequence in L?*(X,~), so that it converges in
L*(X,7) to g(x) := > 521 (05v5(x) — vj(x)ﬁj (x)). Letting n — oo in (10.2.11)), we get

/X[Vnyv]Hd'Y__/ngd%

so that v € D(T™) and div,v = g. O

Note that the domain of the divergence is larger than W12(X, ~; H), even in finite
dimension. For instance, if X = R? is endowed with the standard Gaussian measure,
any vector field v(z,y) = (c1(x) + Bi(y),az(z) + B2(y)) with a1, B2 € WH3(R, 1),
B1, az € L*(R,~1) belongs to the domain of the divergence, but it does not belong to
WH2(R? 49; R?) unless also 31, as € WH2(R, 7).

The divergence may be defined, still as a dual operator, also in a LP context with
p # 2. We recall that if X7, Xy are Banach spaces and : D(T) C X; — Xs is a densely
defined linear operator, an element v € X3 belongs to D(7™) iff the function D(T) — R,
f = v(Tf) has a continous linear extension to the whole X;. Such extension is an element
of X7; denoting it by ¢ we have £(f) = v(T'f) for every f € D(T).
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We are interested in the case X7 = LP(X,~), Xo = LP(X,v; H), with 1 < p < oo, and
T :D(T) = WY (X,y), Tf = Vgf. The dual space X3 consists of all the functions of
the type

wH/[wﬂj]Hd'Ya
X

ve P (X,v;,H), p =p/(p—1), see [8, §IV.1], so we canonically identify L¥ (X, ~; H) as
LP(X,v; H)*. We also identify (LP(X,~))* with L” (X,~). After these identifications, a
function v € LP (X,~; H) belongs to D(T*) iff there exists g € L¥ (X, ~) such that

/[va(:c),v(x)]m(dx):/ f(@)g(x)y(dzx), Y feWHP(X,q),
X X

which is equivalent to
[ as@)o@lintan = [ f@gnia. ¥ el
X X

since FCL(X) is dense in WP(X,v). So, this is similar to the case p = 2, see (10.2.4).

Theorem 10.2.8. Let 1 < p < oo, and let T : D(T) = WHP(X,~) — LP(X,v; H),
Tf=Vyf. Then WYP(X,~v; H) C D(T*), and for every orthonormal basis {h, : n € N}
of H we have

o0

T*o(z) = = Y (dnva(@) = va(@)ha(2)), v € WHP(X,7; H)

n=1
where v, (x) = [v(x), hy|m, and the series converges in LP(X, 7).

The proof of Theorem [10.2.8|for p # 2 is not as easy as in the case p = 2. See [3, Prop.
5.8.8]. The difficult part is the estimate

1T* 0l Lo (x7) < Cllvllwrexqy:m)s
even for good vector fields v = Y7, v;(z)h;, with v; € FCLH(X).

We may still call “Gaussian divergence” the operator T™.

10.3 The Sobolev spaces W2?(X, )

Let us start with regular functions, recalling the definition of the second order derivative
f"(z) given in Lecture 9. If f : X — R is differentiable at any x € X, we consider the
function X — X*, x — f’(x). If this function is differentiable at T, we say that f is twice
(Fréchet) differentiable at Z. In this case there exists L € £(X, X*) such that

|/ @+ h) — f'(Z) — Lh||x- =o(|h]|) ash —0 in X,

and we set L =: f"(T).
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In our setting we are interested in increments h € H, and in H-differentiable functions.
If f: X — R is H-differentiable at any x € X, we say that f is twice H-differentiable at
T if there exists a linear operator Ly € L(H) such that

\Vaf(@+h) - Vuf(@) — Luyhlg =o(lh|lg) ash — 0in H.

The operator Ly is denoted by D% f(%), and by Definition we have that D% f(Z) =

We recall that if f is differentiable at x, it is also H-differentiable and we have
Vuf(z) = Ryf'(z). So, if f is twice differentiable at 7, with f”(Z) = L, then D% f(Z)h =
R, Lh. Indeed,

Ry f'(T + h) = By f'(T) = ByLhla < | Rylleix-m | f (@ + 1) = f'(@) — Lh x» = o(||2]])
as h — 0in X, and therefore,
|R,f'(+h)— R, f () — RyLh|g = o(Jh|g) ash — 0in H.
If feFCHX), f(@) = o(li(x),...,ly(z)) with p € CE(R"), ¢y € X*, then [ is twice
differentiable at any T € X and
(f"(@)v)(w) = Z 0;0j0(01(Z), ..., ln(T)li(v)lj(w), v, weX

ij=1

so that
(D} f@) bkl =Y 0i0;0(1(T), ..., (@) [Roli, b o [Ryly, kg, b, k€ H.
ij=1

D2 f(Z) is a Hilbert-Schmidt operator, since for any orthonormal basis {h; : j € N} of
H we have

Dhs @ttt < Y (30 @002 ) (L bl ) (Sl
m,k=1 mk=1 \ij=1 i=1 j=1

= ||D%<PH§{(W,W) Z Z[Rfy&,h Z (R Emhk
m,k=1 i=1 j=1

= ID?plI3eqn ny Y D[R lis hunly [R5, bl
i=1 m=1 7=1 k=1

||D 80||9{(Rn R™) Z | Ryl |HZ |Ry4; ’H
7j=1
where the derivatives of ¢ are evaluated at (£1(T),...,¢n(T)). Since ||D?*¢|ls¢rn grny is

bounded, z — ||D% f(z)||s¢ is bounded in X.
The next lemma is an immediate consequence of Proposition and Lemma
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Lemma 10.3.1. For every 1 < p < oo, the operator
(Vi, D) : FCF(X) — LP(X, v H) x LP(X,7; H)
is closable in LP(X,~).

Proof. Let (f,) be a sequence in FCZ(X) such that f, — 0 in LP(X,v), Vg f, = G in
LP(X,v;H) and D% f,, = DyVpgf, — ® in LP(X,~;H). Then Proposition implies
G = 0 and Lemma [10.2.4] implies = 0. O

Definition 10.3.2. For every 1 < p < oo, W?P(X,~) is the domain of the closure of
(Vu, D) : FCF(X) = LP(X,v; H) x LP(X,7; H)

in LP(X,7). Therefore, f € LP(X,~) belongs to WP(X,~v) iff there exists a sequence
(fn) C FCE(X) such that f, — f in LP(X,v), Vi fn converges in LP(X,~; H) and D% f,
converges in LP(X,; H). In this case we set D3 f = limy, 00 D% fn.

W?2P(X,~) is a Banach space with the graph norm

w2 = 11 £llzox ) + IV EF o i) + 1 DF S o (x40 (10.3.1)

1/p 1/p 1/p
= (fasrar) " ([ wustan) ([ phsa)
X X X

Fixed any orthonormal basis {h; : j € N} of H, for every f € W?P(X,) we set
Bij f(x) = D3 f ()l hil .
For every sequence of approximating functions f,, we have
(D3 fo(x)hj, hilg = [DE fa(2)hi, hjla, € X, 4,5 €N,
then the equality

awf@;') = 8ﬂf(x), a.e.

holds. Therefore, the W2P norm may be rewritten as

</X|f|pd7) 1/p+ (/X <i(8jf)2)p/2d7> 1/p+ </X ( i(&ijf)2>p/2d7> l/p,

Jj=1 1,j=1

Let X be a Hilbert space and assume that ~ is nondegenerate. Then, another class of
W2P spaces looks more natural. As in Remark we may replace (Vg f, D% f) in
Definition by (Vf, f"). The proof of Lemma works as well with this choice.
So, we define W2P(X,~) as the domain of the closure of the operator T : FCZ(X) —
LP(X,v; X) x LP(X,v; H(X, X)), f— (Vf, ") in LP(X,~) (still denoted by T'), and we
endow it with the graph norm of T. This space is much smaller than W2P(X,~) if X
is infinite dimensional. Indeed, fix as usual any orthonormal basis {e; : j € N} of X
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consisting of eigenvectors of Q Qej = Ajej, and set h = \/Aje;. Then {h;: j € N}isa
orthonormal basis of H, 9;f(x) = \/A;0f/0ej, dijf(x) = \/ANiX;jO*f/De;De;, and

o) o 2\ p/2 1/p
[ fllw2px,0) =N Fllzexy) + </X <Z)‘J’ (3;[]) ) d7>
f p/2 1/p
(L2 (oizg) ) )

i,j=1

2\ p/2 1/p

1 5720 ) =I5 o) </ ( <ak)> ‘”>
p/2 1/p
< ( (c%lae])) dv) .

Since limj_o A; = 0, the W2’7’(X, ) norm is stronger than the W%P(X,~) norm. In
particular, the function f(x) = ||z||? belongs to W?2P(X, ) for every 1 < p < oo but it
does not belong to WQ’?’(X, v) for any 1 < p < oo, because f”(x) = 21 for every z € X
and 82f/86i8€j = 252‘]‘.

while

10.4 Exercises

Exercise 10.1. Prove that (10.1.2) holds.

Exercise 10.2. Prove that if f € FCY(X)NLP(X,7),1 <p < oo and Vg f € LP(X,7)
then f € WhP(X, ).

Exercise 10.3. Prove that if f € WP(X,~) then f+ f= |f] € WP(X,~) as well.
Compute Vg ft, Vg f~,Vul|f| and deduce that Vg f = 0 a.e. on {f = c} for every
ce R

Exercise 10.4. Let o € WIP(R" ~,) and let ¢1,...,4, € X*, with (i ly)r2(x ) = Oi-
Prove that the function f : X — R defined by f(z) = o(hi(z), ..., hn(z)) belongs to
WP (X, 7).

Exercise 10.5. Let f € LP(X,v), p > 1, be such that E, f € W'P(X, ) for every n € N,
with sup,, ||V aEn f|| r(x ;) < 00. Prove that f € W'P(X, 7).

Exercise 10.6. Prove that FCZ(X) is dense in W2(X, )



Lecture 11

Semigroups of Operators

In this Lecture we gather a few notions on one-parameter semigroups of linear operators,
confining to the essential tools that are needed in the sequel. As usual, X is a real or
complex Banach space, with norm || - ||. In this lecture Gaussian measures play no role.

11.1 Strongly continuous semigroups

Definition 11.1.1. Let {T'(t) : t > 0} be a family of operators in L(X). We say that it
is a semigroup if
TO)=1I, T(t+s)=TE)T(s) ¥Vt,s>0.

A semigroup is called strongly continuous (or Cy-semigroup) if for every x € X the func-
tion T'(-)z : [0,00) = X is continuous.

Let us present the most elementary properties of strongly continuous semigroups.

Lemma 11.1.2. Let {T'(t) : t > 0} C L(X) be a semigroup. The following properties
hold:

(a) if there exist 6 > 0, M > 1 such that
IT@ <M, 0<t<5,
then, setting w = (log M) /6 we have
IT(t)|| < Me*, t>0. (11.1.1)

Moreover, for every x € X the function t — T(t)x is continuous in [0,00) iff it is
continuous at 0.

(b) If {T(t) : t > 0} is strongly continuous, then for any § > 0 there is Ms > 0 such
that
IT(t)|| < Ms, Vtel0,0].

137
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Proof. (a) Using repeatedly the semigroup property in Definition [L1.1.1{ we get T'(t) =
T(&)"'T(t — (n —1)6) for (n —1)d <t < né, whence |T(t)|| < M"™ < Me“t. Let z € X
be such that ¢t — T'(t)z is continuous at 0, i.e., lim, ,o+ T'(h)x = x. Using again the
semigroup property in Definition [11.1.1] it is easily seen that for every ¢ > 0 the equality
limj,_,o+ T(t + h)x = T'(t)x holds. Moreover,
IT(t — k) = T(t)z]| = |T(t = h)(z = T(h)z)|| < MM |[(z = T(h)z)|,  0<h<t,
whence limy,_,o+ T'(t — h)x = T(t)z. It follows that t — T'(¢)z is continuous in [0, 00).

(b) Let x € X. As T'(-)x is continuous, for every § > 0 there is M;, > 0 such that

\T(t)x| < Ms,, Ytel0,0].

The statement follows from the Uniform Boundedness Principle, see e.g. [4, Chapter 2] or
[10, §II.1]. O

If (11.1.1) holds with M = 1 and w = 0 then the semigroups is said semigroup of
contractions or contractive semigroup. From now on, {T'(t) : t > 0} is a fixed strongly
continuous semigroup.

Definition 11.1.3. The infinitesimal generator (or, shortly, the generator) of the semi-
group {T(t) : t > 0} is the operator defined by

_ o T T T -1
D(L) = {x €X:3 lm T:z:} Le= lim —5 .

By definition, the vector Lz is the right derivative of the function ¢ — T'(t)z at t = 0
and D(L) is the subspace where this derivative exists. In general, D(L) is not the whole
X, but it is dense, as the next proposition shows.

Proposition 11.1.4. The domain D(L) of the generator is dense in X.
Proof. Set
1 a+t
Ma’t:c:t/ T(s)xds, a>0,t>0, z€X
a

(this is an X-valued Bochner integral). As the function s +— T'(s)z is continuous, we have

(see Exercise [L1.1))

lim M,z = T(a)x.
t—0

In particular, lim, ,q+ Moz = x for every x € X. Let us show that for every ¢ > 0,
My sz € D(L), which implies that the statement holds. We have

P e = “T(h -+ sy ds - / T(s)ads)

_ ;(/’IW T(s)x ds — /Ot 7 () ds )

1 h+t h
= ht(/t T(s)xds _/0 T(s)x ds)
i Mtjhw — Mo’hx

t
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Therefore, for every x € X we have Mo,z € D(L) and

T(t)r —x

LM()’tZL' = ;

(11.1.2)

O]

Proposition 11.1.5. For every t > 0, T(t) maps D(L) into itself, and L and T(t)
commute on D(L).
If x € D(L), then the function T(-)z is differentiable at every t > 0 and

d
&T(t)x =LT(t)x =T(t)Lz, t> 0.

Proof. For every x € X and for every h > 0 we have

If x € D(L), letting h — 0 we obtain T'(¢)z € D(L) and LT (t)x = T(t)Lx.
Fix tg > 0 and let h > 0. We have
T(to+ h)x — T (to)x
h

This shows that T'(-)z is right differentiable at ¢y. Let us show that it is left differentiable,
assuming to > 0. If h € (0,ty) we have

T(h) -1
= T(to)(})lx — T(to) Lz ash — 0%,

T(to — h)x — T(to)x
—h

Th) -1
=T(to — h)(})lx — T(to)Lx ash — 07,
as
T(h)—1 T(h)—1
h h

and || T'(to — h)|| < supg<i<y, |T()|| < oo by Lemma [11.1.2} It follows that the function
t — T(t)z is differentiable at all ¢ > 0 and its derivative is T'(t)Lx, which is equal to
LT (t)x by the first part of the proof. O

HT(tO—h) x—T(to)LxH < HT(to—h)( x—Lx)‘—i—H(T(to—h)—T(to))L:):H

Using Proposition[11.1.5| we prove that the generator L is a closed operator. Therefore,
D(L) is a Banach space with the graph norm |||/ p(z) = ||z + || Lz||.

Proposition 11.1.6. The generator L of any strongly continuous semigroup is a closed
operator.

Proof. Let (z,) be a sequence in D(L), and let z,y € X be such that =, — z, Lz, =:
Yn — y. By Proposition [11.1.5| the function ¢ — T'(t)x,, is continuously differentiable in
[0,00). Hence for 0 < h < 1 we have (see Exercise [11.1])

T(h) -1 1 (" 1 [k
N p == LTWzpdt == | T(t)yndt,
=5 [ pr@ma = [Ty
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and then

[ <

(x —xp)|| + H% /Oh T(t)(yn — y)dtH + H% /Oh T(t)ydt — yH

<C+1
- h

)

1 h
o= aull+ Clla =l + |5 [ Tt =y

where C' = supg,1 ||T(t)||. Given e > 0, there is ho such that for 0 < h < hg we have
I foh T(t)ydt/h —y|| < e/3. For h € (0, ho], take n such that ||z — z,| < eh/3(C + 1) and
lyn — y|| < e/3C: we get H%CE —y|| < e and therefore z € D(L) and y = Lz, i.e., the
operator L is closed. O

Proposition [11.1.5 implies that for any = € D(L) the function u(t) = T'(¢)x is differ-
entiable for ¢ > 0 and it solves the Cauchy problem

u'(t) = Lu(t), t >0,
(11.1.3)
u(0) = x.

Lemma 11.1.7. For every x € D(L), the function u(t) := T'(t)x is the unique solution
of belonging to C([0,00); D(L)) N C([0,0); X).
Proof. From Proposition we know that u'(t) = T'(t)Lz for every ¢ > 0, and then
u' € O([0,00); X). Therefore, u € C1([0,00); X). Since D(L) is endowed with the graph
norm, a function w : [0,00) — D(L) is continuous iff both u and Lu are continuous. In
our case, both u and Lu = v/ belong to C([0,00); X), and then u € C(]0,00); D(L)).

Let us prove that has a unique solution in C([0, 00); D(L)) NC*([0, 00); X). If
u € C([0,00); D(L)) N C*(]0,00); X) is any solution, we fix ¢ > 0 and define the function

v(s) =T(t—s)u(s), 0<s<t.

Then (Exercise [11.2) v is differentiable, and v'(s) = —T(t — s)Lu(s) + T(t — s)u'(s) = 0
for 0 < s <'t, whence v(t) = v(0), i.e., u(t) = T(t)z. O

Remark 11.1.8. If {T'(t) : ¢t > 0} is a Cy-semigroup with generator L, then for every
A € C the family of operators

S(t) = eMT(t), t>0,

is a Cy-semigroup as well, with generator L + Al : D(L) — X. The semigroup property is
obvious. Concerning the generator, for every x € X we have
S(h)x —x )\hT(h)—:c_i_eAhx—x
ST e
h h h

and then

. Sh)x—= . o Th)—z  eMa—
lim —— =1
h0t h ho0s n T
iff z € D(L).

x:Lx—i-)\x
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Let {T'(t) : t > 0} be a strongly continuous semigroup. Characterising the domain
of its generator L may be difficult. However, for many proofs it is enough to know that
“good” elements z are dense in D(L). A subspace D C D(L) is called a core of L if D is
dense in D(L) with respect to the graph norm. The following proposition gives an easily
checkable sufficient condition in order that D is a core.

Lemma 11.1.9. If D C D(L) is a dense subspace of X and T'(t)(D) C D for everyt >0,
then D s a core.

Proof. Let M, w be such that ||T(t)|| < Me*“! for every ¢t > 0. For x € D(L) we have

t

1
Lz =lim- [ T(s)Lxzds.
t—0 t 0

Let (z,,) C D be a sequence such that lim, o z, = z. Set

1 t 1 t 1 t
Ynt = / T(s)xnds = / T(s)(xy, —x)ds + / T(s)xds.
0 t Jo t Jo

t
As the D(L)-valued function s — T'(s)x,, is continuous in [0, 00), the vector fot T(s)zpds
belongs to D(L). Moreover, it is the limit of the Riemann sums of elements of D (see
Exercise [11.1)), hence it belongs to the closure of D in D(L). Therefore, y,; belongs to
the closure of D in D(L) for every n and t. Furthermore,

t
0

Ynt — x| < Hi/ T(s)(xp — ) dsH + H% /OtT(s)xds — a:H

tends to 0 as t — 0, n — co. By (|11.1.2) we have

Tt) (2 — ) — (2 — 1 [t
Ly, — Lx = ) xt) (20 — ) +t/ T(s)Lxds — L.
0

Given ¢ > 0, fix 7 > 0 such that

1 T

H/ T(s)Lxds — L:L’H <e,

7 Jo

and then take n € N such that (Me“™ + 1)||z, — z||/7 < €. Therefore, ||Ly, » — Lz| < 2¢

and the statement follows. O

11.2 Generation Theorems

In this section we recall the main generation theorems for Cy-semigroups. The most general
result is the classical Hille-Yosida Theorem, which gives a complete characterisation of the
generators. For contractive semigroups, i.e., semigroups verifying the estimate ||7'(¢)| <
1 for all ¢ > 0, the characterisation of the generators provided by the Lumer-Phillips
Theorem is often useful. We do not present here the proofs of these results, referring e.g.
to [13] §IL.3].



142 Lecture 11

First, we recall the definition of spectrum and resolvent. The natural setting for spec-
tral theory is that of complex Banach spaces, hence if X is real we replace it by its
complexification X = {z + iy : z, y € X} endowed with the norm

|z +iy|| ¢ := sup |lzcos®+ ysind)||
—m<6<m
(notice that the seemingly more natural “Euclidean norm” (||| + ||y[>)*/? is not a norm
in general).
Definition 11.2.1. Let L : D(L) C X — X be a linear operator. The resolvent set p(L)
and the spectrum o (L) of L are defined by

p(L) ={AeC:IA - L)' € L(X)}, (L) =C\p(L). (11.2.1)

The complex numbers \ € o(L) such that A\I — L is not injective are the eigenvalues, and
the vectors © € D(L) such that Lx = Az are the eigenvectors (or eigenfunctions, when
X is a function space). The set o,(L) whose elements are all the eigenvalues of L is the
point spectrum.

For \ € p(L), we set
R\ L):= (N —L)". (11.2.2)

The operator R(\, L) is the resolvent operator or briefly resolvent.

We ask to check (Exercise that if the resolvent set p(L) is not empty, then L is
a closed operator. We also ask to check (Exercise the following equality, known as
the resolvent identity

RN\ L)—R(pu, L) =(n— AR\ L)R(u, L), Y\, p€ p(L). (11.2.3)

Theorem 11.2.2 (Hille-Yosida). The linear operator L : D(L) C X — X is the generator
of a Cy-semigroup verifying estimate (11.1.1)) iff the following conditions hold:

( (i) D(L) is dense in X,

(i) p(L) D{AeR: A >w}, (11.2.4)

M
.. k
Before stating the Lumer—Phillips Theorem, we define the dissipative operators.
Definition 11.2.3. A linear operator L : D(L) C X — X is called dissipative if
(AL = L)z|| = All|]
for all X\ >0, x € D(L).

Theorem 11.2.4 (Lumer—Phillips). A densely defined and dissipative operator L on X is
closable and its closure is dissipative. Moreover, the following statements are equivalent.

(i) The closure of L generates a contraction Cy-semigroup.

(ii) The range of A\I — L is dense in X for some (hence all) X\ > 0.
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11.3 Invariant measures

In our lectures we shall encounter semigroups defined in LP spaces, i.e., X = LP(Q)) where
(Q,.7, ) is a measure space, with ©(€2) < co. A property that will play an important role
is the conservation of the mean value, namely

/T(t)fdu:/fdu Vt >0, Vfe LP(Q).
Q Q

In this case p is called invariant for T'(t). The following proposition gives an equiva-
lent condition for invariance, in terms of the generator of the semigroup rather than the
semigroup itself.

Proposition 11.3.1. Let {T'(t) : t > 0} be a strongly continuous semigroup with generator
L in LP(Q, p), where (Q, p) is a measure space, p € [1,00), and () < co. Then

/T(t)fdpz/fdp Vt >0, Vf € LP(Q, ) <:>/Lfdu:0 Vf e D(L).
Q Q Q

Proof. “=7 Let f € D(L). Then limy_,o(T(t)f — f)/t = Lf in LP(Q, u) and consequently
in L'(Q, u). Integrating we obtain

1
| zrau=ms [ @ =pin=o

“<” Let f € D(L). Then the function t — T(t)f belongs to C*([0,00); LP(£2, 1)) and
d/dtT(t)f = LT(t)f, so that for every ¢t > 0,

— | T@t)fdu= / LT(t)fdp=0.

Therefore the function ¢ — [ + T'(t) f dup is constant, and equal to S « J du. The operator
LP(Q,u) = R, f— [o(T(t)f — f)du, is bounded and vanishes on the dense subset D(L);
hence it vanishes in the whole LP(, u). O

11.4 Analytic semigroups

We recall now an important class of semigroups, the analytic semigroups generated by
sectorial operators. For the definition of sectorial operators we need that X is a complex
Banach space.

Definition 11.4.1. A linear operator L : D(L) C X — X is called sectorial if there are
weR,0e (n/2,7m), M >0 such that

(1) p(L) D Spu ={AeC: A #w,|arg(A —w)| < 0},

(11.4.1)

. M
(”) ||R()‘7L)HL(X) < m VA€ Sgw.
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In the literature there are also other notions of sectorial operators, but this is the most
popular and the one usueful for us.

Sectorial operators with dense domains are infinitesimal generators of semigroups with
noteworthy smoothing properties. The proof of the following theorem may be found in
[13, Chapter 2], [2I, Chapter 2].

Theorem 11.4.2. Let L be a sectorial operator with dense domain. Then it is the in-
finitesimal generator of a semigroup {T(t): t > 0} that enjoys the following properties.

(i) T(t)x € D(LF) for everyt >0, z € X, k € N,
(i) There are My, My, My, ..., such that

(@) NT®)llex) < Moe®*, t >0,
(11.4.2)
() (L = wD*T(t)]l¢(x) < Mye®', ¢ >0,

where w is the constant in (11.4.1)).
(11i) The function t — T'(t) belongs to C*°((0,+00); L(X)), and the equality

dk

() = L*T(t), t>0, (11.4.3)

holds.

(iv) The function t — T(t) has a L(X)-valued holomorphic extension in a sector Sgg
with 8 > 0.

The name “analytic semigroup” comes from property (iv). If O is an open set in C,
and Y is a complex Banach space, a function f : O — Y is called holomorphic if it is
differentiable at every zg € O in the usual complex sense, i.e. there exists the limit

lim JE) = (=) =: f'(20).

z=z20 2 — 20
As in the scalar case, such functions are infinitely many times differentiable at every
20 € O, and the Taylor series 72, £ (20)(2 — 20)*/k! converges to f(z) for every z in a
neighborhood of zj.

We do not present the proof of this theorem, because in the case of the Ornstein-
Uhlenbeck semigroup that will be discussed in the next lectures we shall provide direct
proofs of the relevant properties without relying on the above general results. A more
general theory of analytic semigroups, not necessarily strongly continuous at ¢ = 0, is
available, see [21].
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11.4.1 Self-adjoint operators in Hilbert spaces

If X is a Hilbert space (inner product (-,-), norm || - ||) then we can say more on semi-
groups and generators in connection to self-adjointness. Notice also that the dissipativity
condition can be rephrased in the Hilbert space as follows. An operator L : D(L) — X is
dissipative iff (see Exercise

Re (Lz,z) <0, Vz € D(L). (11.4.4)
Let us prove that any self-adjoint dissipative operator is sectorial.

Proposition 11.4.3. Let L : D(L) C X — X be a self-adjoint dissipative operator. Then
L 1is sectorial with 8 < w arbitrary and w = 0.

Proof. Let us first show that the spectrum of L is real. If A = a + ib € C, for every
x € D(L) we have

I(A = L)a|* = (a® + 0)||2|* — 2a(z, L) + || La|* > b°[|z|]?, (11.4.5)

hence if b # 0 then A\I — L is injective. Let us check that in this case it is also surjective,
showing that its range is closed and dense in X. Let (z,) C D(L) be a sequence such that
the sequence (A\z,, — Lx,) is convergent. From the inequality

I = L)(@n — @) 2 > Pllen — 2%, n,m e N,

it follows that the sequence (z,,) is a Cauchy sequence, hence (Lz,,) as well. Therefore,
there are =,y € X such that z, — x and Lz, — y. Since L is closed, x € D(L) and
Lz =y, hence \x,, — Lx,, converges to Az — Lz € rg (A — L) and the range of \I — L is
closed.

Let now y be orthogonal to the range of (AI — L). Then, for every x € D(L) we have
{(y,\x — Lz) = 0, whence y € D(L*) = D(L) and \y — L*y = Ay — Ly = 0. As A\ — L
injective, y = 0 follows. Therefore the range of (A — L) is dense in X.

From the dissipativity of L it follows that the spectrum of L is contained in (—oo, 0].
Indeed, if A > 0 then for every z € D(L) we have, instead of ,

IAM = L)e|® = N*|l2||* — 2z, La) + || La|® = X*|||?, (11.4.6)

and arguing as above we deeduce A € p(L).

Let us now estimate ||R(\, L)||, for A\ = pe?, with p >0, —7 <0 < 7. For z € X, set
u = R(\, L)x. Multiplying the equality Au — Lu = z by e~*/2 and then taking the inner
product with u, we get

pe? 2 ul® — ¢ L, u) = e, ),
whence, taking the real part,

peos(8/2)|ul® — cos(6/2)(Lu, u) = Re(e™""*(z,u)) < [l |ull



146 Lecture 11

and then, as cos(6/2) > 0, also

]

< =h
Il < reostarzy

with 6 = arg A. O

Proposition 11.4.4. Let {T'(t) : t > 0} be a Cy-semigroup. The family of operators
{T(t)*: t >0} is a Cy-semigroup whose generator is L*.

Proof. The semigroup law is immediately checked. Let us prove the strong continuity.
Recall that by we have [|T(t)|| = ||T(#)*|| < Me*t, where we may assume w > 0.
First, notice that T'(¢)*x — z weakly for every x € X as t — 0. Indeed, by the strong
continuity of T'(t) we have (T'(t)*z,y) = (z,T(t)y) — (x,y) as t — 0 for every y € X.
From the estimate

t M .
[ @ermgas| < S = vl o]
0 w
and the Riesz Theorem we get the existence of x; € X such that

1

n /0t<T(s)*J:,y) ds = (x¢,y) VyeX.

Therefore, for £ > 0 and 0 < h < t we infer

(T (h)* e =z, y)| = [z, T(R)y) — (21, )]

_ % /O (s T(h)y) dsf% /0 T(s) ) ds|
= 1/0 (T(s+ h)*z,y) dsi/o (T(s)*z,y) ds‘

_ % /t e ds—% /0 Ty ey) ds|

1 M
<l Iyl — [(e20H) — ) + (2" = 1)].
t w
Taking the supremum on |ly|| = 1, we deduce
lim ||T'(h)*z¢ — 2¢|| = 0. (11.4.7)
h—0

Set Y :={z € X : limy||T(h)*x — z|| = 0. By an £/3 argument, it is easily seen that
Y is closed. Moreover, it is a subspace of X. Therefore (e.g, [4, Thm. 3.7]), Y is weakly
closed. Since for any x € X, z; € Y and x; — z weakly as t — 0, we conclude that Y = X,
and consequently {T'(¢)* : t > 0} is strongly continuous. Denoting by A its generator, for
x € D(L) and y € D(A) we have

(Lo, ) = (e (T(6) = D,y) = lim(e, t7(T()" = I)y) = (z, Ay),

t—0
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so that A C L*. Conversely, for y € D(L*), x € D(L) we have

t
(&, T(t)*y — ) = (T(t)z — z,4) = /0 (LT(s)z, y) ds

:/0 (T(s)x, L*y) ds:/o (x,T(s)*L*y) ds.

We deduce .
Tty —y= / T(s)*L*yds,
0

147

whence, dividing by t and letting ¢ — 0 we get Ay = L*y for every y € D(L*) and

consequently L* C A.

O
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The following result is an immediate consequence of Proposition [11.4.4

Corollary 11.4.5. The generator L is self-adjoint if and only if T(t) is self-adjoint for
every t > 0.

11.5 Exercises

Exercise 11.1. Let R be endowed with the Lebesgue measure Aj, and let f : [a,b] — X
be a continuous function. Prove that it is Bochner integrable, that

b n _a
[ syae= i > )™
a i=1

for any choice of 7; € [a + (b_azfi_l),a + (b_na)i}, i =1,...,n (the sums in this approxi-

mation are the usual Riemann sums in the real-valued case) and that, setting

t
F(t)= [ f(s)ds, a<t<t
a
the function F' is continuously differentiable, with
F'(t)=f(t), a<t<b.

Exercise 11.2. Prove that if u € C([0,00); D(L))NCL([0, 00); X) is a solution of problem
(11.1.3), then for ¢t > 0 the function v(s) = T'(t — s)u(s) is continuously differentiable in
[0,¢] and it verifies v'(s) = =T'(t — s)Lu(s) + T(t — s)u'(s) =0 for 0 < s < ¢.

Exercise 11.3. Let L : D(L) C X — X be a linear operator. Prove that if p(L) # () then
L is closed.

Exercise 11.4. Prove the resolvent identity ([11.2.3]).

Exercise 11.5. Prove that in Hilbert spaces the dissipativity condition in Definition|11.2.3

is equivalent to (11.4.4]).

Exercise 11.6. Let {T'(t) : ¢t > 0} be a bounded strongly continuous semigroup. Prove
that the norm

|| == sup || T'(t)=]|
>0

is equivalent to || - || and that T'(¢) is contractive on (X, |- |).
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The Ornstein-Uhlenbeck semigroup

All of us know the importance of the Laplacian operator A and of the heat semigroup,

4 92 f 1 )
A _ — —|z—y|?/4t
f(z) ;:1 922 (), T f(z) @t /Rde fy)dy, t>0,

that serve as prototypes for elliptic differential operators and semigroups of operators,
respectively. Choosing X = L2(R%, \g), the Laplacian A : D(A) = W22(R4, )\;) — X
is the infinitesimal generator of 7'(t), namely given any f € X, there exists the limit
lim,_,o+ (T'(t)f — f)/t if and only if f € W22(R%, \;), and in this case the limit is Af. The
W22 norm is equivalent to the graph norm. Moreover, the realization of the Laplacian in
X is the operator associated with the quadratic form

Qu,v) = | Vu-Vovdr, u, veWH(R N).
Rd
This means that D(A) consists precisely of the elements u € W1H2(R? \;) such that the
function WH2(R4, \g) — R, ¢ Jga Vu - Vo dz has a linear bounded extension to the
whole X, namely there exists g € L?(R?, \y) such that

Vu-Vgodx:/

) gedr, @€ Wl’Q(Rd, Ad)s
R

Rd
and in this case g = —Au. If u € W22(R?, )\y), the above formula follows just integrating
by parts, and it is the basic formula that relates the Laplacian and the gradient. Moreover,
for u € W22(R9, \y) we have

Au = div Vu,

where the divergence div is (minus) the adjoint of the gradient V : W1L2(R% \g) —
L*(R?, \g; RY), and for a vector field v € WH2(RY, \g; R?) it is given by Z?Zl 0v; /0x;.

In this lecture and in the next ones we introduce the Ornstein—Uhlenbeck operator and
the Ornstein—Uhlenbeck semigroup, that play the role of the Laplacian and of the heat

149
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semigroup if the Lebesgue measure is replaced by the standard Gaussian measure 7,4, and
that have natural extensions to our infinite dimensional setting (X,~, H). As before, X
is a separable Banach space endowed with a centred nondegenerate Gaussian measure -,
and H is the relevant Cameron—Martin space.

12.1 The Ornstein—Uhlenbeck semigroup

In this section we define the Ornstein—Uhlenbeck semigroup; we start by defining it in the
space of the bounded continuous functions and then we extend it to LP(X,~), for every
p € [1,00).

The Ornstein—Uhlenbeck semigroup in Cj(X) is defined as follows: T'(0) = I, and for
t >0, T'(t)f is defined by the Mehler formula

Tt)f(x):= /X fle7tz + /1 — e~ 2ty)y(dy). (12.1.1)

We list some properties of the family of operators {T'(t) : ¢ > 0}.

Proposition 12.1.1. {T'(¢t) : t > 0} is a contraction semigroup in Cy(X). Moreover, for
every f € Cp(X) we have

/T(t)fdyz/ fdy, t>0. (12.1.2)
D' X

Proof. First of all we notice that |T'(¢) f(x)| < || flleo for every x € X and t > 0. The fact
that T'(t) f € Cy(X) follows by Dominated Convergence Theorem. So, T'(t) € L(Cy(X))
and [|T(t) [l ¢(cy(x)) < 1. Taking f =1, we have T'(t) f = 1 so that || T'()[|z(c,(x)) = 1 for
every t > 0.

Let us prove that {T'(t) : t > 0} is a semigroup. For every f € Cp(X) and t,s > 0 we
have

(TE(T(s)f)(x) = /X(T(S)f)(e_tﬂf + V1= e 2y)y(dy)
= / / fle* (et + V1 — e 2ty) + V1 — e~ 252)y(dy)y(dz).
XJX

s_V1—e—?t + V1—e—2s
\/1_672t72sy V1—e—2t—2s

Setting now ®(y,z) = e~ z, and using Proposition [2.2.7|(iv), we

get

(TE)T(s)))(x) = /X /X Fle* "t + /T — e 2250 (y, 2))y(dy)(dz)
- /X Flemt0 + /T — e 5-26) (7 @ 7) 0 1) (d€)

= [ re e VT e )
=T(t+s)f(x).
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Let us prove that ((12.1.2) holds. For any f € Cy(X) we have
[ 0590 = [ [ et VIZ By dpn (o)
X xJx

Setting ¢(x,y) = e tx + V1 — e~ 2y, we apply Proposition M(IV) with any 6 € R such
that e=! = cosf, V1 — e=2t = sin6, and we get

/ T(t)f dy = / FE)(r ®7) 0 6\ (de) = / (e (de).
X X X
]

We point out that the semigroup {7'(¢) : ¢t > 0} is not strongly continuous in Cy(X),
and not even in the subspace BUC(X) of the bounded and uniformly continuous functions.
In fact, we have the following characterisation.

Lemma 12.1.2. Let f € BUC(X). Then
lim [|T(t)f — flleo =0 <= 1i ) — flloo = 0.
Jin [[7() f = 1 Jim [[£(e™) = f]

Proof. For every t > 0 and z € X we have
(TOF = )@ = [ (Fe 0t VT ey) = f(ea))(dn)

and the right hand side goes to 0, uniformly in X, as t — 07. Indeed, given e > 0 fix R > 0
such that v(X \ B(0,R)) < e, and fix § > 0 such that |f(u) — f(v)| < e for |Ju —v|| <.
Then, for every t such that v1 —e=2!R < § and for every x € X we have

] [ et 4 V=) — et
X

(L [ et VIS - e tana)
B(O,R) JX\B(O,R)
<+ 2l

O]

The simplest counterexample to strong continuity in BUC(X) is one dimensional: see
Exercise 1211
However, for every f € Cy(X) the function (¢, z) — T'(¢) f(z) is continuous in [0, c0) x X
by the Dominated Convergence Theorem. In particular,
lim T'(t)f(z) = f(x), Vze X,
t—0+
which is enough for many purposes.
The semigroup {T'(t) : t > 0} enjoys important smoothing and summability improving
properties. The first smoothing property is in the next proposition.
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Proposition 12.1.3. For every f € Cy(X) and t > 0, T(t)f is H-differentiable at every
x € X, and we have

VT )b = e [ et VIm i ). 0219
Therefore,
VT @) € =l 2 X. (1210
Proof. Set |
o(t) == ﬁ

For every h € H we have
T+ h) = [ Fe o+ VT= e el0h + 1))
. 2
= /X fleTtr + /1 — e 2t2) exp{c(t)h(z) - c(t)2|hQ|H} v(dz),

by the Cameron-Martin formula. Therefore, denoting by l; (k) the right hand side of
([12.1.3),

[T(@)f(x+h) = TE)f(x) = lt.2(h)]

<
|| -
< |hl|H/ ‘f(e*tx + V1 —e2ty) (exp{c(t)il(y) - c(t)2‘h2|%1} -1- c(t)ﬁ(y)) "y(dy)
< e Lfeofetoe e 5y -l g

= 1o [ [esp{ellam — e "5} <1~ et pln|-1 0, (e

where the right hand side vanishes as |h|g — 0, by the Dominated Convergence Theorem.

This proves (12.1.3]). In its turn, (12.1.3) yields
VT (@) f (@), hal < @) Flloollhll 2 x ) < @l Flloollll 2 x ) = @ flloo| Bl
for every h € H, and ([12.1.4)) follows. O

Notice that in the case X = R%, v = v4, we have Vg = V and formula (12.1.3) reads
as

eft

q/]_ _ 672t Rd

Let us consider now more regular functions f.

D,T(t)f(x) = fle7te + V1 — e 2y)y;va(dy), i=1,...,d. (12.1.5)
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Proposition 12.1.4. For every f € CHX), T(t)f € CHX) for any t > 0, and its
derivative at x s

(T(t)f) (x)(v) =" /X fle™ e+ /1 = e72ty)(v) y(dy). (12.1.6)
In particular,
;T(t)f(x) _— (T(t)(if))(az), veX, zeX. (12.1.7)

For every f € C3(X), T(t)f € C}(X) for any t >0, and its second order derivative at x
18

TN @@ = [ et + VI Ty) ) (d) (12.18)
X
so that ) ;
8a€g2f(x) = e 2T(t) <aiéfu> (), uw,velX, zekX. (12.1.9)

Proof. Fix t > 0 and set ®(x,y) = e 'z + /1 — e~ 2ly. For every z, v € X we have

O+ o) = TN - [ Fetot VIt

S/ [f(@(2,y) +e7"v) = f(®(z,y)) — f’@(fﬂay))(e_tv)lv(dy)i-
X o]

On the other hand, for every y € X we have

lim [(@(z,y) + e ) — f(D(x,y)) — f[(P(x,y)) (e Tv)

v=0 o]

and (see Exercise |12.3))

f(®(2,y) +e7"v) — f(2(x,y)) — f'(2(x,y))(e""v)]

o]

< 2e” sup || f/(2)]|x+,
zeX

and ((12.1.6) follows by the Dominated Convergence Theorem. Formula (12.1.7) is an
immediate consequence. The derivative (T'(¢)f) is continuous still by the Dominated

Convergence Theorem. The verification of (12.1.8) and (12.1.9) for f € CZ(X) follow
iterating this procedure (see Exercise [12.4]). O

Let us compare Proposition [12.1.3]and Proposition[I2.1.4] Proposition[I2.1.3|describes
a smoothing property of T'(¢), while Proposition says that T'(f) preserves the spaces
CLH(X) and C}(X). In general, T(t) regularises only along H and it does not map Cj(X)
into C'(X). If X = R and v = 4 we have H = R%, this difficulty does not arise,
Proposition says that T'(t) maps Cp(R?) into C}(R?) and in fact one can check that
T(t) maps Cy(R?) into CF(R?) for every k € N, as we shall see in the next lecture.
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If f € CHX) we can write VyT'(t)f(z) in two different ways, using (12.1.3) and
(12.1.6)): for every h € H we have

— \/% /X fle™ 'z + V1 — e~2ty)h(y)(dy)

:w/f@%+1—w%mww»
X

(VuT(t)f(z), hlu

We now extend 7T'(t) to LP(X,7), 1 <p < oc.

Proposition 12.1.5. Let t > 0. For every f € Cp(X) and p € [1,00) we have

1T fllzexqy) < Nfllzecxq)- (12.1.10)

Hence {T'(t) : t > 0} is uniquely extendable to a contraction semigroup {T,(t) : t > 0} in
LP(X,v). Moreover

(i) {T,(t) - t >0} is strongly continuous in LP(X,~), for every p € [1,00);
(ii) To(t) is self-adjoint and nonnegative in L*(X,~) for every t > 0;
(iii) v is an invariant measure for {T,(t) : t > 0}.

Proof. For every f € Cp(X), t >0 and x € X the Holder inequality yields
T@)f ()] < /X [fle™'z + V1= e 2y)[Pdy = T(t)(|f ) ().
Integrating over X and using we obtain
Jirosrar< [ o = [ v

Since Cp(X) is dense in LP(X, ), T'(t) has a unique bounded extension T),(t) to the whole
LP(X,7), such that ||T,(#)[lczr(x,y)) < 1. In fact, taking f = 1, Tp(t)f = 1 so that
1T ()| c(rr(x,y)) = 1-

Let us prove that {T},(t) : ¢t > 0} is strongly continuous. We already know that for f €
Cy(X) we have lim;_,o+ T'(¢) f(xz) = f(x) for every z € X, and moreover |T'(t) f(x)] < || fllco
for every z. By the Dominated Convergence Theorem, lim; ,q+ T'(¢)f = f in LP(X,~).
Since Cp(X) is dense in LP(X,v) and ||T,(t)| gz (x,y)) = 1 for every ¢, lim, o+ T(t) f = f
for every f € LP(X, ).

Let us prove statement (ii). Let f, g € Cp(X), t > 0. Then

TOL 90 = [ [ 504 VI= e Fg(a)n (dy o)
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and setting u = etz + V1 —e 2y, v = —/1 —e 2ty + ey, (u,v) = R(x,y), using
Proposition iii)

TOF a0 = [ [ HE e VI=eFoglup o
= [ fwgle - VI e @ ) o R dlw,v)
= [ [ sgte = V= oo
/ / Flw)gle™tu+ /1 — e=2t)y(dv)y(du)

)9>L2(X v) s

where in the second to last equality we have used the fact that ~ is centred. Approximating

any f, g € L?(X,) by elements of C,(X), we obtain (T (¢) f, g}Lg(Xﬁ) = (f, Tg(t)g)Lg(Xm.
Still for every f € L?(X,~) and t > 0 we have

(o) f, Frexy) = (Te(t/2)T2(t/2) f, rzx .y = (T2(t/2) f,T2(/2) f) r2(x,5) = 0.
Statement (iii) is an immediate consequence of (12.1.2)). O

To simplify some statements we extend the Ornstein—Uhlenbeck semigroup 7T'(t) to
H—valued functions. For v € Cp(X; H) and t > 0 we set

T(t)v(x) = /X vie e + V1 — e 2y)y(dy), t>0, z€X.

By Remark for every orthonormal basis {h; : i € N} of H we have

=Y TO)([o(), hlm) (x)hi.
i=1
Using Proposition (1) we get the estimate
P60l < [ Jofea+ VI=ePylan(dn) = Ol @€ X, (12100

Notice that the right hand side concerns the scalar valued function |v|y. Raising to the
power p, integrating over X and recalling (|12.1.2]), we obtain

HT(t>vHLP(X,'y;H) < HUHLT’(X,W;H)v t>0. (12112)

As in the case of real valued functions, since Cy(X; H) is dense in LP(X,~; H), estimate
(12.1.12)) allows to extend T'(¢) to a bounded (contraction) operator in LP(X,~; H), called
T, (t). We will not develop the theory for H-valued functions, but we shall use this notion

to write some formulae in a concise way, see e.g. ((12.1.13).
LP gradient estimates for T),(t) f are provided by the next proposition.
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Proposition 12.1.6. Let 1 < p < oo.
(i) For every f € W'P(X,~) and t >0, T,(t)f € WHP(X,~) and
VaTy(t)f = e " T,(t) (Vi f), (12.1.13)

1T () fllwrexq) < N lwex,q)- (12.1.14)

i) If p> 1, for every f € LP(X,7) and t > 0, T,(t)f € W'P(X,v) and
P

/ \VaTy(t) f(z)|hdy < c(t,p) / | f|Pd, (12.1.15)

1/p’
with c(t, p) (fR [P (0, 1)(d£)> e t/V1—e 2t

Proof. (i). Let f € C}(X). By Proposition T(t)f € CHX) and (,T(t)f)(z) =
e Y (T(t)(Onf))(x) for every h € H, namely [(VyT(t)f)(z), hlg = e *"T(t)([Vu f, hlu)(z).
Therefore, |(VaT(t)f)(z)|g < e 'T(t)(|Vafla)(z), for every z € X. Consequently,

IVaT () f (@)l < e (T (Vi flu) (@) < e P(TE)(Vufly)(z)

and integrating we obtain
/ IVaT () f(x)[fydy < e tp/ TE)(|Va fla)dy = e_tp/ Vi fldy,
X X
so that

1T fllwrwxq) = 1T fllzeeq + 1VET @) fla le(x )
SN fllr ey + 1IVES 8 L0 (x7) = [ llwrex )

Since C}(X) is dense in W'P(X, ), (12.1.14) follows.

(ii) Let f € Cy(X). By Proposition T(t)f is H-differentiable at every x, and
we have
IVaT(t)f(x)lu = sup  [[VaT(t)f(x),h]ul
heH, |h|lg=1
Let us estimate |[VgT'(t)f(z), hla| = |lt.z(h)| (where l; (k) is as in the proof of Proposi-
tion [12.1.3)), for |h|y = 1, using formula (12.1.3). We have

sl < < [ 15+ VTl ()

e*t _ 50 \ip 1/p .- 1/p
Sm(/XV(e z+V1—e?y) v(dy)> </X|h| d7>

eft

- waismey( [1errona)
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By the invariance property (12.1.2) of ~,

/X V@)l (d) < (me_itezt)p /X<T<t)<|frp> dv< /]R €7 4 (0, 1)(d5)>p/p/

(=) [irar( [1errc 1><d5>>p/pl.

Therefore, T'(t)f € W'P(X,~) and estimate (12.1.15)) holds for every f € Cy(X). Since
Cy(X) is dense in LP(X, ), the statement follows. O

Note that the proof of (ii) fails for p = 1, since the function h does not belong to L*°
for every h € H, and the constant c(t,p) in estimate blows up as p — 1. Indeed,
T(t) does not map L'(X,v) into WH1(X,~) for t > 0, even in the simplest case X = R,
v =71 (see for instance [22, Corollary 5.1}).

12.2 Exercises

Exercise 12.1. Let X = R and set f(x) = sinz. Prove that T'(¢)f does not converge
uniformly to f in R as t — 0.

Exercise 12.2. Show that the argument used in Proposition [12.1.5 to prove that T'(t) is
self-adjoint in L?*(X,~) implies that Ty (t) = T,(t)* for p € (1,00) with 1/p+1/p' = 1.

Exercise 12.3. Prove that for every f € C'(X) and for every z, y € X we have
1
f0) = 1@) = [ 1oy+ (1= o)a)(y - ) dor
so that, if f € C}(X),
[f(y) = f(@)| < sup 1 ()xly — .

Exercise 12.4. Prove that for every f € CZ(X) and t > 0, T(t)f € CZ(X) and (12.1.9),
([T2.1.9) hold.
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Lecture 13

The Ornstein-Uhlenbeck operator

In this lecture we study the infinitesimal generator of T,(t), for p € [1,00). The strongest
result is the characterisation of the domain of the generator Ly of Th(¢) as the Sobolev
space W22(X,v). A similar result holds for p € (1,00) \ {2}, but the proof is much more
complicated and will not be given here.

13.1 The finite dimensional case

Here, X = R? and v = 74. We describe the infinitesimal generator L, of T,(t) in
LP(R%,~y), for p € (1,00), which is a suitable realisation of the Ornstein-Uhlenbeck dif-
ferential operator

Lf(x):=Af(x) —x-Vf(x) (13.1.1)

in LP(R%, ~,).
We recall that

D(Ly) = {fELp(Rd,ryd): 377 — lim T(t)Jtc—f}7

t—0+
T f-f
L,f = lim —=——.
2 ti%lJr t
If f € D(Ly), by Lemma [11.1.7] the function ¢ — T'(t)f belongs to C1(]0,00); LP(R%,~,))
NC([0,00); D(Lp)) and d/dtT(t)f = L,T(t)f, for every t > 0. To find an expression of
Ly, we differentiate T'(t) f with respect to time for good f. We recall that for f € Cj,(R%),

T,(t)f =T(t)f is given by formula (12.1.1]).
Lemma 13.1.1. For every f € Cy(R?), the function (t,z) ~— T(t)f(x) is smooth in

(0,00) x R, and we have

Z(TON)@) = AT f(2) - VIO f (), >0, xR (13.1.2)

159
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If f € C’g(Rd), for every x € R the function t — T(t)f(x) is differentiable also at t =0,

with
d

2
and the function (t,z) v+ d/dt (T(t)f)(x) is continuous in [0,00) x R,

Tt ) (@)= = Af(z) —2-Vf(z), z€ RY, (13.1.3)

Proof. Setting z = e~tx + /1 — e~ 2ty in ([12.1.1)) we see that (¢,z) — T(t)f(x) is smooth
in (0,00) x R, and that
d _ 1 9 |z — el —20y-d/2
%(T(t)f)(l“)—w Rdf(z)at<eXp{_2(l—e—2t)}(l_e ) dz
B (1 _ e—2t)—d/2 B ’Z _ e_t:c‘Q
INCYSTIER /() eXp{ 2(1 — e—2t)}

e tz—eta)-x e |z —el2|? de=2
- 1 — o2 l—e2)2 1-e2 dz

= [+ V1= ey (et y - @+ et)’lyl? — de(t)*)raldy),

where c(t) = e t/y/1 —e2t. Differentiating twice with respect to x in (12.1.1) (recall
(12.1.5))), we obtain

Dij(T(t)f)(z) = c(t)® | fle 'z + V1= e 2y)(=bij + yiy;)va(dy)

Rd
so that
AT(0)f(x) = e(t)” | fle™'a+ V1= e y)(~d + [y*)aldy).
Therefore,
d ¢ -
GEONE) = AT f(@) = ~c(t) [ e o V/T= ) e yuldy
Rd
=-VI@t)f(z)- =,
and follows.
For f € CZ(R%), we rewrite formula as
LamnE = @Crnne)
(13.1.4)

= e H(THASf)(x) — etz - (TH)Vf)(z), t>0, xR

taking into account (12.1.7) and (12.1.9]). (We recall that (T'(¢)V f)(x) is the vector whose
Jj-th component is T'(¢t)D; f(z)). Since Af and each D;f are continuous and bounded in

R<, the right hand side is continuous in [0,00) x R%. So, for every x € R? the function
0(t) := T(t)f(x) is continuous in [0, 00), it is differentiable in (0,00) and lim;_, 6'(t) =
Af(x) —x-Vf(z). Therefore, 6 is differentiable at 0 too, holds also at ¢t = 0, and
follows. O
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Lemma [13.1.1] suggests that L, is a suitable realisation of the Ornstein-Uhlenbeck
differential operator £ defined in (13.1.1]). For a first characterisation of L, we use Lemma
U1 1.9

Proposition 13.1.2. For 1 < p < oo and k € N, k > 2, the operator L : D(L) =
CFR?) C LP(RY,~yy) — LP(RY,~y) is closable, and its closure is L. So, D(L,) consists
of all f € LP(RY,~y) for which there exists a sequence of functions (f,) C C’If(Rd) such
that f, — f in LP(R%,~4) and (Lf,) converges in LP(RY, ~g). In this case, Lyf = LP —

Proof. We check that D = C’f (R?) satisfies the assumptions of Proposition ie., it
is a core of L,. We already know, from Proposition that T'(t) maps Cy(R?) into
itself for k = 1, 2. The proof of the fact that C¥(R?) is dense in LP(R?, v4) and that T(¢)
maps CF(RY) into itself for k > 3 is left as Exercise

Since CF(R?) C CZ(RY) for k > 2, it remains to prove that CZ(R?) C D(L,), and
Lyf = Lf for every f € C2(R?).

By Lemma for every f € CZ(R?) we have d/dt T(t) f(z) = LT(t)f(z) for every
x € R and ¢t > 0; moreover ¢ + d/dtT(t)f(z) is continuous for every x. Therefore for
every t > 0 we have

T#)f(z) = flx) 1 /O %T(S)f(l‘) ds = 1/0 LT(s)f(x)ds,

t Tt t

and

J.

Since s — LT(s)f(z) is continuous, for every = we have

p

tdn) < [ (3 [ 1676)10) - 250011 ds ) vt

p

lim (1 /Ot|LT(s)f(ac)—£f(a:)]ds> ~0.

t—0t

Moreover, by (|13.1.4)),

(7 [ 16T 7@ - 7@l ds) " < 20 + 2] 191 € LR, )
0

By the Dominated Convergence Theorem,

fim [ [ZOS@ = S@ o) = o,
t—0t JRra t

Then, CF(RY) C D(L,). Since L, is a closed operator and it is an extension of £ :
CF(RY) — LP(RY,7,), £ : CF(RY) — LP(RY,~,) is closable.

Applying Lemma with D = CF(R?), we obtain that D(L,) is the closure of
CF(RY) in the graph norm of L,, namely f € D(L,) iff there exists a sequence (f,) C
CF(RY) such that f, — f in LP(R%,~,) and L,f,, = Lf, converges in LP(R%,~,). This
shows that L, is the closure of £ : CF(RY) — LP(R?, ~,). O
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In the case p = 2 we obtain other characterisations of D(Ly). To start with, we point
out some important properties of £, when applied to elements of W22 (R%, ~,).

Lemma 13.1.3. (a) £ : W22(R% ) — L?(R%,~y) is a bounded operator;

or every f € g ,Yd)s g € ’ ,Yd) we have

b f f W22(Rd wl2(Rrd h
/ Lfgdy = —/ Vf-Vgdy. (13.1.5)
R4 R4

(c) for every f € W22(R? ~q) we have
Lf = div,, V. (13.1.6)

Proof. To prove (a) it is sufficient to show that the mapping T : W22(R%, v4) — L?(R%, vy)
defined by (T'f)(x) := x - Vf(x) is bounded. For every i =1,...,d, set g;(z) = z;D; f(x).
The mapping f — g; is bounded from W22(R? ~4) to L?(R%, v4) by Lemma and
summing up the statement follows.

To prove (b) it is sufficient to apply the integration by parts formula to compute
fRd D;; f gdvg, for every i = 1,...,d, and to sum up. In fact, was stated for Cl}
functions, but it is readily extended to Sobolev functions using Proposition [9.1.5

Statement (c) follows from Theorem In this case we have H = R?, and it is
convenient to take the canonical basis of R? as a basis for H. So, we have h;(x) = x; for
i=1,...,d and divy,v(z) = Zle Djv; — xiv;, for every v € WhH2(RY, ~v4; RY). Taking
v=VFf, follows. O

The first characterisation of D(Lg) is the following.

Theorem 13.1.4. D(Lq) = W2’2(Rd,’m), and Lof = Lf for every f € W2’2(Rda%l)-
Moreover, for every f € W2’2(Rd,%l),

112t gy + 18 F 2y = D2 ga gy + IV 2R yimety + 1D FI T2 (g ymanays
(13.1.7)
where the square root of the right hand side is an equivalent norm in W22(R%, ~,).

Proof. Let us prove that (13.1.7) holds for every f € C’bg(]Rd). We set Lf =: g and we
differentiate with respect to x; (this is why we consider C3, instead of only C7, functions)
for every 5 =1,...,d. We obtain

d
Di(Af) — Z(%’Dz‘,f +2;Djif) = Djg.

i=1

Multiplying by D;f and summing up we get

d d
N DifAD;f) = IVfP =Y - V(D;f)D;f =V f-Vg.

Jj=1 Jj=1
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Note that each term in the above sum belongs to LP(R%, v,) for every p > 1. We integrate
over R? and we obtain

d
/Rd (ZDﬁfﬁ(Djf) - !Vf\2>d%z = /Rd Vf-Vgdyg.
j=1

Now we use the integration formula (13.1.5)), both in the left hand side and in the right
hand side, obtaining

d
- / SO VD, Ry - / VP = — / L f dvg
RY = Re R

so that, since g = L f

d
2 _ C£\2 2
L etiiu= [ S0t [ 195k

1,j=1

Since C} is dense both in W22(R%, ~,) and in D(Ls), the statement follows.
O

The next characterisation fits last year Isem. We recall below general results about
bilinear forms in Hilbert spaces. We only need a basic result; more refined results are in
last year Isem lecture notes.

Let V. C W be real Hilbert spaces, with continuous and dense embedding, and let
Q:V xV — R be a bounded bilinear form. “Bounded” means that there exists M > 0
such that |Q(u,v)| < M||ully ||v||y for every u, v € V; “bilinear” means that Q is linear
both with respect to w and with respect to v. Q is called “nonnegative” if Q(u,u) > 0
for every u € V, and “coercive” if there is ¢ > 0 such that Q(u,u) > c||ul|}, for every
u € Vit is called “symmetric” if Q(u,v) = Q(v,u) for every u, v € V. Note that the form
n , with V = WH2(R9, ~,4), W = L*(R?,~4) is bounded, bilinear, symmetric and
nonnegative. It is not coercive, but Q(u, v) + a(u, v) 12(ga ,,) is coercive for every a > 0.

For any bounded bilinear form Q, an unbounded linear operator A in the space W is
naturally associated with Q. D(A) consists of the elements u € V such that the mapping
V — R, v — 9Q(u,v), has a linear bounded extension to the whole W. By the Riesz
Theorem, this is equivalent to the existence of g € W such that Q(u,v) = (g,v)w, for
every v € V. Note that g is unique, because V is dense in W. Then we set Au = —g,
where ¢ is the unique element of W such that Q(u,v) = (g, v)w, for every v € V.

Theorem 13.1.5. Let V. C W be real Hilbert spaces, with continuous and dense em-
bedding, and let Q : V. x V. — R be a bounded bilinear symmetric form, such that
(u,v) — Qu,v) + alu, v)w is coercive for some o > 0. Then the operator A: D(A) — W
defined above is densely defined and self-adjoint. If in addition Q is monnegative, A is
dissipative.
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Proof. The mapping (u,v) — Q(u,v) + a(u,v)y is an inner product in V, and the as-
sociated norm is equivalent to the V-norm, by the continuity of Q and the coercivity
assumption.

It is convenient to consider the operator A : D(A) = D(A) — W, Au := Au+ au. Of
course if A is self-adjoint, also A is self-adjoint.

We consider the canonical isomorphism 7" : V' — V* defined by (Tu)(v) = Q(u,v) +
au,v)w (we are using the new inner product above defined), and the embedding J :
W — V* such that (Ju)(v) = (u,v)w. T is an isometry by the Riesz Theorem, and J is
bounded since for every u € W and v € V' we have |(Ju)(v)| < |Jullw||v]lw < C||lullw]v|lv,
where C' is the norm of the embedding V' C W. Moreover, J is one to one, since V is
dense in W.

By definition, u € D(A) iff there exists g € W such that Q(u,v) + a(u, v)w = (g, v)w
for every v € V, which means T'uw = Jg, and in this case Au = —g.

The range of J is dense in V*. If it were not, there would exist ® € V*\ {0} such that
(Jw, @)y~ = 0 for every w € W. So, there would exists ¢ € V'\ {0} such that Jw(y) =0,
namely (w, @)y = 0 for every w € W. This implies ¢ = 0, a contradiction. Since T is
an isomorphism, the range of T~1J, which is nothing but the domain of ﬁ, is dense in V.
Since V is in its turn dense in W, D(A) is dense in W.

The symmetry of Q implies immediately that Ais self-adjoint. Indeed, for u, v € D(Z)
we have

(Au, v)yw = Q(u, v) + alu, vy = Qv, u) + alv, u)w = (u, Av)y.

Since A is onto, it is self-adjoint.
The last statement is obvious: since (Au,u) = —Q(u,u) for every u € D(A), if Q is
nonnegative, A is dissipative. ]

In our setting the bilinear form is

Qu,v) :== o Vu-Vodyg, u, ve WHH(RY 4y), (13.1.8)

so that the assumptions of Theorem [13.1.5 are satisfied with W = L2(R% ,), V =

WH2(R?, 44) and every a > 0. D(A) is the set

{u e WHE(RY, ~vy) - 3g € L3(R?, ~4) such that Q(u,v) = / gvdyg, Yv € Wl’z(Rd,”yd)}
Rd

and Au = —g.

Theorem 13.1.6. Let Q be the bilinear form in (13.1.8). Then D(A) = W22(R%,~,),
and A = Lo.

Proof. Let u € W22(R%,~,). By (13.1.5) and Theorem [13.1.4} for every v € W12(R?, vy4)

we have

Qu,v) = /Rdﬁuvd'yd
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Therefore, the function g = Lu = Lou fits the definition of Au (recall that g € L2(R%,v,)
by Lemma ( )). So, W22(R%,~4) € D(A) and Au = Lou for every u € W22(R?, v4)
(the last equahty follows from Theorem . In other words, A is a self-adjoint ex-
tension of Ls. Lo itself is self-adjoint by Corollary because T(t) is self-adjoint
in L?(R%, ~4) by Proposition (ii), for every t > 0. Self-adjoint operators have no
proper self-adjoint extensions (this is because D(L2) C D(A) = D(A*) C D(L3), but
D(A*) = D(A) and D(L%) = D(L2)), hence D(A) = D(Lg) and A = Ls. O

13.2 The infinite dimensional case

Here, as usual, X is a separable Banach space endowed with a centred nondegenerate
Gaussian measure v, and H is the relevant Cameron-Martin space.

The connection between finite dimension and infinite dimension is provided by the
cylindrical functions. In the next proposition we show that suitable cylindrical functions
belong to D(L,) for every p € (1,00), and we write down an explicit expression of L, f for
such f. Precisely, we fix an orthonormal basis {h; : j € N} of H contained in R, (X™*), and
we denote by ¥ the set of the cylindrical functions of the type f(z) = o(h1(2),..., hq(z))
with ¢ € CZ(R?), for some d € N. This is a dense subspace of LP(X,~) for every p € [1, 00),
see Exercise For such f, we have

Oy -

O0if(x) = a5, “E(hi(x),... hg(x)), i <d; O;f(x) =0, i>d. (13.2.1)

To distinguish between the finite and the infinite dimensional case, we use the superscript
(d) when dealing with the Ornstein-Uhlenbeck semigroup and the Ornstein-Uhlenbeck

semigroup in R%. So, LZ(Jd) is the infinitesimal generator of the Ornstein-Uhlenbeck semi-
group T (t) in LP (Rd,w) We recall that L(d) is a realisation of the operator £(%) =
A — x -V, namely L f LD f for every f € D(L (d))

Proposition 13.2.1. Let {h; : j € N} be an orthonormal basis of H contained in R (X™).

Letd e N, pe[l,00) and f(z) = o(hi(z), ..., ha(x)) with ¢ € LP(R% ~q). Then for every
t>0 and v-a.e. x € X,

If in addition ¢ € D(L]()d)), then f € D(Lp), and

Lyf(x) = Lol (), . ha(x)).

If o € CZ(RY), then

30

Lyf(x) = LDp(h (), ... ha(x)) = Z(aiif( ) = hi(z)0; f(x)) = div, Vi f(2).
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Proof. Assume first that ¢ € Cp(R%). For ¢t > 0 we have

T(t)f(x) = / f(e e+ V1= e By)y(dy)
_ /X ety (z) + V1 — e 2hy(y),. .., e ha(x) + V1 — e 2ha(y))v(dy)

_ /R (et hn(e) + VI e e tha(e) + VT = e B a(de)
= (TD(t)p) (b (), .., ha(x)),

because v o (ﬁl, .. iLd)_ = 4 by Exercise |2 . If ¢ € LP(R% ~4) is not continuous,
we approximate it in LP(R, ’yd) by a sequence of continuous and bounded functions ¢,,.
The sequence fp,(z) := @n(hi(x), ..., hq(z)) converges to f and the sequence gy () :=
(T<d>(t)¢n)(h1(x),...,ild(x)) converges to (TD(t)@)(h1(z),..., hq(z)) in LP(X, ), still
by Exercise 2.4 Therefore, T'(t) f,, converges to T(t)f in LP(X, ) for every t > 0, and the
first statement follows.

Let now ¢ € D(Ll(yd)). For every ¢ > 0 we have

[P o o.....haton (o)
D )by (), ..., ha(z)) — @(hi(z), ... ha(z ; j

_ /X\T eafe)ees D) = (@)oo Do) _ 1) .., ) )
(d) — P

B /R T (t)w(tf) PAE) _ 10(6) [ uta)

that vanishes as ¢ — 0. So, the second statement follows.
Let ¢ € CZ(RY). By Theorem |13.1.2| we have

d
L;g;d)SO(f) = Z( ip(€) — &Dip () = LWp(€), € eR™
i=1
Therefore,
R R d
Lpf(f) = (L(d)CP)(hl(x)’ o hag(x)) = Z( iip(§) — &Dip (5)) e=(h1(2),....ha(z))
i=1
d ~
= > (Gif(x) — hi(x)di f(x)),
i=1
which coincides with div, Vg f(x). See Theorem O
As a consequence of Propositions [13.2.1] and [I1.1.9] we obtain a characterisation of

D(L,) which is quite similar to the finite dimensional one.
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Theorem 13.2.2. Let {h; : j € N} be an orthonormal basis of H contained in R (X™*).
Then the subspace & of FCZ(X) defined above is a core of L, for every p € [1,00), the
restriction of L, to ¥ is closable in LP(X,~) and its closure is Ly. In other words, D(Ly)
consists of all f € LP(X,~y) such that there exists a sequence (fy) in ¥ which converges to
fin LP(X,~) and such that Ly f, = div,V g f, converges in LP(X, ).

Proof. By Proposition [13.2.1, ¥ C D(L,). For every t > 0, T'(t)f € X if f € ¥, by
Proposition [13.2.1] and Proposition By Lemma [11.1.9, ¥ is a core of L. 0

For p = 2 we can prove other characterisations.

Theorem 13.2.3. D(L2) = W2(X, ), and for every f € W*2(X,~) we have
Lof = div, Vi, (13.2.2)

and

[l z2x ) + 1L2f 22 x ) < N fllw2zxq) < g(HfHLQ(X,v) + 1 Lofll2(x))-  (13.2.3)
Proof. Fix an orthonormal basis of H contained in R,(X™*). By Exercise > is dense
in W22(X, ), and by Theorem it is dense in D(Ls).

We claim that every f € X satisfies , so that the W22 norm is equivalent
to the graph norm of Ly on . For every f € %, if f(z) = @(hi(z),...,hq(z)), by
Proposition we have Lof(z) = (L@)(hi(2),..., hq(x)), where £@ is defined in
(13.1.1)). Recalling that ~ o (ﬁl, ... ,ﬁd)_l = g, wWe get

[ Par= [ G [ @arpay= [ (@ Dpan,
X R4 X Rd
and, using ((13.2.1)),

HfHWQVZ(X,'y) = HSOHW2,2(Rd7,Yd).

Therefore, estimates ([13.1.7)) imply that f satisfies (13.2.3)), and the claim is proved.
The statement is now a standard consequence of the density of ¥ in W?22(X,~) and

in D(Ls). Indeed, to prove that W*2(X,~) C D(Lz), and that Lo f = div, Vg f for every
f € W22(R? ~y), it is sufficient to approximate any f € W22(X,~) by a sequence (f,)
of elements of ¥; then f, converges to f and Laf, = div, Vg f, converges to div,Vyf
in L?(X,v) by Theorem as Vg fn converges to Vg f in L?(X,~; H). Since Lo is
a closed operator, f € D(L2) and Lof = div, Vg f. Similarly, to prove that D(Ls) C
W?22(X,v) we approximate any f € D(Ly) by a sequence (f,) of elements of ¥ that
converges to f in the graph norm; then (f,) is a Cauchy sequence in W?22(X,~) and
therefore f € W22(X, 7). O

Finally, as in finite dimension, we have a characterisation of Lo in terms of the bilinear
form

Q(u,v) :/ [V, Vvlgdy, u, veWh(X, 7). (13.2.4)
X

Applying Theorem [13.1.5| with W = L?(X,v), V = W12(X,v) we obtain
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Theorem 13.2.4. Let A be the operator associated with the bilinear form Q above. Then
D(A) = W?2(X,~), and A = L.

The proof is identical to the proof of Theorem [13.1.6| and it is omitted.
Note that Theorem [13.2.4]implies that for every f € D(Ly) = W22(X,~) and for every
g € WH2(X, v) we have

[ Lafgdr== [ (Vut Vuglua (13.2.5)
X X

which is the infinite dimensional version of . Proposition implies that Lo is
a sectorial operator, therefore the Ornstein-Uhlenbeck semigroup is analytic in L?(X,~).

We mention that, by general results about semigroups and interpolation theory (e.g.
[7, Thm. 1.4.2]), {T,(t) : t > 0} is an analytic semigroup in LP(X,~) for every p € (1, 00).
However, this fact will not be used in these lectures.

A result similar to Theorem holds also for p # 2. More precisely, for every
p € (1,00), D(L,) = W?P(X, ), and the graph norm of D(L,) is equivalent to the W?2?
norm. But the proof is not as simple. We refer to [25] and [3, Sect. 5.5] for the infinite
dimensional case, and to [23] for an alternative proof in the finite dimensional case.

13.3 Exercises

Exercise 13.1. Let ¢ : R? — [0,00) be a mollifier, i.e. a smooth function with support

in B(0,1) such that
/ o(x)dx = 1.
B(0,1)

o-(x) =% (g) , zeR%

For € > 0 set

Prove that if p € [1,00) and f € LP(R?, ~4), then
fla) = £ 00) = [ F)octa )y,
R4

is well defined, belongs to LP(R%, v,) and converges to f in LP(R?, ~4) as € — 0.

Exercise 13.2. Prove that for every k € N, k > 3, CF(R?) is dense in LP(R?, v4) and that
T(t) € L(CF(RY)) for every t > 0.

Exercise 13.3. Let {h; : j € N} be an orthonormal basis of H contained in R, (X*).

Prove that the set 3 of the cylindrical functions of the type f(z) = @(hi(z), ..., ha(z))
with ¢ € CZ(RY), for some d € N, is dense in LP(X,v) and in W?P(X,v) for every
p € [1,00).

Exercise 13.4.
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(i) With the help of Proposition [10.1.2, show that if f € WP(X,~) with p € [1,00) is
such that Vg f = 0 a.e., then f is a.e. constant.

(ii) Use point (i) to show that for every p € (1,00) the kernel of L, consists of the
constant functions.
(HiNT: First of all, prove that T'(t)f = f for all f € D(L,) such that L,f = 0 and
then pass to the limit as t — oo in (12.1.3)))
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Lecture 14

More on Ornstein-Uhlenbeck oper-
ator and semigroup

In this lecture we go on in the study of the realisation of the Ornstein-Uhlenbeck operator
and of the Ornstein-Uhlenbeck semigroup in LP spaces. As in the last lectures, X is a
separable Banach space endowed with a centred nondegenerate Gaussian measure -, and
H is the Cameron-Martin space. We use the notation of Lectures 12 and 13.

We start with the description of the spectrum of Ly. Although the domain of Lo
is not compactly embedded in L?(X,~) if X is infinite dimensional, the spectrum of Lo
consists of a sequence of eigenvalues, and the corresponding eigenfunctions are the Hermite
polynomials that we already encountered in Lecture 8. So, L?(X,~) has an orthonormal
basis made by eigenfunctions of Lo. This is used to obtain another representation formula
for T5(t) and another characterisation of D(L2) in terms of Hermite polynomials.

In the second part of the lecture we present two important inequalities, the the Log-
arithmic Sobolev and Poincaré inequalities, that hold for C’l} functions and are easily
extended to Sobolev functions. They are used to prove summability improving properties
and asymptotic behavior results for T),(t).

14.1 Spectral properties of L,
Let {h; : j € N} be an orthonormal basis of H contained in R,(X*). We recall the
definition of the Hermite polynomials, given in Lecture 8.

A is the set of of multi-indices o € (NU {0})N, a = (a;), with finite length |a| =
> 721 @ < oo. For every a € A, o = (a;), the Hermite polynomial H,, is defined by

lo__oI ajiz rz e X.
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where the polynomial H,; is defined in (8.1.1). By Lemma for every k € N we have

Hi(§) — €H}, (&) = —kH(S), &E€R,

namely Hj is an eigenfunction of the one-dimensional Ornstein-Uhlenbeck operator, with
eigenvalue —k. This property is extended to any dimension as follows.

Proposition 14.1.1. For every o € A, H, belongs to D(L2) and

LoHy = —|a|Ha.
Proof. As a first step, we consider the finite dimensional case X = R¢, 7 = 74- Then
H = R? and we take the canonical basis of R? as a basis for H, so that h;(x) = x; for

7=1,...d.
We fix a Hermite polynomial H, in RY, with o = (a1,...,aq) € (NU{0})9,

d
= H Hy,(7j), x€ RY.
j=1

H, belongs to W22(R% ~,) (in fact, it belongs to WP (R, ~,) for every p € [1,00)) and
therefore by Theorem it is in D(Léd)). By we know that L(Qd)Ha =LDp, =
—|a|Hy.

Now we turn to the infinite dimensional case. Let @ € A and let d € N be such
that o;j = 0 for each j > d. Then H,(x) = @(hy(z),. .., hg(x)), where ¢ is a Hermite
polynomial in R¢. Proposition implies that H, € D(Lz), and

LyHy = LD%(ha(), .. ha()) = ~lalo(hu (), - ha(-)) = —|a] Ha.

O]

As a consequence of Propositions[14.1.1)and [8.1.9, we characterise the spectrum of Ls.
We recall that, for every k € NU {0}, I is the orthogonal projection on the subspace
Xy =span{H, : a € A, |a| =k} of L?(X,~). See Section 8.1.2.

Proposition 14.1.2. The spectrum of Lo is equal to —N U {0}. For every k € NU {0},
Xy is the eigenspace of Lo with eigenvalue —k. Therefore, I(Lof) = Lo(Ipf) = —kI(f),
for every f € D(Ls).

Proof. Let us consider the point spectrum. First of all, we prove that X is contained in
the eigenspace of Lo with eigenvalue —k.

X consists of the constant functions, which belong to the kernel of Ly. For k € N, every
element f € Xj is equal to lim,_,o fn, where each f, is a linear combination of Hermite
polynomials H, with |a| = k. By Proposition[14.1.1] f,, € D(L2) and Ly f,, = —k f,. Since
Lo is a closed operator, f € D(Lsg) and Laof = —kf.

Let now f € D(L2) be such that Laf = Af for some A € R. For every a € A we have

MfyHa)r2(x,y) = (Laf Ho) 12(x ) = (fs LaHo) 12(x ) = —1al(fs Ha) 12(x )
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Therefore, either A = —|a| or (f, Ha)r2(x,4) = 0. If A = —k with k € NU {0}, then f is
orthogonal to all Hermite polynomials Hgz with |3| # k, hence f € X, is an eigenfunction
of Ly with eigenvalue —k. If A # —k for every k € NU {0}, then f is orthogonal to all
Hermite polynomials so that it vanishes. This proves that Xj is equal to the eigenspace
of Ly with eigenvalue —k.

Since Ly is self-adjoint, for f € D(L2) and |a| = k we have

(Laf, Ha)r2(x ) = (fs LaHa) 12(x,7) = —k{(f, Ha) 12(x ) (14.1.1)

Let f;, j € N, be any enumeration of the Hermite polynomials H, with |a| = k. The
sequence s, := > 1_o(f, fj)r2(x,)fj converges in D(Ls), since L? — limy, 00 5 = Ii(f)
and

n n n

Losn = Y {f, fid iz Laty = =k > (L fidreen i = > Laf, fid iz Fis

j=0 j=0 =0

where the last equality follows from . The series in the right hand side converges
to —kIx(f) = Ix(Laf), as n — oo. Then, Loli(f) = —kIx(f) = Ix(Laf), for every
ke NU{0}.

It remains to show that the spectrum of L is just —NU {0}. We notice that D(Ls) is
not compactly embedded in L?(X,) if X is infinite dimensional, because it has infinite
dimensional eigenspaces. So, the spectrum does not necessarily consist of eigenvalues.

If A # —h for every h € NU{0}, and f € L?(X, ), the resolvent equation A\u — Lou =
f is equivalent to A(u) — Ix(Lou) = Ii(f) for every k € N U {0}, and therefore to
M (u) + kI (u) = Ix(f), for every k € NU{0}. So, we define

o0

(14.1.2)

k=0

The sequence uy, := Y ;_o Ix(f)/(A+Fk) converges in D(Lsz), since both sequences 1/(A+k)
and k/(X + k) are bounded. Therefore, u € D(Lsy), and Au — Lou = f. O

Another consequence is a characterisation of Lo in terms of Hermite polynomials.

Proposition 14.1.3.

(@) D(Lo)={f e I*(X,7): Zk?\uk 2y < 0}

(14.1.3)

(b) Lof == kIu(f), f€D(Ly).
k=1

Proof. Let f € D(Ly). Then Iy(Laf) = —kIx(f) = La(Ix(f)) for every k € NU {0}, by
Proposition Applying (8.1.9) to Lo f we obtain

Lof = Iu(Lof) =) —kIk(f)
k=1

k=0
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which proves ([14.1.3])(b). Moreover,
L2 f172x 2y = D K IR F2(x ) < 00

k=1

Conversely, let f € L?(X,v) be such that Y57, k2| Ix(f) |12, 2(x,y) < OO Then the sequence

Jn = Zlk(f)
k=0

converges to f in L?(X,~), and it converges in D(Ls) too, since for n > m

| La(fn fm)HLQ(XW)_H Z —kIi(f ‘L2 = Z K2\ In(f ]\LQ(X7 — 0 as m — oo.
k=m-+1 k=m+1
Since Lo is closed, f € D(Ls). O

As every H, is an eigenfunction of Lo with eigenvalue —|al, we ask to verify that
To(t)Hy = e H,, t>0, a €A, (14.1.4)

see Exercise As a consequence, we obtain a very handy expression of T5(t) in terms
of Hermite polynomials.

Corollary 14.1.4. For every t > 0 we have
o
Of=Y_e L), feI*X,v), (14.1.5)

where the series converges in L*(X,~). Moreover, Tx(t)f € D(Ly) and

1
[ L2To(t) fll L2 (x ) < E”fHLZ(X,'y)' (14.1.6)

The function t + T(t)f belongs to C1((0,00); L*(X,7)), and

%TQ( )f = LQTQ(t)f, t > 0. (1417)
Proof. Fix f € L?(X,v). By Lemma for every k € N, It(f) € D(L2) and
LoIi(f) = —kI(f), so that by the above considerations, Ty (t)I(f) = e *I.(f). Since
f=limy 00 > p_g Ik(f) in L?(X,v) and T5(t) is a bounded operator in L?(X,~), (14.1.5)
follows.

The other statements and estimate || L2T2(t) fllz2(x ) < cllfllL2(x )/t follow from the
fact that T(t) is an analytic semigroup in L?(X,7), see Theorem [11.4.2 However, we
give here a simple independent proof, specifying the constant ¢ = 1/e in @
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Since supgs €272 = ¢72, using (14.1.5) we obtain
o0
> R II(Ta(0) )l Zk2 NN
k\L2 L2(X,y) L2(X
k=1

1 2
< thZHIk )7z ;y)SWHfHLQ(X;y)

so that Th(t)f € D(L2) by (14.1.3)(a), and estimate (14.1.6) follows from ((14.1.3))(b).

Moreover, for every ¢t > 0 and 0 < |h| < t/2 we have

ox(

Fach addend in the right hand side sum converges to 0, and using the Taylor formula for
the exponential function we easily obtain

—k(t+h) —kt 2 2

e e t c
4 k) < ZEe < S
< h ) T 2’

—k (t+h) e—kt

2
|t 4+ )7~ Do)~ LTt k) 1272 -

with ¢ independent of ¢, h, k. By the Dominated Convergence Theorem for series, we
obtain

T, H%(Tz(t RS = To(t)f) — LaTo(t)

=0,

namely, the function T5(+)f is differentiable at ¢, with derivative LoT5(t)f. For t > tg > 0
we have LQTQ(t)f = LQTQ(t — to)T(to)f = Tg(t — to)LQT(to)f. Then, t — LQTQ(t)f is
continuous in [tg, 00). Since tq is arbitrary, T(-)f belongs to C*((0,00); L*(X,7)). O

We already know that D(Lg) = W?2(X,v). So, Proposition [14.1.3| gives a charac-
terisation of W22(X,~) in terms of Hermite polynomials. A similar characterisation is
available for the space W12(X,v).

Proposition 14.1.5.
WX, ) = {7 € LX) anfk M2 (x < 00}
Moreover, for every f € W12(X,~),

/X Vo flFdy = ;k /X (Ii(f))?dn,

and

n
i) for every f € WH2(X, ) the sequence Iy, converges to f in WH2(X, ),
Y
k=0
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(ii) the sequence Z VEI, converges in L(WY2(X, ), L2(X,7)).
k=1

Proof. Let f € L?(X,~). By Proposition [14.1.2 for every k € N, I3(f) € D(Ly) and
Lol (f) = —kIk(f). Therefore,

/ V() = - / L) Ladi(f) dy = k / (Io(f)dy. keN.  (1418)
X X

Assume that Y 22 k|| Ik (f )HL2 (X < 00 The sequence s, := > ko le(f) converges to f

in L?(X,v). Moreover, (Vgsy,) is a Cauchy sequence in L?(X,~; H). Indeed, VyIi(f)
and VyI;(f) are orthogonal in L?(X,~; H) for [ # k, because

/ Valo(F), Varli(f)]ady = — / () LaDy(f)dy = 1 / LI f)dy = 0.
X X X

Therefore, for n, p € N,
n+p n—+p n—+p

HZVHIk ‘L2 XvH _Z/‘VHI’C )irdy = ZkHI’f HLZXW

So, f € WH2(X,7), s, — f in WH2(X,~), and

/X Vulydr =3 /X Vel = KU

To prove the converse, first we take f € D(Lg). Then, by (13.2.5) m,

2 — _ — _
/X|VHf|Hd7— /fLQfd'Y /Z;Iz(f)kzofk(sz)d’Y
/Xsz Mi(Laf)d,

k=0
since I;)(f) € X, Ix(Laf) € Xj. By Proposition [14.1.2

[ 19 sl = Zk [
Comparing with (14.1.8)), we obtain

/ Vi flirdy = Z/ IV i Ie(f)dy

X /X

So, the mappings Ty, : D(La) — L*(X,7), Tnf = > 14 VEIL(f) satisfy
AL (X, 7) — Dim Tof, N Tofllzexq) < 1wtz

Since D(Ls) is dense in W12(X, ), the sequence (T}, f) converges in L?(X,~) for every
fe WLQ(X 7). Since ||Tnf||%2(x,y) = Zzz1k||lk(f)"%2(x,7)v letting n — oo we get

Ziilkllfk( )HLz (X7) < o0. —
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Proposition [14.1.3| may be recognized as the spectral decomposition of L. See e.g. [26,
§VIIL.3], in particular Theorem VIIL.6. Accordingly, a functional calculus for L may be
defined , namely for every g : —NU {0} — R we set

D(g(L)) = {f € L*(X,) Z\g E)|? |11 ( )H%z(xﬁ) < oo}

and

= Zg(—k‘)]k(f), feD(g(L)).
k=0

In particular, for g(¢) = (—&)'/2, Proposition says that D((—L)Y/?) = W'2(X,~),
and [[(=L)2fllr2(x ) = Ve flrlr2x ) for every f € WH2(X, 7).

Corollary 14.1.6. For every d € N, the embedding W12(R?, ~4) C L?(R%,~4) is compact.

Proof. Let (f,) be a bounded sequence in W12(R9, v,), say [ fllwr2@aq,) < C. Then
there exists a subsequence (f,,;) that converges weakly in WH2(RY, ~v4) to an element
f € Wh2(R? ~,), that still satisfies [fllwi2@maq, < C. We claim that f,, — f in
L2(R%, ).

For every N € N we have (norms and inner products are in L?(R?, 7))

1y = FII? = Z 1 (fa; = NI = Z 1k (fy = FIIP + Z 12 (fr; = FII?

k=
N-1
< <fn] I, H, ‘|' AT Z k‘uk fnj )H2
k=0 a€(NU{0})?, |o|=k
N-1 2
2 (20)
< Z <fnj_faHa> + N .
k=0 ae(NU{0}), [al=k

Fixed any € > 0, let N be such that 4C?/N < . The sum in the right hand side consists
of a finite number of summands, each of them goes to 0 as n; — oo, therefore it does not
exceed ¢ provided n; is large enough. O

The argument in the proof of Corollary does not work in infinite dimension,
because in this case for every k£ € N the Hermite polynomials H, with |a| = k are
infinitely many. In fact, W1?2(X,~) is not compactly embedded in L?(X,~) if H is infinite
dimensional. It is sufficient to consider the Hermite polynomials H, with |a| = 1, namely
the sequence of functions (B]) Their W2(X,~) norm is 2 but no subsequence converges
in L2(X,~) since ||h; — iAsz%z(Xﬁ) = 2 for i # j. The same argument shows that D(L2) is
not compactly embedded in L?(X, ).
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14.2 Functional inequalities and asymptotic behaviour

In this section we present two important inequalities, the Logarithmic Sobolev and Poinca-
ré inequality, that hold for functions in Sobolev spaces. The Ornstein-Uhlenbeck semigroup
can be used as a tool in their proofs, and, in their turn, they are used to prove summability
improving and asymptotic behaviour results for T),(¢) f, as t — oo.

We introduce the mean value f of any f € L'(X,7),

fim [ fin

If f € L3(X,y), f = Ip(f) is just the orthogonal projection of f on the kernel Xg of Lo,
that consists of constant functions by Proposition [14.1.2] (see also Exercise [13.4). In any
case, we have the following asymptotic behavior result.

Lemma 14.2.1. For every f € Cy(X),

lim T(t)f(z) = f, =€ X. (14.2.1)

t—o00

For every f € LP(X,v), 1 < p < o0,
Jim 1T,(t) f = flle(x,y) = 0. (14.2.2)

Proof. The first assertion is an easy consequence of the definition (12.1.1)) of 7'(¢) f, through
the Dominated Convergence Theorem. Still for f € Cy(X), we have that holds
again by the Dominated Convergence Theorem. Since Cp(X) is dense in LP(X, ) and the
linear operators f + Tp(t) f — f belong to £(LP(X,~)) and have norm not exeeding 2, the
second assertion follows as well. O

We shall see that the rate of convergence in (14.2.2)) is exponential. This fact could be
seen as a consequence of general results on analytic semigroups, but here we shall give a
simpler and direct independent proof.

14.2.1 The Logarithmic Sobolev inequality

To begin with, we remark that no Sobolev embedding holds for nondegenerate Gaussian
measures. Even in dimension 1, the function

o£2/4

£ €R,

belongs to W12(R, ;) but it does not belong to L?>*¢(R,~1) for any £ > 0. This example
may be adapted to show that for every p > 1, WHP(R,~1) is not contained in LP*¢(RR,~1)
for any € > 0, see Exercise [14.2

The best result about summability properties in this context is the next Logarithmic
Sobolev (Log-Sobolev) inequality. In the following we set 0log0 = 0.
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Theorem 14.2.2. Let p > 1. For every f € C}(X) we have

p _
[ A0 11dy < U1y Yor Uiy + 5 [ 1PV Bl ppopdn. (1423)

Proof. As a first step, we consider a function f with positive infimum, say f(xz) > ¢ >0
for every z. In this case, also f? belongs to C}(X), and (T'(t)f?)(x) > P for every z, by
(12.1.1). We define the function

Ft) = /X (T(t)f7) log(T(t) fP)dy, t> 0.

Since Ly is a sectorial operator (or, by Corollary [14.1.4)), the function ¢ — T'(¢) f? and ¢ —
log(T(t) f?) belong to C*((0, 00); L2(X,v)). Consequently, their product is in C*((0, 00); L' (X, ¥)),
F € C'(0,00), and for every ¢t > 0 we have

(1) = /X La(T(6) /) - log(T(1) /) + LT (1) 7] dy (14.2.4)
- /X La(T(t)7) - log(T(t) f7) dy

The second equality is a consequence of the invariance of « (Propositions [12.1.5(iii) and
11.3.1). Moreover, t — T'(t) fP(x) and t — log(T'(t) fP)(x) are continuous for every = and
bounded by constants independent of x. It follows that F' is continuous up to t = 0, and

F(t)— fo F'(s)ds. Integrating in the right hand side of (14.2.4) and using (13.2.5))
with f replaced by T'(t ( )fP, g replaced by log(T'(t) fF), we obtaln

F'(t) = —/X[VHT(S)f”,VH log(T'(s) 7)) ey

1
- | g Ve T Om
We recall that for every x € X, [V (T(t)fP)(x)|g < e 'T(#)(|VufP|lu)(z) (see Proposi-

tion [12.1.6)). So,

1
F'(t) > — —2t/ T(t Pl))% dy. 14.2.5
(t) > —e XT(t)fP( (Ve fPla)) dv ( )
Moreover, the Holder inequality in (12.1.1]) yields

IT(t)(pr102) ()] < [(T()}) (@) 2T ()03)(2)]/2, @i € Cop(X), = € X.
We use this estimate with o1 = |V f?|g/fP/%, p2 = fP/? and we obtain

1OV = 16 (L2T1 po12) < (0 (e >>/ * T .

fp
Replacing in (14.2.5)) and using (12.1.2)), we get

_ 2t |Vpr|12LI) -2 ’Vpr’%{
e /XT(t)(fp dy=—e /Xfp dry

— e /X P2 f .

v

F(t)
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Integrating with respect to time in (0,t) yields

/ (T'(t) f7) log(T'(t) f*) dy — / fPlog(fP)dy = F(t) — F(0)
X X
(14.2.6)

) W

Now we let t — 0o. By Lemma|14.2.1} limy_,o (T'(t) f7)(z) = f7 = || || ,, and consequently

limy_so0 log((T'(2) fP)(x)) = plog(|| flzr), for every x € X. Moreover, ¢? < |(T'(t)f?)(x)] <
| |5, for every z. By the Dominated Convergence Theorem, the left hand side of (14.2.6))

converges to pl| f||], log(|| fll») — p [ fPlog f dvy as t — oo, and ([14.2.3) follows.
For f € CH(X) we approximate |f] in Wl’p(X v) and pointwise by the sequence

fn=+/f?+1/n, see Exercise |14.3| Applying (14.2.3)) to each f,, we get
[ 2108 £ = Ul Yor Wfalloy < 5 [ 1207+ 1/mp 229 sy
< [ Mgior £+ 1/ O

and letting n — oo yields that f satisfies (14.2.3)). Notice that the last integral goes to
Jx ]l{f7£0}|f|p_2!VHf|%1d’y by the Monotone Convergence Theorem, even if p < 2. O

Corollary 14.2.3. Let p > 2. For every f € W'P(X,v) we have
p _
[ 1P t01 11y < 1A 08 o) + 5 [ ISP 2V f By, (1420
) 2/

Proof. We approximate f by a sequence of FC}(X) functions (f,) that converges in
WP(X,~) and pointwise a.e. to f. We apply (14.2.3 m to each f,, and then we let
n — oo. Recalling that Vi f, = 0 a.e. in the set {f, = 0} (see Exercise [10.3)), we get

/‘fn|p2‘van|%—I]l{fn7é0}d7:/ |fn|p72’van’12ﬂld7
X X
for every n, and
[ 1apioglsiay <timint [ 17108 15l dv
X e JXx
< limint ([[fal2) o] P [ g2, g
< timint (1fall5y oy 08 I allzoceny + 5 [ 1Fal 2190l
n—oo ’ b'e

p —
= 115 ox o og o xy + 5 | P2V flEdy
) 2 X
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Note that for 1 < p < 2 the function L o1|f[P~2|V g f|7; does not necessarily belong
to LY(X,7) for f € WYP(X,v), and in this case is not meaningful. Take for
instance X = R and f(z) = 2'/? for 0 < = < 1, f(z) = 0 for £ < 0, f(x) = 1 for 2 > 1.
Then f € WHP(R,~1) but fR |f|p_2|va|%[]l{f¢0}d’}/1 = 00.

Instead (see [24]), it is possible to show that for any p € (1, 00)

—(p—1)/X\f\p‘2!VHf!%111{f¢o}d~y:/Xf\f\P—QLpfdfy (14.2.8)

for every f € D(Ly), so that [ [fIP7*|V g f|5 15 200dy < Cpllfllp(r,)- See Exercise m
So, if f € D(L,) (14.2.3) may be rewritten as

p b —2
J 10108 11y < 1y 08 1oy = 5ty [ AP Epf . (1429

An important consequence of the Log-Sobolev inequality is the next summability im-
proving property of T'(t), called hypercontractivity.

Theorem 14.2.4. Let p > 1, and set p(t) = e*(p — 1) + 1 for t > 0. Then T,(t)f €
LYW (X, ~) for every f € LP(X,~), and

1T () f oo 0y < W fllzrxqys £>0. (14.2.10)

Proof. Let us prove that holds for every f € ¥ with positive infimum (the set
Y. was introduced at the beginning of Section 13.2, and it is dense in LP(X,~)). For such
f’s, since they belong to D(L,) for any ¢, we have that T),(f) = T'(t)f and we can drop
the idex p in the semigroup. We shall show that the function

BE) =T fl Loy (x4, 20

decreases in [0, 00).

It is easily seen that 3 is continuous in [0, c0). Our aim is to show that 8 € C'*(0, 00),
and ['(t) < 0 for every t > 0. Indeed, by Proposition We know that for every x € X
the function t — T'(t)f(z) belongs to C*(0,00), as well as t — (T'(t) f(z))?®, and

d

(T f @) =p ()T (1) f(2))" Dlog(T(t)f(x)) + p(t)(T(1) f (x))" (t)_I%(T(t)f ()

= p'()(T (1) f ()" og(T(t) f () + p(t)(T() f ()P DN LT(8) f ().
We have used the operator Lo, but any other L, can be equivalently used. Moreover,

|d/dt(T(t)f(z))P®| is bounded by ¢(t)(1 + ||z||) for some continuous function ¢(-). So,
t = [ |T(t)f[PDdy is continuously differentiable, with derivative equal to

P(t) /X (T(t) £ og(T(t) )y — p(t)(p(t) — 1) /X T() POV g T(8) 13 .
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It follows that S is differentiable and

D0 1y [ (070 + +LQ LLOD oA TO 1

80 = 5(0)| -

p(t2 p(t) [ (T(t) f)rDdry
Jx(@®) ) f*?\vHﬂ )13y dn
~ o) - )P s o, ]

The Logarithmic Sobolev inequality (14.2.3)) yields

/X (T(0) )"0 log(T()f)dn <

< [ @prOarios [ @ ar+ B2 [ @0 waro s,
p(t) Jx X 2 Jx
and replacing we obtain
/ 02V T (1) T
1y < (P (t) . fX | H HZT
310 < (22 - ot - ) OO TR

The function p(t) was chosen in such a way that p/(t) = 2(p(t) — 1). Therefore, 3'(t) <0,
and follows.

Let now f € ¥ and set f, = (f2+1/n)'/2. For every z € X and n € N we have, by

[@10), [(T(t)f)(x)] < (T@)|F)(@) < (T(t) fu) (@), so that

1T Nl ) < i [T fall oo (x4 < Wmint | full o) = 15 2o ).

and (14.2.10) holds. Since ¥ is dense in LP(X,~), (14.2.10) holds for every f € LP(X,~).
OJ

We notice that in the proof of Theorem we have not used specific properties
of the Ornstein-Uhlenbeck semigroup: the main ingredients were the integration by parts
formula, namely the fact that the infinitesimal generator Lo is the operator associated to
the quadratic form , and the Log-Sobolev inequality for good functions.
In fact, the proof may be extended to a large class of semigroups in spaces LP(Q, i), (€2, u)
being a probability space, see [16]. In [16] a sort of converse is proved, namely under
suitable assumptions if a semigroup T'(t) is a contraction from LP(Q, u) to LI®(Q, ),
with ¢ differentiable and increasing, then a logarithmic Sobolev inequality of the type
holds in the domain of the infinitesimal generator of T'(¢) in LP(X, u).

14.2.2 The Poincaré inequality and the asymptotic behaviour
The Poincaré inequality is the following.

Theorem 14.2.5. For every f € W12(X, ),

/(ff)2d7§/ Vi f|7dy. (14.2.11)
X X
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Proof. There are several proofs of (14.2.11)). One of them follows from Theorem |14.2.4
see Exercise The simplest proof uses the Wiener Chaos decomposition. By (8.1.9)

and (14.1.3)), for every f € D(L2) we have f = > 2 Ix(f) and Laf = > ;2 —kIx(f),
where both series converge in L?(X,~). Using (13.2.5) and these representation formulas
we obtain

/XWHfﬁfdv:—/ fLofdy

—ZkHIk HL2 >ZHII€ ||L2 (X,y)

= HfHLz — 1lo(f )HLQ(X,'y)
72 —
= Hfumw — 7 =11F = Fl320x
Since D(Ls) is dense in W1H2(X, ~), follows. O

An immediate consequence of the Poincaré inequality is the following: if f € W12(X,~)
and Vi f =0, then f is constant a.e. (compare with Exercise |13.4)).

An LP version of (14.2.11]) is
[ur=7rr<e [ 1Vustanr (14.2.12)
X X

that holds for p > 2, f € W'P(X,~) (Exercise [14.6). B
Now we are able to improve Lemma [14.2.1] specifying the decay rate of T,(t)f to f.

Proposition 14.2.6. For every q > 1 there exists ¢, > 0 such that ca = 1 and for every
feLi(X,y),

”Tq(t)f - ?HLQ(X,W) < qu_tHfHLq(X,v)? t>0. (14'2'13)
Proof. As a first step, we prove that the statement holds for ¢ = 2. By , for every

feL*(X,y)and t > 0 we have T(t)f = Y22 e M1 (f). We already know that for k = 0,
Iy(f) = f. Therefore,

[e.e]

Z —kt Ik

2tz [ (f HL2 (X.7) 72t||f||L2
k=

For ¢ # 2 it is enough to prove that (14.2.13)) holds for every f € C,(X). For such
functions we have T,(t)f = T'(t)f for every t > 0.
Let ¢ > 2. Set 7 = log+/q — 1, so that ¢*” + 1 = ¢, and by Theorem [14.2.4 T,(7) is a
contraction from L?*(X,v) to L4(X,~). Then, for every t > 7,
1Tt f = Fllpacey = ITETE = 7)f = Pllzacxq)
<|T(t—7)f = fllrzxy (by ([14.2.10))
<e | fllp2xny  (by ([4213) with g = 2)
< e ) [fllzacxy) (by the Holder inequality)

1T f = Fl22x =

L2(

q—1e " fllLacx )



184 Lecture 14

while for ¢ € (0, 7) we have
IT@) f = fllracxq < 20 1 acxq = 2€' e fllnacxqy < 2vVa—Le || fllnax .-

So, (14.2.13)) holds with ¢; = 2y/q — 1.
Let now ¢ < 2 and set 7 = —log+/q — 1, so that e?"(¢ — 1) + 1 = 2, and by Theorem

14.2.4 T, () is a contraction from L?(X,v) to L*(X,~). For every t > 7 we have

IT#)f = fllzaxy) S IT@)F = fllz2(xy) (by the Holder inequality)
=Tt =7)(T(7)f = T(T)Hllr2xq)
< e UDNT(T) fllizxq (b with ¢ = 2)

< e | fllpax (by ([4210))
1

\/(]—71 e_t”fHLq(X,y)a

while for ¢ € (0,7) we have, as before,

_ _ 2 _
||T(t)f - fHLq(X,'y) < 2HfHLq(X,'y) = 2¢c'e t”fHLq(X,w) < \/ﬁ € t”fHLq(Xv’Y)'

So, (14.2.13)) holds with ¢, =2/1/¢ — 1. O

In fact, estimate ([14.2.13]) could be deduced also by the general theory of (analytic)
semigroups, but we prefer to give a simpler self-contained proof.

14.3 Exercises

Exercise 14.1. Prove the equality (14.1.4).

Exercise 14.2. Show that for every p > 1, WYP(R,~) is not contained in LPT¢(R, ;)
for any € > 0.

Exercise 14.3. Prove that for every f € WP(X,v) the sequence f, = /f2+1/n
converges to |f| in WhP(X, ~).

Exercise 14.4. Prove that for every p > 1 and f € D(L,), (14.2.8) holds.
Hint: for every f € ¥ and € > 0, apply formula (13.2.5) with g = f(f? +6)1_p/2 and then
let e — 0.

Exercise 14.5. Prove the Poincaré inequality (14.2.11)) for functions f € C}(X) such
that f = 0, in the following alternative way: apply (14.2.7) with p = 2 to the functions
f-:=1+¢f, for ¢ > 0, and then divide by €2 and let ¢ — 0.

Exercise 14.6. Prove that (14.2.12) holds for every f € W'P(X,~) with p > 2.
Hint: For p < 4, apply ([4.2.11) to |f|P/? and estimate ( [y |f["/2dy)? by HfH};Q(XV), then
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estimate ([ |Vuf|%|fIP/?1dv)? by € [ |fPdy + C()([x [Vu flfdy). Taking e small,

arrive at

J 1Py < 1y + K [ VSl

(14.2.12) follows applying such estimate to f — f, and using (14.2.11)) to estimate ||f —
fllz2(x,y)- For p > 4, use a bootstrap procedure.
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