
Solutions to the exercises in Lecture 8
by the Wuppertal team

Exercise 8.1

Prove the following equalities:

(i) H ′k(x) =
√
kHk−1(x) = xHk(x)−

√
k + 1Hk+1(x)

(ii) H ′′k (x)− xH ′k(x) = −kHk(x),

where Hk = (−1)k√
k!

ex2/2 dk

dxk e−x2/2 are the Hermite polynomials introduced in Definition 8.1.1.

Solution:

We will show the validity of the identities in (i) by directly computing derivatives. In order to do
so, we note that, by using the Leibniz formula (uv)(n) =

∑n
k=0

(n
k

)
u(k)v(n−k), we obtain:

dk

dxk
(
x · e−x2/2

)
= x · dk

dxk e−x2/2 + k · dk−1

dxk−1 e−x2/2.

We start by showing that the second equality in (i) holds. By differentiating and by using the
previously mentioned consequence of the Leibniz formula we see that

xHk(x)−
√
k + 1Hk+1(x) = (−1)k√

k!
ex2/2 · x · dk

dxk e−x2/2 −
√
k + 1 (−1)k+1√

(k + 1)!
ex2/2 dk+1

dxk+1 e−x2/2

= (−1)k√
k!

ex2/2
(
x · dk

dxk e−x2/2 − dk

dxk
(
x · e−x2/2

))
(∗)

= (−1)k√
k!

ex2/2
(
x · dk

dxk e−x2/2 −
(
x · dk

dxk e−x2/2 + k · dk−1

dxk−1 e−x2/2
))

=
√
k

(−1)k−1√
(k − 1)!

ex2/2 dk−1

dxk−1 e−x2/2 =
√
kHk−1(x).

To show the first equality in (i) we simply have to differentiate the Hermite polynomial Hk. We
thus obtain

H ′k(x) = (−1)k√
k!

(
x · ex2/2 dk

dxk e−x2/2 + ex2/2 dk+1

dxk+1 e−x2/2
)
.

Differentiating the second summand here, puts us in the situation (∗) above.

Next we turn to the proof of (ii). Using the already proven part (i) we conclude for k ≥ 2 that

H ′′k (x) =
√
k
√
k − 1Hk−2(x) =

√
k
(
x ·Hk−1(x)−

√
kHk(x)

)
(1)

as well as

xH ′k(x) = x
√
kHk−1(x). (2)

By (1) and (2) equation (ii) becomes obvious. The identity (ii) for k = 0, 1 is trivial.

Exercise 8.2

After consultation with the organisers this exercis e has been discarded as the exercise was not well
written.



Exercise 8.3

Verify that the family Fγ introduced in Definition 8.2.1 is a σ-algebra. Prove also that the measure
γ, extended to Fγ by γ(E) = γ(B1) = γ(B2) for E,B1, B2 as in Definition 8.2.1, is still a measure.

Solution:

First of all we prove, that the set Fγ introduced in Definition 8.2.1 is a σ-algebra. To do this we
need to make sure, that Fγ has the following three properties:

1. ∅ ∈ Fγ .

2. For every set A ∈ Fγ the complement Ac is an element of the completion Fγ .

3. For every sequence of sets (An)n∈N ⊂ Fγ the union A :=
⋃
n∈N

An is also an element of Fγ .

Due to the fact that the σ-algebra F is a subset of Fγ , the first property holds. We now continue
with the proof of the second property. For a set A ∈ Fγ we know the existence of the sets
B1, B2 ∈ F , such that B1 ⊂ A ⊂ B2 and γ(B2 \ B1) = 0. As B1, B2 ∈ F , the complements
Bc

1, B
c
2 ∈ F . Furthermore, we obtain Bc

2 ⊂ Ac ⊂ Bc
1 and γ(Bc

1 \Bc
2) = 0, because

γ(Bc
1 \Bc

2) = γ(Bc
1 \ (X \B2)) = γ(Bc

1 ∩B2) = γ((X \B1) ∩B2) = γ(B2 \B1) = 0.

We now prove the third property. Let (An)n∈N ⊂ Fγ be a sequence of sets and A be the union of
these sets A :=

⋃
n∈N

An. We have to show that A ∈ Fγ holds. By assumption, we have that

∀n ∈ N ∃Bn, Cn ∈ F such that Bn ⊂ An ⊂ Cn and γ(Cn \Bn) = 0

and therefore ⋃
n∈N

Bn ⊂
⋃
n∈N

An ⊂
⋃
n∈N

Cn and γ(
⋃
n∈N

Cn \
⋃
n∈N

Bn) = 0

yields since ⋃
n∈N

Cn \
⋃
n∈N

Bn
⋃
n∈N

(Cn \Bn).

Thus, we get A ∈ Fγ and hence Fγ is a σ-algebra.
To prove that the extension of the measure γ on Fγ is a measure, we first will prove that the
measure γ ist well-defined on Fγ . Let therefore E ∈ Fγ be an arbitrary set. As E is an element
of the completion, we have some sets B1, B2 ∈ F such that B1 ⊂ E ⊂ B2 and γ(B2 \ B1) = 0.
Let us assume that there exist additionally two sets C1, C2 ∈ F such that C1 ⊂ E ⊂ C2 and
γ(C2 \ C1) = 0. To prove that γ is well-defined, we have to check if the equations

γ(B2) = γ(B1) = γ(C1) = γ(C2) =: γ(E)

hold. Using the additivity of the measure, it is easy to see that γ(B1) = γ(B2) and γ(C1) = γ(C2).
Indeed:

γ(C2) = γ((C2 \ C1) ∪ C1) = γ(C2 \ C1) + γ(C1) = γ(C1) (3)

It remains to show that γ(B1) = γ(C1). We will give a proof for this assertion by contradiction.
Therefore, we can assume without loss of generality that

γ(B1) > γ(C1). (4)

From this equality, we conclude the following inequality:

γ(B1)
(4)
> γ(C1) (3)= γ(C2) = γ((C2 \B1) ∪B1) = γ(C2 \B1) + γ(B1).

It follows then that 0 > γ(C2 \ B1), which is a contradiction to the non-negativity of the measure
γ as the sets are all in F .



In conclusion, we get γ(B2) = γ(B1) = γ(C1) = γ(C2) =: γ(E). Therefore, γ is well-defined on Fγ

and our next goal is to prove that the so extended γ is still a measure. (By the way it is trivial
that the new γ is indeed an extension of the γ on F .) This means we need to check whether the
following properties

(i) γ is a non-negative function,

(ii) γ(∅) = 0,

(iii) γ is σ-additivity,

hold.
With the equalities we have proved above it is obvious that these stated properties hold. Therefore,
γ is indeed a measure on Fγ . (It is also trivial to see that Fγ contains all (subsets of) γ-null sets.
Whence comes the terminology “completion”.)

Exercise 8.4

Prove that if A is a measurable set such that A+ rhj = A up to γ-negligible sets with r ∈ Q and
{hj : j ∈ N} an orthonormal basis of H, then γ(A) ∈ {0, 1}.

Solution:

By Proposition 8.2.3 it is sufficient to show that γ(A + h) = γ(A) holds for all h ∈ H. By the
Cameron–Martin theorem (Theorem 3.1.5) for all h ∈ H the measure A 7→ γ(A+ h) is equivalent
to γ with the density given by ρh(x) = exp(ĥ(x) − 1

2 |h|
2
H), where ĥ = R−1

γ h and Rγ : X∗γ → H is
an isometric isomorphism. As a consequence, by an application of Lebesgue’s theorem, the map
h 7→ γ(A+ h) is continuous: If hn → h in H, then

γ(A+ hn) =
∫
X

exp(ĥn(x)− 1
2 |hn|

2
H)dγ → γ(A+ h),

since the integrand converges pointwise, and an integrable majorant is yielded by Fernique’s theorem
(Theorem 2.3.1). For all h ∈ H we have the representation h =

∑
j∈N〈h, hj〉hj . For each j ∈ N

there is a sequence (qj,k)k∈N ⊂ Q such that 〈h, hj〉 = limk→∞ qj,k. Hence we obtain for h the
representation

h =
∑
j∈N

lim
k→∞

qj,khj = lim
N→∞

N∑
j=0

(
lim
k→∞

qj,khj
)

= lim
N→∞

lim
k→∞

N∑
j=0

qj,khj .

From the assumption it follows by induction on N that A +
∑N
j=0 qj,khj = A up to γ-negligible

sets. Whence we obtain

γ(A+ h) = lim
N→∞

lim
k→∞

γ
(
A+

N∑
j=0

qj,khj
)

= lim
N→∞

lim
k→∞

γ(A) = γ(A).

Exercise 8.5

Prove that the functionals f defined in Example 8.3.2 enjoy the stated properties.

General comments

The goal of the exercise is to show that

f(x) =
∞∑
n=1

cnxn, x ∈ X, (5)

defines a measurable linear functional on (X, γ) for the examples from Chapter 4, i.e.



(i) (X, γ) = (R∞,
⊗

n∈N γ1), (cn)n ∈ `2 and with x = (xn)n∈N for x ∈ R∞.

(ii) (X, γ) = (X,N (0, Q)), where X is a Hilbert space and Q a self-adjoint, positive trace-class
operator with eigenvalues {λk : k ∈ N}. Let {ek : k ∈ N} be an orthonormal basis of
eigenvectors of Q such that Qek = λkek for all k ∈ N. Here, xn denotes 〈x, en〉X and the
sequence (cn)n is assumed to satisfy that

∑∞
n=1 c

2
nλn <∞.

To show that f is a measurable linear functional, for both (i) and (ii), it remains to show that f is
well-defined on a measurable subspace of full measure. Indeed, let us define

V = {x ∈ X :
∞∑
n=1

cnxn converges}.

It is obvious that V is a subspace and that f |V is well-defined and linear. For n ∈ N define

Xn : X → R, x 7→ xn,

which is measurable for both of the above cases (i) and (ii). Hence, our goal is to show that

SN =
N∑
n=1

cnXn converges pointwise γ-a.e. as N →∞, (6)

which would imply that

• V is measurable (since the measure is complete on Bσ),

• f = limN→∞ SN is measurable,

• and that γ(V ) = 1.

However, the space V is even Borel measurable, since

V = {x ∈ X : SN (x) converges}
= {x ∈ X : ∀n ∈ N ∃N0 ∈ N ∀(N,M ≥ N0) : |SN (x)− SM (x)| < 1

n}

=
⋂
n∈N

⋃
N0∈N

⋂
N≥N0

⋂
M≥N0

{x ∈ X : |SN (x)− SM (x)| < 1
n},

where the set {x ∈ X : |SN (x)− SM (x)| < 1
n} is measurable as the Sn’s are measurable functions.

It remains to show (6). To do so, we observe that {Yk : k ∈ N}, with Yk = ckXk, is a sequence
of independent random variables (this simply follows from the form of Xk). Thus, by a results by
P. Lévy, Theorem 1 below,

SN converges pointwise γ-a.e. ⇐⇒ SN converges in measure 1.

Hence, it remains to show that SN converges in measure, which clearly follows if we can show
convergence in L2(X, γ).

1Note that for general sequences of measurable functions, only the implication “pointwise convergence a.e.” =⇒
“convergence in measure” holds.



Part (i)

Let M,N ∈ N and M < N and x ∈ R∞. Then, by a very similar computation as in Chapter 4
(p. 39), we deduce

‖SN − SM‖L2(X,γ) =
∫

R∞

∣∣∣∣∣∣
N∑

k=M+1
ckXk(x)

∣∣∣∣∣∣
2

γ(dx)

=
∫

R∞

N∑
k=M+1

c2
k(Xk(x))2 γ(dx) +

∫
R∞

∑
k 6=j

ckcjXk(x)Xj(x) γ(dx)

(a)=
N∑

k=M+1
c2
k

∫
R

y2 γ1(dy) +
∑
k 6=j

ckcj

∫
R

yγ1(dy)
∫
R

zγ1(dz)

(b)=
N∑

k=M+1
c2
k,

where we used (a) that γ =
⊗

n∈N γ1 and the “push-forward” and (b) that γ1 = N (0, 1). Since
(cn)n ∈ `2, this shows that (SN )N is Cauchy in L2(X, γ) and thus converges.
By the considerations above, this implies that SN converges γ-a.e. and consequently that f defines
a measurable linear functional.

If (cn)n ∈ R∞c , then f : R∞ → R is continuous (moreover, X∗ = R∞c ), see Chapter 4). Thus,
we assume that (cn)n ∈ `2 \ R∞c . Define the sequence (x(m))m∈N ⊂ R∞ by

x(m)
n =

{
1
cn
δmn if cn 6= 0
0 if cn = 0

}
n,m ∈ N.

It is easy to see that x(m) ∈ R∞c and that

f(x(m)) =
{

1 if cm 6= 0
0 if cm = 0

}
m ∈ N.

for all m such that cm 6= 0. Since (cn)n ∈ `2 \ R∞c , we can find a subsequence (mk)k such that
f(x(mk)) = 1 for all k ∈ N. However, since the topology on R∞ equals the topology of pointwise
convergence2, we see that x(m) converges to 0 = (0, 0, ..) in R∞. Therefore, f is not even continuous
on R∞c if (cn)n ∈ `2 \ R∞c .

Part (ii)

As in (i), we show that (SN )N converges in L2(X, γ). By a similar calculation as above and in the
proof of Thm. 4.2.6 (p. 45), (remember, Xn(x) = 〈x, en〉)

‖SN − SM‖L2(X,γ) =
∫
X

∣∣∣∣∣∣
N∑

k=M+1
ckXk(x)

∣∣∣∣∣∣
2

γ(dx)

=
N∑

k=M+1
c2
k

∫
R

x2
k N (0, λk)(dxk) =

N∑
k=M+1

c2
kλk,

where we used the decomposition N (0, Q) =
⊗

k∈NN (0, λk) with respect to the ONB {ek : k ∈ N}.
Since by assumption

∑
n∈N c

2
nλn < ∞, we conclude that (SN )N is an L2-Cauchy sequence, hence

L2-convergent. By the arguments in the beginning, this implies that (SN )N is even pointwise
convergent γ-a.e. and consequently that f is a measurable linear functional.

2it is not hard to show that a sequence (xm)m ⊂ R∞ converges in the metric d introduced in Chapter 4 if and
only if (x(m)

n )m converges in R for every n ∈ N.



Obviously, if (cn)n ∈ `2, then
∑
n∈N cnxn ≤ ‖cn‖`2 ‖x‖H by Cauchy-Schwarz and the isometry

x 7→ (xn)n from X to `2. Hence, in this case f is continuous from X to R.
If (cn)n /∈ `2, choose

x(m)
n =

{
cn, n ≤ m
0, n > m

}
, n,m ∈ N.

Then, for every m ∈ N, (x(m)
n )n∈N ∈ R∞c and ‖(x(m)

n )n‖2`2 =
∑m
n=1 c

2
n. On the other hand,

f((x(m)
n )n) =

∑m
n=1 c

2
n. Thus,

f(xm)
‖xm‖`2

=
(

m∑
n=1

c2
n

) 1
2

→∞ as m→∞.

Hence, f is not continuous.

A theorem by P. Lévy

Since the notion of independent random variables was not mentioned in the lectures, we provide
the reader with the definition.

Definition. A finite family Y of random variables from Ω to R on a probability space (Ω,F , P ) is
called (mutually) independent if for all n ∈ N and pairwise-distinct Y1, ..,Yn ∈ Y it holds that

∀y1, .., yn ∈ R :
n∏
k=1

P ({Yk ≤ yk}) = P (
n⋂
k=1
{Yk ≤ yk}).

Definition. A sequence (Yn)n of random variables Yn : Ω→ R on a probability space (Ω,F , P ) is
called independent, if

∀n ∈ N : {Yk : 1 ≤ k ≤ n} are independent random variables.

Theorem 1. (P. Lévy) Let (Yn)n be a sequence of independent random variables on a probability
space (Ω,F , P ). Let SN =

∑N
k=1 Yk . Then, the following assertions are equivalent.

1. (SN ) converges in probability (in measure).

2. (SN ) converges in pointwise almost-surely (pointwise P-a.e.).

We refer to [2] for a proof (even for Banach space-valued random variables) and to [1] for the
classical case3.
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[2] K. Itô and M. Nisio. On the convergence of sums of independent Banach space valued random
variables, Osaka J. Math. 5:35–48, 1968.

3We are thankful to Jürgen Voigt for pointing out the latter reference.


