
EXERCISES FOR LECTURE 9

SOLUTIONS PROVIDED BY THE KONSTANZ TEAM

1. Exercise 9.1 (Solution by Max Nendel)

We are asked to prove Lemma 9.1.1:
For every f ∈ C1

b (Rd) and for every i = 1, . . . , d we have∫
Rd

∂f

∂xi
(x)γd(dx) =

∫
Rd

xif(x) γd(dx).

Without loss of generality let i = d. Let r > 0 and x′ ∈ Rd−1. Then, using
integration by parts we obtain that∫ r

−r

∂f

∂xd
(x′, xd)e

−(|x′|2+|xd|2)/2dxd = −f(x′, xd)e
−(|x′|2+|xd|2)/2|rxd=−r

+

∫ r

−r
f(x′, xd)xde

−(|x′|2+|xd|2)/2dx

→
∫ r

−r
f(x′, xd)xde

−(|x′|2+|xd|2)/2dxd

as r →∞. By the dominated convergence theorem, we thus obtain that∫
R

∂f

∂xd
(x′, xd)e

−(|x′|2+|xd|2)/2dxd =

∫
R

f(x′, xd)xde
−(|x′|2+|xd|2)/2dxd.

For x ∈ Rd let x′ := (x1, . . . , xd−1) ∈ Rd−1. Then, using Fubini’s theorem, we
obtain that∫

Rd

∂f

∂xd
(x)γd(dx) =

1
√

2π
d

∫
Rd

∂f

∂xd
(x)e−|x|

2/2dx

=
1
√

2π
d

∫
Rd−1

∫
R

∂f

∂xd
(x′, xd)e

−(|x′|2+|xd|2)/2dxddx
′

=
1
√

2π
d

∫
Rd−1

∫
R

f(x′, xd)xde
−|x|2/2dxddx

′

=
1
√

2π
d

∫
Rd

xdf(x)e−|x|
2/2dx

=

∫
Rd

xdf(x)γd(dx).
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2. Exercise 9.2 (Solution by Asgar Jamneshan and Markus Kunze)

Part (v) of Proposition 9.1.5 reads as follows:
Let 1 < p < ∞. If fn → f in Lp(Rd, γd) and supn∈N ‖fn‖W 1,1(Rd,γd)

< ∞,

then f ∈W 1,p(Rd, γd).
In this exercise we are asked to prove that the corresponding statement for

p = 1 and d = 1 is wrong and to deduce from this that W 1,1(R1, γ1) is not
reflexive.

(i) As in the hint, let fn(x) = 0 for x ≤ 0, fn(x) = nx for 0 ≤ x ≤ 1/n
and fn(x) = 1 for x ≥ 1/n. Let f(x) = 0 for x ≤ 0 and f(x) = 1 for x > 0.
Then |fn| ≤ 1 and fn converges pointwise to f . By the dominated convergence
theorem, fn → f in L1(R1, γ1). Moreover, supn∈N ‖fn‖W 1,1(R1,γ1) ≤ 2. However,

f is not continuous, and thus f 6∈W 1,1
loc (R1). Using Proposition 9.1.6, it follows

that f 6∈W 1,1(R1, γ1).

(ii) Consider the functions fn and f as in Part (i). Then the sequence fn is
bounded. If W 1,1(R1, γ1) was reflexive, we would find a subsequence converging
weakly to some g ∈ W 1,1(R1, γ1). As fn → f in L1(R1, γ1), we would have
f = g—a contradiction.

3. Exercise 9.3 (Solution by Asgar Jamneshan)

Given a measurable space (Ω,F ) and a positive finite measure µ on it we are
asked to prove that a function f : Ω→ R is measurable if and only if it is the
pointwise a.e. limit of a sequence of simple function.

Let us first point out that this statement need not be true if the measure
space (Ω,F , µ) is not complete. Indeed, if we can find a non measurable nullset
E, then 1E is the pointwise a.e. limit of the sequence fn ≡ 0 of simple functions,
yet it is not measurable.

In what follows we assume that (Ω,F , µ) is a finite and complete measure
space.

Let f : Ω → R be a measurable function. Denote by f+ = max{f, 0}
and f− = max{−f, 0}. Then both f+ and f− are measurable functions and
f = f+ − f−.

Recall that for a measurable function h : Ω → R with h ≥ 0, the sequence
(hn) of simple functions defined by

n2n∑
j=0

j2−n1Cj,n

where

Cj,n =

{
{j2−n ≤ f < (j + 1)2−n}, 0 ≤ j ≤ n2n − 1,

{f ≥ n}, j = n2n

converges pointwise to h. Let (g+n ) be such an approximating sequence for f+

and (g−n ) for f−. Since the difference of two converging sequences is convergent,
f is the pointwise limit of the simple functions fn = g+n − g−n . In particular, f is
the almost everywhere limit of the sequence (fn).
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On the other hand, recall that if f = g almost everywhere (that is, f = g on
N c where µ(N) = 0) and g is measurable, then f is measurable whenever the
underlying measure space is complete. Indeed, let I be a Borel subset of R. We
have

f−1(I) = [f−1(I) ∩N c] ∪ [f−1(I) ∩N ] = [g−1(I) ∩N c] ∪ [f−1(I) ∩N ].

By assumption, g−1(I)∩N c ∈ F , and since (Ω,F , µ) is complete, f−1(I)∩N ∈
F as well. Now set g = lim infn∈N fn. Then g is measurable and f = g almost
everywhere because fn → f almost everywhere.

4. Exercise 9.4 (Solution by Daniel Bartl)

In this exercise we should prove Lemma 9.3.6:
If ψ ∈ L1(X, γ) is such that∫

X
ψϕdγ = 0 ∀ϕ ∈ FC1

b (X),

then ψ = 0 a.e.

Define ϕ := 1{ψ≥0} − 1{ψ<0} and observe that ϕ ∈ L∞(X, γ). Thus, by

Theorem 7.4.6 there exists a sequence (ϕn) in FC∞b converging in L1(X, γ)
to ϕ and we may assume (possibly after passing to a subsequence) γ-almost
sure convergence. Further, for each n let ηn be the convolution of the function
x 7→ min{1,max{−1, x}} and a mollifier with support [−1/n, 1/n]. Then the
functions ηn ◦ ϕn are still in FC∞b and converge to ϕ almost surely. Now we
are able to apply the dominated convergence theorem and obtain

∫
X |ψ|dγ =

limn→∞
∫
X ψ · (η

n ◦ ϕn)dγ = 0 which shows that ψ equals 0 almost surly.
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