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Exercise (7.1). Let X be a separable Banach space endowed with a centred
Gaussian measure γ. Prove that for any choice h1, . . . , hd ∈ H, the map
P : X → Rd, P (x) := (ĥ1(x), . . . ĥd(x)) is a Gaussian random variable with
law P](γ) = N (0, Q), where Qk,j = [hk, hj ]H .

Proof. First of all, notice that

P̂]γ(ξ) =

∫
Rd
eixξ(P]γ)(dx) =

∫
X
eiP (x)·ξγ(dx) = γ̂(g),

where we put g = P · ξ =
∑d

k=1 ĥkξk ∈ X∗γ . Next, observe that

‖g‖2L2(X,γ) =

〈
d∑

k=1

ĥkξk,
d∑
j=1

ĥjξj

〉
L2(X,γ)

=

d∑
j,k=1

ξkξj

〈
ĥk, ĥj

〉
L2(X,γ)

=

d∑
j,k=1

ξkξj [hk, hj ]H ,

since the map h 7→ ĥ is an isometry of H into L2(X, γ) by Proposition 3.1.2.
Now, by Proposition 2.3.5,

γ̂(g) = e
− 1

2
‖g‖2

L2(X,γ) = e−
1
2

∑d
j,k=1 ξkξj [hk,hj ]H = e−

1
2
〈Qξ,ξ〉,

where Qk,j = [hk, hj ]H .

Exercise (7.2, Part 1). Let ϕ : Rd → R be a convex function. Then there
exist a sequence (an) in Rd and a sequence (bn) in R such that

ϕ(x) = sup
n∈N

(an · x+ bn).

Proof. We will need the following two well-known results (see Rockafellar,
Convex Analysis, Theorems 10.1 and 23.4).

1. If ϕ : Rd → R is a convex function, then ϕ is continuous.
2. If ϕ : Rd → R is a convex function, then for every y ∈ Rd there exist

ay ∈ Rd and by ∈ R such that

ϕ(x) ≥ ay · x+ by
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for every x ∈ Rd, with equality when x = y. In other words, the subgradient
of ϕ is non-empty at every point.
For every y ∈ Rd take ay ∈ Rd and by ∈ R such that

ϕ(x) ≥ ay · x+ by

for every x ∈ Rd, with equality when x = y. Let then (xn) be any enumera-
tion of Qd, and call an := axn , bn := bxn . Therefore,

ϕ(x) ≥ an · x+ bn

for every x ∈ Rd and every n ∈ N. Hence,

ϕ(x) ≥ sup
n

(an · x+ bn) =: ψ(x)

for every x ∈ Rd, with equality on Qd by construction. Now, both ϕ and ψ
are convex, hence continuous, functions and they agree on a dense subset of
Rd; therefore they coincide on the whole of Rd.

Exercise (7.2, Part 2 - Jensen). Let ϕ : Rd → R be a convex function,
(Ω, X,P) a probability space, G a sub-σ-algebra of F , and X ∈ L1(Ω,F ,P;Rd);
assume that ϕ ◦X ∈ L1(Ω,F ,P). Then

ϕ ◦ E(X|G ) ≤ E(ϕ ◦X|G ).

Proof. Take a sequence (an) in Rd and a sequence (bn) in R such that

ϕ(x) = sup
n∈N

(an · x+ bn)

for every x ∈ Rd. By monotonicity and linearity, one has E(ϕ ◦ X|G ) ≥
an · E(X|G ) + bn, so that, by taking the least upper bound,

ϕ ◦ E(X|G ) = sup
n∈N

(an · E(X|G ) + bn) ≤ E(ϕ ◦X|G ).

Exercise (7.3). Let (Ω,F ,P) be a probability space, G a sub-σ-algebra of
F and X,Y ∈ L1(Ω,F ,P). Then the following hold:

1. if G = {∅,Ω}, then E(X|G ) = E[X];

2. E[E(X|G )] = E[X];

3. if X ≤ Y , then E(X|G ) ≤ E(Y |G );
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4. for all α, β ∈ R, E(αX + βY |G ) = αE(X|G ) + βE(Y |G );

5. if H is a sub-σ-algebra of G , then E(E(X|G )|H ) = E(X|H );

6. if X is G -measurable, then E(X|G ) = X;

7. if XY ∈ L1(Ω,F ,P) and X is G -measurable, then E(XY |G ) = XE(Y |G );

8. if X is independent of G , then E(X|G ) = E[X].

Proof. 1. We just observe that E[X] belongs to L1(Ω,G ,P) and trivially
satisfies the equality E[E[X]χB] = E[XχB] for every B ∈ {∅,Ω}.

2. Set Y = E(X|G ). Then, the definition of conditional expectation im-
plies that E[XχB] = E[Y χB] for every G -measurable set B. Take
B = Ω to get the result.

3. Choose two representatives f, g of E(X|G ),E(Y |G ) respectively, and
let, for every n ∈ N∗, En := {f ≥ g + 1

n}; then En ∈ G . Moreover,

E(gχEn) = E(Y χEn) ≥ E(XχEn) = E(fχEn) ≥ E(gχEn) +
1

n
P(En),

so that P(En) = 0. Then

{f > g} =
⋃
n∈N∗

En

has P-measure zero. Therefore f ≤ g P-a.s., i.e. E(X|G ) ≤ E(Y |G ).

4. First notice that αE(X|G ) + βE(Y |G ) is G -measurable. Moreover, for
every B ∈ G

E[(αX + βY )χB] = αE[XχB] + βE[Y χB]

= αE[E(X|G )χB] + βE[E(Y |G )χB]

= E[(αE(X|G ) + βE(Y |G ))χB],

whence the result.

5. First notice that E(E(X|G )|H ) in H -measurable. Moreover, if B ∈
H thenB ∈ G , so that E[XχB] = E[E(X|G )χB] = E[E(E(X|G )|H )χB],
whence the result.

6. X itself satisfies the properties of the definition of E(X|G ).
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7. First notice that XE(Y |G ) is G -measurable. Observe also that by
Remark 7.2.2 the statement holds for every G -measurable simple func-
tion. Let (Xn) be a sequence of G -measurable simple functions which
converges P-almost everywhere to X such that |Xn| ≤ |X| P-almost
everywhere. By the dominated convergence theorem, for every B ∈ G

E[XY χB] = lim
n→∞

E[XnY χB] = lim
n→∞

E[XnE(Y |G )χB] = E[XE(Y |G )χB],

whence the result.

8. Assume first that X is the characteristic function of some E ∈ F .
Then, for every B ∈ G ,

E[XχB] = E[χEχB] = P(E ∩B)

= P(E)P(B) = E[E[χE ]χB] = E[E[X]χB].

Thus E(X|G ) = E[X]. By linearity the statement holds for any F -
measurable simple function which is a finite linear combination of char-
acteristic functions of sets independent of G . Now, let X be indepen-
dent of G , and let (Xn) be a sequence of E (Ω, X)-measurable simple
functions which converges pointwise a.e. to X such that |Xn| ≤ |X|
P-a.e. for every n ∈ N. Then, for every B ∈ G , the dominated conver-
gence theorem implies that

E[XχB] = lim
n→∞

E[XnχB] = lim
n→∞

E[Xn]E[χB] = E[E[X]χB].

Exercise (7.4). Prove that, if Ω = (0, 1)2, F = B((0, 1)2), P = λ2 is the
Lebesgue measure on Ω, X ∈ L1(Ω,F ,P), and G = B((0, 1))× (0, 1), then

E(X|G )(x, y) =

∫ 1

0
X(x, t)dλ1(t) for a.e. (x, y) ∈ Ω.

Proof. Since B((0, 1)2) = B(0, 1)⊗B(0, 1), by Fubini’s theorem the function

Y =

∫ 1

0
X(·, t)dλ1(t)⊗ 1

belongs to L1(Ω,G ,P).
Let A ∈ G ; then A has the form A = A1×(0, 1) for some A1 ∈ B(0, 1), so

that χA(x, y) = χA1(x) for every y ∈ (0, 1). Observe also that λ2 = λ1 ⊗ λ1.

4



Therefore,

E(Y χA) =

∫ 1

0

∫ 1

0

∫ 1

0
X(x, t)dλ1(t)χA(x, y)dλ1(x)dλ1(y)

=

∫ 1

0

∫ 1

0
X(x, t)dλ1(t)χA1(x)dλ1(x)

=

∫ 1

0

∫ 1

0
X(x, y)χA1(x)dλ1(x)dλ1(y)

=

∫ 1

0

∫ 1

0
X(x, y)χA(x, y)dλ1(x)dλ1(y) = E(XχA).

The proof is then complete.

Exercise (7.5). Prove that, for every fixed sequence (fn) ⊂ X∗, the family
of sets

A = {E = {x ∈ X : (fn(x)) ∈ B} : B ∈ B(R∞)}

is a σ-algebra.

Proof. First of all ∅ ∈ A , since ∅ = {x ∈ X : (fn(x)) ∈ ∅}.
Let E = {x ∈ X : (fn(x)) ∈ B} for some B ∈ B(R∞). Then

Ec = {x ∈ X : (fn(x)) /∈ B} = {x ∈ X : (fn(x)) ∈ Bc} ∈ A .

If {Ej} ⊂ A and Ej = {x ∈ X : (fn(x)) ∈ Bj}, then⋃
j

Ej = {x ∈ X : ∃j : (fn(x)) ∈ Bj} = {x ∈ X : (fn(x)) ∈ ∪jBj} ∈ A .

This completes the proof.

Exercise (7.6). Prove that if X is an infinite dimensional Banach space
and ϕ ∈ C∞(X) has compact support, then ϕ ≡ 0.

Proof. Assume that there is some x ∈ X such that ϕ(x) 6= 0. By continuity,
there exists a closed ball B such that ϕ(x) 6= 0 for every x ∈ B. Thus B is
contained in the support of ϕ. Since the latter is compact, and B is closed,
B is compact. Therefore X is finite dimensional.

Remark. In Exercise 7.6 differentiability plays no role, and the same result
holds for ϕ ∈ Cc(X).

5


