EXERCISES FOR LECTURE 9

SOLUTIONS PROVIDED BY THE KONSTANZ TEAM

1. EXERCISE 9.1 (SOLUTION BY MAX NENDEL)

We are asked to prove Lemma 9.1.1: For every $f \in C_b^1(\mathbb{R}^d)$ and for every $i = 1, \ldots, d$ we have

$$\int_{\mathbb{R}^d} \frac{\partial f}{\partial x_i}(x) \gamma_d(dx) = \int_{\mathbb{R}^d} x_i f(x) \, \gamma_d(dx).$$

Without loss of generality let i = d. Let r > 0 and $x' \in \mathbb{R}^{d-1}$. Then, using integration by parts we obtain that

$$\int_{-r}^{r} \frac{\partial f}{\partial x_{d}}(x', x_{d}) e^{-(|x'|^{2} + |x_{d}|^{2})/2} dx_{d} = -f(x', x_{d}) e^{-(|x'|^{2} + |x_{d}|^{2})/2} |_{x_{d}=-r}^{r} + \int_{-r}^{r} f(x', x_{d}) x_{d} e^{-(|x'|^{2} + |x_{d}|^{2})/2} dx_{d}$$
$$\rightarrow \int_{-r}^{r} f(x', x_{d}) x_{d} e^{-(|x'|^{2} + |x_{d}|^{2})/2} dx_{d}$$

as $r \to \infty$. By the dominated convergence theorem, we thus obtain that

$$\int_{\mathbb{R}} \frac{\partial f}{\partial x_d}(x', x_d) e^{-(|x'|^2 + |x_d|^2)/2} dx_d = \int_{\mathbb{R}} f(x', x_d) x_d e^{-(|x'|^2 + |x_d|^2)/2} dx_d.$$

For $x \in \mathbb{R}^d$ let $x' := (x_1, \ldots, x_{d-1}) \in \mathbb{R}^{d-1}$. Then, using Fubini's theorem, we obtain that

$$\begin{split} \int_{\mathbb{R}^d} \frac{\partial f}{\partial x_d}(x) \gamma_d(dx) &= \frac{1}{\sqrt{2\pi^d}} \int_{\mathbb{R}^d} \frac{\partial f}{\partial x_d}(x) e^{-|x|^2/2} dx \\ &= \frac{1}{\sqrt{2\pi^d}} \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} \frac{\partial f}{\partial x_d}(x', x_d) e^{-(|x'|^2 + |x_d|^2)/2} dx_d dx' \\ &= \frac{1}{\sqrt{2\pi^d}} \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} f(x', x_d) x_d e^{-|x|^2/2} dx_d dx' \\ &= \frac{1}{\sqrt{2\pi^d}} \int_{\mathbb{R}^d} x_d f(x) e^{-|x|^2/2} dx \\ &= \int_{\mathbb{R}^d} x_d f(x) \gamma_d(dx). \end{split}$$

2. EXERCISE 9.2 (SOLUTION BY ASGAR JAMNESHAN AND MARKUS KUNZE)

Part (v) of Proposition 9.1.5 reads as follows:

Let $1 . If <math>f_n \to f$ in $L^p(\mathbb{R}^d, \gamma_d)$ and $\sup_{n \in \mathbb{N}} ||f_n||_{W^{1,1}(\mathbb{R}^d, \gamma_d)} < \infty$, then $f \in W^{1,p}(\mathbb{R}^d, \gamma_d)$.

In this exercise we are asked to prove that the corresponding statement for p = 1 and d = 1 is wrong and to deduce from this that $W^{1,1}(\mathbb{R}^1, \gamma_1)$ is not reflexive.

(i) As in the hint, let $f_n(x) = 0$ for $x \le 0$, $f_n(x) = nx$ for $0 \le x \le 1/n$ and $f_n(x) = 1$ for $x \ge 1/n$. Let f(x) = 0 for $x \le 0$ and f(x) = 1 for x > 0. Then $|f_n| \le 1$ and f_n converges pointwise to f. By the dominated convergence theorem, $f_n \to f$ in $L^1(\mathbb{R}^1, \gamma_1)$. Moreover, $\sup_{n \in \mathbb{N}} ||f_n||_{W^{1,1}(\mathbb{R}^1, \gamma_1)} \le 2$. However, f is not continuous, and thus $f \notin W^{1,1}_{loc}(\mathbb{R}^1)$. Using Proposition 9.1.6, it follows that $f \notin W^{1,1}(\mathbb{R}^1, \gamma_1)$.

(ii) Consider the functions f_n and f as in Part (i). Then the sequence f_n is bounded. If $W^{1,1}(\mathbb{R}^1, \gamma_1)$ was reflexive, we would find a subsequence converging weakly to some $g \in W^{1,1}(\mathbb{R}^1, \gamma_1)$. As $f_n \to f$ in $L^1(\mathbb{R}^1, \gamma_1)$, we would have f = g—a contradiction.

3. EXERCISE 9.3 (SOLUTION BY ASGAR JAMNESHAN)

Given a measurable space (Ω, \mathscr{F}) and a positive finite measure μ on it we are asked to prove that a function $f : \Omega \to \mathbb{R}$ is measurable if and only if it is the pointwise a.e. limit of a sequence of simple function.

Let us first point out that this statement need not be true if the measure space $(\Omega, \mathscr{F}, \mu)$ is not complete. Indeed, if we can find a non measurable nullset E, then $\mathbb{1}_E$ is the pointwise a.e. limit of the sequence $f_n \equiv 0$ of simple functions, yet it is not measurable.

In what follows we assume that $(\Omega, \mathscr{F}, \mu)$ is a finite and *complete* measure space.

Let $f : \Omega \to \mathbb{R}$ be a measurable function. Denote by $f^+ = \max\{f, 0\}$ and $f^- = \max\{-f, 0\}$. Then both f^+ and f^- are measurable functions and $f = f^+ - f^-$.

Recall that for a measurable function $h: \Omega \to \mathbb{R}$ with $h \ge 0$, the sequence (h_n) of simple functions defined by

$$\sum_{j=0}^{n2^n} j2^{-n} \mathbf{1}_{C_{j,n}}$$

where

$$C_{j,n} = \begin{cases} \{j2^{-n} \le f < (j+1)2^{-n}\}, & 0 \le j \le n2^n - 1, \\ \{f \ge n\}, & j = n2^n \end{cases}$$

converges *pointwise* to h. Let (g_n^+) be such an approximating sequence for f^+ and (g_n^-) for f^- . Since the difference of two converging sequences is convergent, f is the pointwise limit of the simple functions $f_n = g_n^+ - g_n^-$. In particular, f is the almost everywhere limit of the sequence (f_n) .

 $\mathbf{2}$

On the other hand, recall that if f = g almost everywhere (that is, f = g on N^c where $\mu(N) = 0$) and g is measurable, then f is measurable whenever the underlying measure space is complete. Indeed, let I be a Borel subset of \mathbb{R} . We have

$$f^{-1}(I) = [f^{-1}(I) \cap N^c] \cup [f^{-1}(I) \cap N] = [g^{-1}(I) \cap N^c] \cup [f^{-1}(I) \cap N].$$

By assumption, $g^{-1}(I) \cap N^c \in \mathscr{F}$, and since $(\Omega, \mathscr{F}, \mu)$ is complete, $f^{-1}(I) \cap N \in \mathscr{F}$ as well. Now set $g = \liminf_{n \in \mathbb{N}} f_n$. Then g is measurable and f = g almost everywhere because $f_n \to f$ almost everywhere.

4. EXERCISE 9.4 (SOLUTION BY DANIEL BARTL)

In this exercise we should prove Lemma 9.3.6: If $\psi \in L^1(X, \gamma)$ is such that

$$\int_X \psi \varphi \, d\gamma = 0 \quad \forall \, \varphi \in \mathcal{F}C^1_b(X),$$

then $\psi = 0$ a.e.

Define $\varphi := \mathbb{1}_{\{\psi \geq 0\}} - \mathbb{1}_{\{\psi < 0\}}$ and observe that $\varphi \in L^{\infty}(X, \gamma)$. Thus, by Theorem 7.4.6 there exists a sequence (φ^n) in $\mathcal{F}C_b^{\infty}$ converging in $L^1(X, \gamma)$ to φ and we may assume (possibly after passing to a subsequence) γ -almost sure convergence. Further, for each n let η^n be the convolution of the function $x \mapsto \min\{1, \max\{-1, x\}\}$ and a mollifier with support [-1/n, 1/n]. Then the functions $\eta^n \circ \varphi^n$ are still in $\mathcal{F}C_b^{\infty}$ and converge to φ almost surely. Now we are able to apply the dominated convergence theorem and obtain $\int_X |\psi| d\gamma =$ $\lim_{n\to\infty} \int_X \psi \cdot (\eta^n \circ \varphi^n) d\gamma = 0$ which shows that ψ equals 0 almost surly.