
Lecture 7

Finite dimensional approximations

In this Lecture we present some techniques that allow to get infinite dimensional results
through finite dimensional arguments and suitable limiting procedures. They rely on
factorising X as the direct sum of a finite dimensional subspace F and a topological
complement XF . The finite dimensional space F is a subspace of the Cameron-Martin
space H. To define the projection on F , we use an othonormal basis of H, so that we
get at the same time an orthogonal decomposition H = F ⊕ F⊥ of H. Throughout this
Lecture, X is a separable Banach space endowed with a centred Gaussian measure γ.

7.1 Cylindrical functions

In analogy to cylindrical sets discussed in Section 2.1, cylindrical functions play an impor-
tant role in the infinite dimensional Gaussian analysis.

Definition 7.1.1 (Cylindrical functions). We say that ϕ : X → R is a cylindrical func-
tion if there are n ∈ N, `1, . . . , `n ∈ X∗ and a function ψ : Rn → R such that ϕ(x) =
ψ(`1(x), . . . , `n(x)) for all x ∈ X. For k ∈ N, we write ϕ ∈ FCkb (X) (resp. ϕ ∈ FC∞b (X)),
and we say that ϕ is a cylindrical k times (resp. infinitely many times) boundedly differ-
entiable function, if, with the above notation, ψ ∈ Ckb (Rn) (resp. ψ ∈ C∞b (Rn)).

We fix now an orthonormal basis {ĥj : j ∈ N} of X∗γ . By Lemma 3.1.8, we may assume

that each ĥj belongs to j(X∗). We recall that the set {hj : j ∈ N}, with hj = Rγ ĥj ,
is an orthonormal basis of H. Notice also that, arguing as in Theorem 2.1.1 we obtain
E (X) = E

(
X, {ĥj}j∈N

)
. We define

Pnx =
n∑
j=1

ĥj(x)hj , n ∈ N, x ∈ X. (7.1.1)

Note that every Pn is a projection, since by (2.3.6) ĥj(hi) = δij . Moreover, if x ∈ H, then

ĥj(x) = [x, hj ]H so that Pnx is just a natural extension to X of the orthogonal projection
of H on span {h1, . . . , hn}.
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We state (without proof) a deep result on finite dimensional approximations.

Theorem 7.1.2. For γ-a.e. x ∈ X, lim
n→∞

Pnx = x.

The proof of theorem 7.1.2 may be the subject of one of the projects of Phase 2.
However, it is easy if X is a Hilbert space, γ = N (0, Q), and we choose as usual an
orthonormal basis {ej : j ∈ N} of X consisting of eigenvectors of Q, Qek = λkek. We may
assume, without loss of generality, that Q is nondegenerate, i.e. λk > 0 for any k ∈ N.

Then {hj = λ
1/2
j ej , j ∈ N} is an orthonormal basis of H and we have ĥj(x) = 〈x, ej〉/λ1/2

j

for every x ∈ X. Indeed, for every x ∈ H,

ĥj(x)hj = [x, hj ]Hhj = 〈Q−1/2x,Q−1/2Q1/2ej〉Q1/2ej = 〈x, ej〉ej . (7.1.2)

Since for every x ∈ X we have x =
∑∞

k=1〈x, ek〉ek and the partial sums of this series are in
H, the space H is dense in X. Therefore, equality (7.1.2) holds for every x ∈ X and Pnx
is the orthogonal (in X) projection of x on span {e1, . . . , en} = span {h1, . . . , hn}, which
goes to x as n → ∞ for every x ∈ X. The case when Q is degenerate follows similarly
using the fact that H is dense in the span of the eigenvectors ek associated with nonzero
eigenvalues λk > 0.

7.2 Some more notions from Probability Theory

In this section we recall some further notions of probability theory, in particular conditional
expectation. We use the notation of Lecture 5.

Let us introduce the notion of conditional expectation.

Theorem 7.2.1. Given a probability space (Ω,F ,P), a sub-σ-algebra G ⊂ F and X ∈
L1(Ω,F ,P), there exists a unique a random variable Y ∈ L1(Ω,G ,P) such that∫

A
Y dP =

∫
A
XdP, ∀A ∈ G . (7.2.1)

Such random variable is called expectation of X conditioned by G , and it is denoted by
Y = E(X|G ). Moreover, |E(X|G )| ≤ E(|X| |G ).

Proof. The map B 7→
∫
BX dP, B ∈ G , defines a measure that is absolutely continuous

with respect to the restriction of P to G . The assertions then follow from the Radon-
Nikodym Theorem 1.1.9.

Remark 7.2.2. Using approximations by simple functions, we have that (7.2.1) implies∫
Ω
gXdP =

∫
Ω
g E(X|G )dP

for any bounded G –measurable functions g : Ω→ R.

We list some useful properties of conditional expectation. The proofs are easy conse-
quences of the definition and are left as an exercise, see Exercise 7.3.
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Proposition 7.2.3. The conditional expectation satisfies the following properties.

1. If G = {∅,Ω}, then E(X|G ) = E[X].

2. E[E(X|G )] = E[X].

3. If X ≤ Y , then E(X|G ) ≤ E(Y |G ); in particular, if X ≥ 0, then E(X|G ) ≥ 0.

4. For any X,Y and α, β ∈ R, E(αX + βY |G ) = αE(X|G ) + βE(Y |G ).

5. If H ⊂ G is a sub-σ-algebra of G , then

E(E(X|G )|H ) = E(X|H ).

6. If X is G -measurable, then E(X|G ) = X.

7. If X,Y,X · Y ∈ L1(Ω,F ,P) and X is G -measurable, then

E(X · Y |G ) = X · E(Y |G ).

8. If X is independent of G , then E(X|G ) = E[X].

The following result allows to handle conditional expectations in Lp spaces, p > 1.

Theorem 7.2.4 (Jensen). Let (Ω,F ,P) be a probability space, let G ⊂ F be a sub-σ-
algebra, let X ∈ L1(Ω,F ,P) be a real random variable, and let ϕ : R→ R be a convex C1

function such that ϕ(X) ∈ L1(Ω,F ,P). Then,

E(ϕ ◦X|G ) ≥ ϕ ◦ E(X|G ). (7.2.2)

Proof. As ϕ is convex, we have that for any x, y ∈ R

ϕ(x) ≥ ϕ(y) + ϕ′(y)(x− y).

We use this inequality with x = X and y = E(X|G ) and we obtain

ϕ(X) ≥ ϕ(E(X|G )) + ϕ′(E(X|G ))(X − E(X|G )). (7.2.3)

Since ϕ(E(X|G )) is G –measurable, by property 6 of Proposition 7.2.3 we have that
E
(
E(ϕ(X)|G )|G

)
= E(ϕ(X)|G ). In the same way, E(X|G ) is G –measurable and then

E(X − E(X|G )|G ) = 0. Since also ϕ′(E(X|G )) is G –measurable, by property 7 of Propo-
sition 7.2.3 we also have that

E
(
ϕ′(E(X|G ))

(
X − E(X|G )

)∣∣∣G) = ϕ′(E(X|G )) · E
(
X − E(X|G )

∣∣G ) = 0.

Then, taking conditional expectation in (7.2.3), we have

E(ϕ(X)|G ) ≥E(ϕ(E(X|G ))|G ) + E
(
ϕ′(E(X|G ))(X − E(X|G ))

∣∣∣G) = ϕ(E(X|G )).
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Corollary 7.2.5. Let X ∈ Lp(Ω,F ,P), p > 1, be a real random variable. Then, its
conditional expectation E(X|G ) given by Theorem 7.2.1 belongs to Lp(Ω,F ,P) as well.

Proof. Theorem 7.2.4 with ϕ(x) = |x|p yields∫
Ω
|E(X|G )|p dP ≤

∫
Ω
E(|X|p|G ) dP =

∫
Ω
|X|p dP.

Notice that the properties of the conditional expectation listed in Proposition 7.2.3
hold also in Lp(X, γ), p ≥ 1.

7.3 Factorisation of the Gaussian measure

In this section we describe an important decomposition of γ as the product of two Gaus-
sian measures on subspaces. The projections on finite dimensional subspaces generate a
canonical decomposition of the Gaussian measure as follows. Let F ⊂ Rγ(j(X∗)) be an
n–dimensional subspace and let us denote by PF the projection on X with image in F
(which is given by Pn of (7.1.1) with a suitable choice of an orthonormal basis of H).
Define the measure γF = γ ◦ P−1

F and notice that γF (F ) = 1 since P−1
F (F ) = X. For any

ζ ∈ X∗

γ̂F (ζ) =

∫
X

exp{iζ(PF (x))} γ(dx) =

∫
X

exp{iP ∗F ζ(x)} γ(dx)

= exp

{
−1

2
Bγ(P ∗F ζ, P

∗
F ζ)

}
,

then γF is a centred Gaussian measure by Corollary 2.2.7(i), with

BγF (ζ1, ζ2) =Bγ(P ∗F ζ1, P
∗
F ζ2) =

∫
X
P ∗F ζ1(x)P ∗F ζ2(x)γ(dx)

=

∫
X
ζ1(PFx)ζ2(PFx) γ(dx) =

∫
X
ζ1(z)ζ2(z) γF (dz)

=

∫
F
ζ1(z)ζ2(z) γF (dz) = 〈ζ1, ζ2〉L2(F,γF ), (7.3.1)

γF (F ) = 1, for any ζ1, ζ2 ∈ X∗. In the same way we define the measure γ⊥F = γ◦(I−PF )−1

and notice that γ⊥F (XF ) = 1 where XF := kerPF . This measure is again a centred
Gaussian measure with

Bγ⊥F
(ζ1, ζ2) =Bγ((I − PF )∗ζ1, (I − PF )∗ζ2) =

∫
X

(I − PF )∗ζ1(x)(I − PF )∗ζ2(x)γ(dx)

=

∫
X
ζ1((I − PF )x)ζ2((I − PF )x)γ(dx) =

∫
XF

ζ1(y)ζ2(y)γ⊥F (dy)

= 〈ζ1, ζ2〉L2(XF ,γ
⊥
F ), (7.3.2)
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for any ζ1, ζ2 ∈ X∗. The explicit computations of BγF and Bγ⊥F
imply that the Cameron–

Martin spaces of γF and γ⊥F are respectively equal to F and F⊥, the last being the
orthogonal complement of F in H.

Since γ is centred, we have that j(f)(x) = f(x) for any f ∈ X∗. To simplify the
notation, we shall write f instead of j(f) also when considered as an element of X∗γ ; in
this way we may think to X∗ as a subset of X∗γ . Let us assume that F = span{h1, . . . , hn}
with h1, . . . , hn orthonormal and such that hk ∈ Rγ(X∗). In this way we may use the
explicit expression for PF given by (7.1.1). We can state and prove the following result.

Lemma 7.3.1. For any f ∈ X∗, we have

PF (Rγ(f)) = Rγ(P ∗F f), (I − PF )(Rγf) = Rγ((I − PF )∗f).

As a consequence

|Rγ(f)|2H = ‖P ∗F f‖2L2(F,γF ) + ‖(I − PF )∗f‖2
L2(XF ,γ

⊥
F )
. (7.3.3)

Proof. We know that for any g ∈ X∗, by (7.1.1) and Remark 2.3.7

g(PF (Rγ(f))) =

n∑
k=1

ĥk(Rγ(f))g(hk) =

n∑
k=1

〈f, ĥk〉L2(X,γ)g(hk).

On the other hand, we also have

P ∗F f(x) = f(PFx) =
n∑
k=1

ĥk(x)f(hk) =
n∑
k=1

〈f, ĥk〉L2(X,γ)ĥk(x).

Hence for any g ∈ X∗

g(Rγ(P ∗F f)) =g

(
Rγ

( n∑
k=1

〈f, ĥk〉L2(X,γ)ĥk

))

=g

(
n∑
k=1

〈f, ĥk〉L2(X,γ)hk

)
=

n∑
k=1

〈f, ĥk〉L2(X,γ)g(hk),

and then PF (Rγ(f)) = Rγ(P ∗F f). In addition

(I − PF )Rγ(f) = Rγ(f)− PF (Rγ(f)) = Rγ(f)−Rγ(P ∗F f)Rγ((I − P ∗F )f).

Since H = F ⊕ F⊥, for f ∈ X∗ we have

|Rγf |2H =|PFRγf |2H + |(I − PF )Rγf |2H
=‖P ∗F f‖2L2(F,γF ) + ‖(I − PF )∗f‖2

L2(XF ,γ
⊥
F )
.

We have the following result.
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Proposition 7.3.2. Let γ̃F the restriction of γF to B(F ) and γ̃⊥F the restriction of γ⊥F to
B(XF ). Then equality γ̃F ⊗ γ̃⊥F = γ holds.

Proof. We use the fact that X = F ⊕XF and then for any ξ ∈ X∗

̂γ̃F ⊗ γ̃⊥F (ξ) =

∫
F×XF

exp{iξ(z + y)γ̃F ⊗ γ̃⊥F (d(z, y))

=

∫
F

exp{iξ(z)}γF (dz) ·
∫
XF

exp{iξ(y)}γ⊥F (dy)

= exp

{
−1

2

(
BγF (ξ, ξ) +Bγ⊥F

(ξ, ξ)
)}

.

Taking into account (7.3.1) and (7.3.2), we obtain that

BγF (ξ, ξ) +Bγ⊥F
(ξ, ξ) =

∫
F
ξ(z)2γF (dz) +

∫
XF

ξ(y)2γ⊥F (dy)

=

∫
X

(
ξ(PFx)2 + ξ((I − PF )x)2

)
γ(dx)

=‖P ∗F ξ‖2L2(F,γF ) + ‖(I − PF )∗ξ‖2
L2(XF ,γ

⊥
F )

=|Rγ(ξ)|2H = Bγ(ξ, ξ),

where we have used identity (7.3.3).

As a consequence, by the Fubini theorem, setting for every A ∈ B(X) and z ∈ F (as
in Remark 1.1.14) Az = {y ∈ XF : (z, y) ∈ A}, we have Az ∈ B(XF ); in the same way,
setting, for any y ∈ XF , Ay = {z ∈ F : (z, y) ∈ A}, Ay ∈ B(F ) and we have

γ(A) =

∫
F
γ⊥F (Az) γF (dz) =

∫
XF

γF (Ay) γ⊥F (dy).

7.4 Cylindrical approximations

Now we are ready to study the approximation of a function via cylindrical ones, taking
advantage of the tools just presented.

We fix an orthonormal basis {hk, k ∈ N} of H, hk = Rγ ĥk with ĥk ∈ j(X∗) for all
k ∈ N, see Lemma 3.1.8. For every f ∈ Lp(X, γ), n ∈ N, we define Enf as the conditional
expectation of f with respect to the σ-algebra Σn generated by the random variables
ĥ1, . . . , ĥn. Using Proposition 7.3.2, we can explicitly characterise the expectation of a
function f ∈ Lp(X, γ) conditioned to Σn.

Proposition 7.4.1. Let 1 ≤ p ≤ ∞. For every f ∈ Lp(X, γ) and n ∈ N we have

(Enf)(x) =

∫
X
f(Pnx+ (I − Pn)y)γ(dy), x ∈ X. (7.4.1)

Moreover, the conditional expectation is a contraction, i.e.

‖Enf‖Lp(X,γ) ≤ ‖f‖Lp(X,γ). (7.4.2)
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Proof. Let us define

fn(x) =

∫
X
f(Pnx+ (I − Pn)y)γ(dy), n ∈ N, x ∈ X.

Using the factorisation γ = γ̃F ⊗ γ̃⊥F , we may also write

fn(x) =

∫
XF

f(Pnx+ y)γ̃⊥F (dy).

Since for any B ∈ Σn, 1lB(x) = 1lB(Pnx), we have∫
B
f(x)γ(dx) =

∫
X

1lB(Pnx)f(Pnx+ (I − Pn)x)γ(dx)

=

∫
F×XF

1lB(z)f(z + y)γ̃F ⊗ γ̃⊥F (d(z, y))

=

∫
F

1lB(z)
(∫

XF

f(z + y)γ̃⊥F (dy)
)
γ̃F (dz)

=

∫
F

1lB(z)
(∫

X
f(z + y)γ⊥F (dy)

)
γ̃F (dz)

=

∫
F

1lB(z)
(∫

X
f(z + (I − Pn)y)γ(dy)

)
γ̃F (dz)

=

∫
X

1lB(z)
(∫

X
f(z + (I − Pn)y)γ(dy)

)
γF (dz)

=

∫
X

1lB(Pnx)
(∫

X
f(Pnx+ (I − Pn)y)γ(dy)

)
γ(dx)

=

∫
X

1lB(x)fn(x)γ(dx).

By Theorem 7.2.1 we deduce that fn = E(f |Σn).
The contractivity estimate ‖Enf‖p ≤ ‖f‖p easily follows from (7.4.1), and the proper-

ties of conditional expectation:

‖Enf‖pLp(X,γ) =

∫
X
|Enf(x)|p γ(dx) =

∫
X

∣∣∣ ∫
X
f(Pnx+ (I − Pn)y)γ(dy)

∣∣∣pγ(dx)

≤
∫
X
En(|f |p)γ(dx) = ‖f‖pLp(X,γ).

Let us come back to the space R∞ described in Subsection 4.1. Through R∞, we give
a description of E (X).

Lemma 7.4.2. A set E ⊂ X belongs to E (X) if and only if there are B ∈ B(R∞) and a
sequence (fn)n∈N ⊂ X∗ such that

E =
{
x ∈ X : f(x) := (fn(x)) ∈ B

}
. (7.4.3)
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Proof. For every fixed sequence (fn) ⊂ X∗ the sets of the form (7.4.3) are a σ-algebra, see
Exercise 7.5. Then, the family of the sets as in (7.4.3) are in turn a σ-algebra (let us call
it F ) and the cylinders belong to F , whence E (X) ⊂ F .

On the other hand, for any fixed sequence f = (fn) ⊂ X∗, the family Gf consisting
of all the Borel subsets B ⊂ R∞ such that the set E described in (7.4.3) belongs to
E (X) contains all the cylinders in R∞, hence Gf ⊃ E (R∞). But, since the coordinate
functions in R∞ are continuous and separate the points, from Theorem 2.1.1 it follows
that B(R∞) = E (R∞). Therefore, the family of sets E ⊂ X given by (7.4.3) with B ∈ Gf
is contained in E (X) for every f as above. Then E (X) ⊂ F and the proof is complete.

Remark 7.4.3. We notice that the σ–algebra E (X) coincides also with the σ–algebra of
cylinders based on elements ox X∗γ ; indeed, for any F = {f1, . . . , fd} ⊂ X∗γ the sets of the
type

E = {x ∈ X : (f1(x), . . . , fd(x)) ∈ B},

with B ∈ B(Rd), belong to B(X) for any choice of Borel representatives f1, . . . , fd. Hence
E (X,X∗γ) ⊂ B(X). The reverse inclusion is trivial, whence the fact that E (X,X∗γ) =
B(X) by the separability of X, see Theorem 2.1.1.

Lemma 7.4.2 easily implies further useful approximation results.

Lemma 7.4.4. For every A ∈ E (X) and ε > 0 there are a cylinder with compact base
C and a compact set B ⊂ R∞ such that γ(C4A) < ε and the set E defined via (7.4.3)
verifies E ⊂ A and γ(A \ E) < ε.

Proof. Let A be as in (7.4.3). For every ε > 0 there is a cylinder C0 such that γ(A4C0) <
ε/2: for instance, define Bk = {y ∈ R∞ : yj = fj(x), x ∈ A, j ≤ k} and Ck = f−1(Bk),
and take C0 = Ck with k large enough. Since C0 = P−1(D0) for some D0 ∈ B(Rn) and
a linear continuous operator P : X → Rn, it suffices to take a compact set K ⊂ D0 such
that γ ◦ P−1(D0 \K) < ε/2 and C = P−1(K).

By Proposition 1.1.5 the measure γ ◦ f−1 is Radon on R∞, hence for every ε > 0
there is a compact set K ⊂ B such that γ ◦ f−1(B \ K) < ε and it suffices to choose
E = f−1(K).

Proposition 7.4.5. For every 1 ≤ p <∞ and f ∈ Lp(X, γ) the sequence Enf converges
to f in Lp(X, γ) and γ-a.e. in X.

Proof. It is sufficient to check Lp-convergence of indicator functions, as the general case
follows by the density of simple functions. Taking into account that E (X) = E (X, (ĥj)j∈N),
for every measurable set B ⊂ X and ε > 0 there is n ∈ N and Bε ∈ Σn such that
γ(B4Bε) < (ε/2)p. Equality En1lBε = 1lBε and estimate (7.4.2) yields

‖En1lB − 1lB‖Lp(X,γ) ≤ ‖En1lB − 1lBε‖Lp(X,γ) + ‖1lB − 1lBε‖Lp(X,γ)

= ‖En(1lB − 1lBε)‖Lp(X,γ) + ‖1lB − 1lBε‖Lp(X,γ) ≤ ε.

The convergence γ-a.e. of a subsequence follows from the Lp convergence, whereas the
convergence of the whole sequence easily follows from Theorem 7.1.2 (which we have stated
without proof) via dominated convergence.
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As a consequence of the above results, we have the following approximation theorem.
Notice that the conditional expectations Enf of a function f is invariant under translations
along kerPn, hence it can be identified with a function defined on F = PnX setting
fn(y) = Enf(x), y ∈ F, y = Pnx.

Theorem 7.4.6. For every 1 ≤ p <∞ the space FC∞b (X) is dense in Lp(X, γ).

Proof. Fix p and f ∈ Lp(X, γ). Assume first that f ∈ L∞(X, γ) (this hypothesis will be
removed later). Set

fn(ξ) =

∫
X
f
( n∑
j=1

ξjhj + (I − Pn)y
)
γ(dy), ξ ∈ Rn,

and notice that fn ∈ Lp(Rn, γ ◦ P−1
n ). Each fn can be approached in Lp(Rn, γ ◦ P−1

n )
by a sequence (ψn,j) of functions in C∞b (Rn), e.g. by convolution. Defining the FC∞b (X)
functions gn.j(x) = ψn,j(Pnx), it is easily checked that the diagonal sequence gn,n converges
to f in Lp(X, γ). In order to remove the assumption that f is bounded, given any f ∈
Lp(X, γ), just consider a sequence of truncations fk = max{−k,min{k, f}}, k ∈ N, and
proceed as before.

7.5 Exercises

Exercise 7.1. Let X be a separable Banach space endowed with a centred Gaussian
measure γ. Prove that for any choice h1, . . . , hd ∈ H, the map P : X → Rd, P (x) =
(ĥ1(x), . . . , ĥd(x)) is a Gaussian random variable with law γ ◦ P−1 = N (0, Q), Qi,j =
[hi, hj ]H .

Exercise 7.2. Let ϕ : Rd → R be a convex function. Prove that there are two sequences
(an) ⊂ Rd and (bn) ⊂ R such that

ϕ(x) = sup
n∈N
{an · x+ bn}.

Use this fact to prove Theorem 7.2.4 for any convex function ϕ : R→ R.

Exercise 7.3. Prove the properties of conditional expectation stated in Proposition 7.2.3.

Exercise 7.4. Prove that if Ω = (0, 1)2 with F = B((0, 1)2) and P = λ2 the Lebesgue
measure in Ω, then by considering G = B((0, 1))× (0, 1)

E(X|G )(x, y) =

∫ 1

0
X(x, t)dλ1(t) ∀ y ∈ (0, 1).

Exercise 7.5. Prove that for every fixed sequence (fn) ⊂ X∗ the family of sets defined
in (7.4.3) is a σ-algebra.

Exercise 7.6. Prove that if ϕ ∈ C∞(X) has compact support in an infinite dimensional
Banach space then ϕ ≡ 0.



86

Bibliography

[B] V. I. Bogachev: Gaussian Measures. American Mathematical Society, 1998.

[D] R. M. Dudley: Real Analysis and Probabillity, Cambridge University Press, 2004.


