Solutions to the exercises of Lecture 7, ISem 2015/2016

Genova Team, in collaboration with SNS-Pisa Team

Exercise (7.1). Let X be a separable Banach space endowed with a centred Gaussian measure γ . Prove that for any choice $h_1, \ldots, h_d \in H$, the map $P: X \to \mathbb{R}^d$, $P(x) \coloneqq (\hat{h}_1(x), \ldots, \hat{h}_d(x))$ is a Gaussian random variable with law $P_{\sharp}(\gamma) = \mathcal{N}(0, Q)$, where $Q_{k,j} = [h_k, h_j]_H$.

Proof. First of all, notice that

$$\widehat{P_{\sharp}\gamma}(\xi) = \int_{\mathbb{R}^d} e^{ix\xi} (P_{\sharp}\gamma)(dx) = \int_X e^{iP(x)\cdot\xi}\gamma(dx) = \widehat{\gamma}(g),$$

where we put $g = P \cdot \xi = \sum_{k=1}^{d} \hat{h}_k \xi_k \in X_{\gamma}^*$. Next, observe that

$$\begin{split} \|g\|_{L^{2}(X,\gamma)}^{2} &= \left\langle \sum_{k=1}^{d} \widehat{h}_{k} \xi_{k}, \sum_{j=1}^{d} \widehat{h}_{j} \xi_{j} \right\rangle_{L^{2}(X,\gamma)} \\ &= \sum_{j,k=1}^{d} \xi_{k} \xi_{j} \left\langle \widehat{h}_{k}, \widehat{h}_{j} \right\rangle_{L^{2}(X,\gamma)} = \sum_{j,k=1}^{d} \xi_{k} \xi_{j} \left[h_{k}, h_{j} \right]_{H}, \end{split}$$

since the map $h \mapsto \hat{h}$ is an isometry of H into $L^2(X, \gamma)$ by Proposition 3.1.2. Now, by Proposition 2.3.5,

$$\widehat{\gamma}(g) = e^{-\frac{1}{2} \|g\|_{L^2(X,\gamma)}^2} = e^{-\frac{1}{2} \sum_{j,k=1}^d \xi_k \xi_j [h_k, h_j]_H} = e^{-\frac{1}{2} \langle Q\xi, \xi \rangle},$$

where $Q_{k,j} = [h_k, h_j]_H$.

Exercise (7.2, Part 1). Let $\varphi \colon \mathbb{R}^d \to \mathbb{R}$ be a convex function. Then there exist a sequence (a_n) in \mathbb{R}^d and a sequence (b_n) in \mathbb{R} such that

$$\varphi(x) = \sup_{n \in \mathbb{N}} (a_n \cdot x + b_n).$$

Proof. We will need the following two well-known results (see *Rockafellar*, *Convex Analysis*, Theorems 10.1 and 23.4).

1. If $\varphi : \mathbb{R}^d \to \mathbb{R}$ is a convex function, then φ is continuous.

2. If $\varphi : \mathbb{R}^d \to \mathbb{R}$ is a convex function, then for every $y \in \mathbb{R}^d$ there exist $a_y \in \mathbb{R}^d$ and $b_y \in \mathbb{R}$ such that

$$\varphi(x) \ge a_y \cdot x + b_y$$

for every $x \in \mathbb{R}^d$, with equality when x = y. In other words, the subgradient of φ is non-empty at every point.

For every $y \in \mathbb{R}^d$ take $a_y \in \mathbb{R}^d$ and $b_y \in \mathbb{R}$ such that

$$\varphi(x) \ge a_y \cdot x + b_y$$

for every $x \in \mathbb{R}^d$, with equality when x = y. Let then (x_n) be any enumeration of \mathbb{Q}^d , and call $a_n \coloneqq a_{x_n}, b_n \coloneqq b_{x_n}$. Therefore,

$$\varphi(x) \ge a_n \cdot x + b_n$$

for every $x \in \mathbb{R}^d$ and every $n \in \mathbb{N}$. Hence,

$$\varphi(x) \ge \sup_{n} (a_n \cdot x + b_n) \eqqcolon \psi(x)$$

for every $x \in \mathbb{R}^d$, with equality on \mathbb{Q}^d by construction. Now, both φ and ψ are convex, hence continuous, functions and they agree on a dense subset of \mathbb{R}^d ; therefore they coincide on the whole of \mathbb{R}^d .

Exercise (7.2, Part 2 - Jensen). Let $\varphi \colon \mathbb{R}^d \to \mathbb{R}$ be a convex function, (Ω, X, \mathbb{P}) a probability space, \mathscr{G} a sub- σ -algebra of \mathscr{F} , and $X \in L^1(\Omega, \mathscr{F}, \mathbb{P}; \mathbb{R}^d)$; assume that $\varphi \circ X \in L^1(\Omega, \mathscr{F}, \mathbb{P})$. Then

$$\varphi \circ \mathbb{E}(X|\mathscr{G}) \le \mathbb{E}(\varphi \circ X|\mathscr{G}).$$

Proof. Take a sequence (a_n) in \mathbb{R}^d and a sequence (b_n) in \mathbb{R} such that

$$\varphi(x) = \sup_{n \in \mathbb{N}} (a_n \cdot x + b_n)$$

for every $x \in \mathbb{R}^d$. By monotonicity and linearity, one has $\mathbb{E}(\varphi \circ X | \mathscr{G}) \geq a_n \cdot \mathbb{E}(X | \mathscr{G}) + b_n$, so that, by taking the least upper bound,

$$\varphi \circ \mathbb{E}(X|\mathscr{G}) = \sup_{n \in \mathbb{N}} (a_n \cdot \mathbb{E}(X|\mathscr{G}) + b_n) \le \mathbb{E}(\varphi \circ X|\mathscr{G}).$$

Exercise (7.3). Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space, \mathscr{G} a sub- σ -algebra of \mathscr{F} and $X, Y \in L^1(\Omega, \mathscr{F}, \mathbb{P})$. Then the following hold:

- 1. if $\mathscr{G} = \{\emptyset, \Omega\}$, then $\mathbb{E}(X|\mathscr{G}) = \mathbb{E}[X]$;
- 2. $\mathbb{E}[\mathbb{E}(X|\mathscr{G})] = \mathbb{E}[X];$
- 3. if $X \leq Y$, then $\mathbb{E}(X|\mathscr{G}) \leq \mathbb{E}(Y|\mathscr{G})$;

- 4. for all $\alpha, \beta \in \mathbb{R}$, $\mathbb{E}(\alpha X + \beta Y | \mathscr{G}) = \alpha \mathbb{E}(X | \mathscr{G}) + \beta \mathbb{E}(Y | \mathscr{G});$
- 5. if \mathscr{H} is a sub- σ -algebra of \mathscr{G} , then $\mathbb{E}(\mathbb{E}(X|\mathscr{G})|\mathscr{H}) = \mathbb{E}(X|\mathscr{H});$
- 6. if X is \mathscr{G} -measurable, then $\mathbb{E}(X|\mathscr{G}) = X$;
- 7. if $XY \in L^1(\Omega, \mathscr{F}, \mathbb{P})$ and X is \mathscr{G} -measurable, then $\mathbb{E}(XY|\mathscr{G}) = X\mathbb{E}(Y|\mathscr{G})$;
- 8. if X is independent of \mathscr{G} , then $\mathbb{E}(X|\mathscr{G}) = \mathbb{E}[X]$.
- *Proof.* 1. We just observe that $\mathbb{E}[X]$ belongs to $L^1(\Omega, \mathscr{G}, \mathbb{P})$ and trivially satisfies the equality $\mathbb{E}[\mathbb{E}[X]\chi_B] = \mathbb{E}[X\chi_B]$ for every $B \in \{\emptyset, \Omega\}$.
 - 2. Set $Y = \mathbb{E}(X|\mathscr{G})$. Then, the definition of conditional expectation implies that $\mathbb{E}[X\chi_B] = \mathbb{E}[Y\chi_B]$ for every \mathscr{G} -measurable set B. Take $B = \Omega$ to get the result.
 - 3. Choose two representatives f, g of $\mathbb{E}(X|\mathscr{G}), \mathbb{E}(Y|\mathscr{G})$ respectively, and let, for every $n \in \mathbb{N}^*, E_n := \{f \ge g + \frac{1}{n}\}$; then $E_n \in \mathscr{G}$. Moreover,

$$\mathbb{E}(g\chi_{E_n}) = \mathbb{E}(Y\chi_{E_n}) \ge \mathbb{E}(X\chi_{E_n}) = \mathbb{E}(f\chi_{E_n}) \ge \mathbb{E}(g\chi_{E_n}) + \frac{1}{n}\mathbb{P}(E_n),$$

so that $\mathbb{P}(E_n) = 0$. Then

$$\{f > g\} = \bigcup_{n \in \mathbb{N}^*} E_n$$

has \mathbb{P} -measure zero. Therefore $f \leq g \mathbb{P}$ -a.s., i.e. $\mathbb{E}(X|\mathscr{G}) \leq \mathbb{E}(Y|\mathscr{G})$.

4. First notice that $\alpha \mathbb{E}(X|\mathscr{G}) + \beta \mathbb{E}(Y|\mathscr{G})$ is \mathscr{G} -measurable. Moreover, for every $B \in \mathscr{G}$

$$\mathbb{E}[(\alpha X + \beta Y)\chi_B] = \alpha \mathbb{E}[X\chi_B] + \beta \mathbb{E}[Y\chi_B]$$

= $\alpha \mathbb{E}[\mathbb{E}(X|\mathscr{G})\chi_B] + \beta \mathbb{E}[\mathbb{E}(Y|\mathscr{G})\chi_B]$
= $\mathbb{E}[(\alpha \mathbb{E}(X|\mathscr{G}) + \beta \mathbb{E}(Y|\mathscr{G}))\chi_B],$

whence the result.

- 5. First notice that $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H})$ in \mathcal{H} -measurable. Moreover, if $B \in \mathcal{H}$ then $B \in \mathcal{G}$, so that $\mathbb{E}[X\chi_B] = \mathbb{E}[\mathbb{E}(X|\mathcal{G})\chi_B] = \mathbb{E}[\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H})\chi_B]$, whence the result.
- 6. X itself satisfies the properties of the definition of $\mathbb{E}(X|\mathscr{G})$.

7. First notice that $X\mathbb{E}(Y|\mathscr{G})$ is \mathscr{G} -measurable. Observe also that by Remark 7.2.2 the statement holds for every \mathscr{G} -measurable simple function. Let (X_n) be a sequence of \mathscr{G} -measurable simple functions which converges \mathbb{P} -almost everywhere to X such that $|X_n| \leq |X|$ \mathbb{P} -almost everywhere. By the dominated convergence theorem, for every $B \in \mathscr{G}$

$$\mathbb{E}[XY\chi_B] = \lim_{n \to \infty} \mathbb{E}[X_n Y\chi_B] = \lim_{n \to \infty} \mathbb{E}[X_n \mathbb{E}(Y|\mathscr{G})\chi_B] = \mathbb{E}[X\mathbb{E}(Y|\mathscr{G})\chi_B]$$

whence the result.

8. Assume first that X is the characteristic function of some $E \in \mathscr{F}$. Then, for every $B \in \mathscr{G}$,

$$\mathbb{E}[X\chi_B] = \mathbb{E}[\chi_E\chi_B] = \mathbb{P}(E \cap B)$$
$$= \mathbb{P}(E)\mathbb{P}(B) = \mathbb{E}[\mathbb{E}[\chi_E]\chi_B] = \mathbb{E}[\mathbb{E}[X]\chi_B].$$

Thus $\mathbb{E}(X|\mathscr{G}) = \mathbb{E}[X]$. By linearity the statement holds for any \mathscr{F} measurable simple function which is a finite linear combination of characteristic functions of sets independent of \mathscr{G} . Now, let X be independent of \mathscr{G} , and let (X_n) be a sequence of $\mathscr{E}(\Omega, X)$ -measurable simple functions which converges pointwise a.e. to X such that $|X_n| \leq |X|$ \mathbb{P} -a.e. for every $n \in \mathbb{N}$. Then, for every $B \in \mathscr{G}$, the dominated convergence theorem implies that

$$\mathbb{E}[X\chi_B] = \lim_{n \to \infty} \mathbb{E}[X_n\chi_B] = \lim_{n \to \infty} \mathbb{E}[X_n]\mathbb{E}[\chi_B] = \mathbb{E}[\mathbb{E}[X]\chi_B]. \quad \Box$$

Exercise (7.4). Prove that, if $\Omega = (0,1)^2$, $\mathscr{F} = \mathscr{B}((0,1)^2)$, $\mathbb{P} = \lambda_2$ is the Lebesgue measure on Ω , $X \in L^1(\Omega, \mathscr{F}, \mathbb{P})$, and $\mathscr{G} = \mathscr{B}((0,1)) \times (0,1)$, then

$$\mathbb{E}(X|\mathscr{G})(x,y) = \int_0^1 X(x,t) d\lambda_1(t) \quad \text{for a.e. } (x,y) \in \Omega.$$

Proof. Since $\mathscr{B}((0,1)^2) = \mathscr{B}(0,1) \otimes \mathscr{B}(0,1)$, by Fubini's theorem the function

$$Y = \int_0^1 X(\cdot, t) d\lambda_1(t) \otimes 1$$

belongs to $L^1(\Omega, \mathscr{G}, \mathbb{P})$.

Let $A \in \mathscr{G}$; then A has the form $A = A_1 \times (0, 1)$ for some $A_1 \in \mathscr{B}(0, 1)$, so that $\chi_A(x, y) = \chi_{A_1}(x)$ for every $y \in (0, 1)$. Observe also that $\lambda_2 = \lambda_1 \otimes \lambda_1$.

Therefore,

$$\mathbb{E}(Y\chi_{A}) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} X(x,t) d\lambda_{1}(t) \chi_{A}(x,y) d\lambda_{1}(x) d\lambda_{1}(y)$$

$$= \int_{0}^{1} \int_{0}^{1} X(x,t) d\lambda_{1}(t) \chi_{A_{1}}(x) d\lambda_{1}(x)$$

$$= \int_{0}^{1} \int_{0}^{1} X(x,y) \chi_{A_{1}}(x) d\lambda_{1}(x) d\lambda_{1}(y)$$

$$= \int_{0}^{1} \int_{0}^{1} X(x,y) \chi_{A}(x,y) d\lambda_{1}(x) d\lambda_{1}(y) = \mathbb{E}(X\chi_{A}).$$

The proof is then complete.

Exercise (7.5). Prove that, for every fixed sequence $(f_n) \subset X^*$, the family of sets

$$\mathscr{A} = \{ E = \{ x \in X \colon (f_n(x)) \in B \} \colon B \in \mathscr{B}(\mathbb{R}^\infty) \}$$

is a σ -algebra.

Proof. First of all
$$\emptyset \in \mathscr{A}$$
, since $\emptyset = \{x \in X : (f_n(x)) \in \emptyset\}$.
Let $E = \{x \in X : (f_n(x)) \in B\}$ for some $B \in \mathscr{B}(\mathbb{R}^\infty)$. Then
 $E^c = \{x \in X : (f_n(x)) \notin B\} = \{x \in X : (f_n(x)) \in B^c\} \in \mathscr{A}$.
If $\{E_j\} \subset \mathscr{A}$ and $E_j = \{x \in X : (f_n(x)) \in B_j\}$, then
 $\bigcup_j E_j = \{x \in X : \exists j : (f_n(x)) \in B_j\} = \{x \in X : (f_n(x)) \in \cup_j B_j\} \in \mathscr{A}$.
This completes the proof.

This completes the proof.

Exercise (7.6). Prove that if X is an infinite dimensional Banach space and $\varphi \in C^{\infty}(X)$ has compact support, then $\varphi \equiv 0$.

Proof. Assume that there is some $x \in X$ such that $\varphi(x) \neq 0$. By continuity, there exists a closed ball \overline{B} such that $\varphi(x) \neq 0$ for every $x \in \overline{B}$. Thus \overline{B} is contained in the support of φ . Since the latter is compact, and \overline{B} is closed, \overline{B} is compact. Therefore X is finite dimensional.

Remark. In Exercise 7.6 differentiability plays no role, and the same result holds for $\varphi \in C_c(X)$.