Lecture A

Addendum to Lecture 7

Aim of this short note is to fix some problem present in Lecture 7. There we made the wrong assertion that $\mathscr{B}(X) = \mathscr{E}(X, \mathscr{H})$, where $\mathscr{H} = \{\ell_k : k \in \mathbb{N}\}$ is a subset of X^* such that $\{h_k = R_{\gamma} j(\ell_k) : k \in \mathbb{N}\}$ is an orthonormal basis of H.

First of all we prove a result concerning the σ -algebra $\mathscr{E}(X, \mathscr{H})$ and then we use such result to rewrite the proof of Proposition 7.4.5.

A.1 Completion of $\mathscr{E}(X, \mathscr{H})$

Theorem A.1.1. Let X be a separable Banach space and let γ be a centred Gaussian measure on X. If $\{h_k : k \in \mathbb{N}\}$ is an orthonormal basis of H contained in $R_{\gamma}(X^*)$, then

$$\mathscr{B}(X)_{\gamma} = \mathscr{E}(X, \mathscr{H})_{\gamma}$$

with $\mathscr{H} = \{\hat{h}_k : k \in \mathbb{N}\}$.

We need some preliminary result.

Lemma A.1.2. Let γ be a centred Gaussian measure and let $x^*, y^* \in X^*$ be such that $\|j(x^*)\|_{L^2(X,\gamma)} = \|j(y^*)\|_{L^2(X,\gamma)} = 1$ and $\|j(x^*) - j(y^*)\|_{L^2(X,\gamma)}^2 = \varepsilon$. Then for any $\alpha \in \mathbb{R}$

$$\gamma(\{x^* \ge \alpha\} \Delta \{y^* \ge \alpha\}) \le \frac{2}{\pi} \sqrt{\frac{\varepsilon}{4-\varepsilon}},$$

where $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

Proof. We use essentially the fact that $x^*, y^* : X \to \mathbb{R}$ are random variables with image measures $\mathscr{N}(0,1)$. Let us define the map $T: X \to \mathbb{R}^2$,

$$Tx = \frac{1}{\sqrt{2}}(x^*(x) + y^*(x), x^*(x) - y^*(x)).$$

118

Since

$$\varepsilon = \|j(x^*) - j(y^*)\|_{L^2(X,\gamma)}^2 = 2(1 - \langle j(x^*), j(y^*) \rangle_{L^2(X,\gamma)}),$$

we deduce, by Exercise 2.4, that $\gamma \circ T^{-1} = \mathscr{N}(0, Q)$ with

$$Q = \left(\begin{array}{cc} 2 - \frac{\varepsilon}{2} & 0\\ 0 & \frac{\varepsilon}{2} \end{array}\right).$$

Set $E = \{x \in X : x^*(x) \ge \alpha\}, F = \{x \in X : y^*(x) \ge \alpha\}$. Then $E = T^{-1}(A), F = T^{-1}(B)$ where

$$A = \{(u, v) \in \mathbb{R}^2 : u + v \ge \alpha \sqrt{2}\}, \quad B = \{(u, v) \in \mathbb{R}^2 : u - v \ge \alpha \sqrt{2}\},\$$

and we have

$$\begin{split} \gamma(E\Delta F) &= \int_{X} |\mathbb{1}_{E}(x) - \mathbb{1}_{F}(x)| \gamma(dx) = \int_{X} |\mathbb{1}_{A}(Tx) - \mathbb{1}_{B}(Tx)| \gamma(dx) \\ &= \int_{\mathbb{R}^{2}} |\mathbb{1}_{A}(u, v) - \mathbb{1}_{B}(u, v)| \mathscr{N}(0, Q)(d(u, v)) \\ &= \int_{\mathbb{R}^{2}} |\mathbb{1}_{A'}(s, t) - \mathbb{1}_{B'}(s, t)| \mathscr{N}(0, I_{2})(d(s, t)) \\ &= 2\mathscr{N}(0, I_{2})(A' \setminus B'), \end{split}$$

where the sets A' and B' are obtained by the change of variables $s = \frac{u}{\sqrt{2-\frac{\varepsilon}{2}}}, t = \frac{v}{\sqrt{\frac{\varepsilon}{2}}}$ and then

$$A' = \left\{ (s,t) \in \mathbb{R}^2 : t \ge -\sqrt{\frac{4-\varepsilon}{\varepsilon}}s + \frac{2\alpha}{\sqrt{\varepsilon}} \right\}, \quad B' = \left\{ (s,t) \in \mathbb{R}^2 : t \le \sqrt{\frac{4-\varepsilon}{\varepsilon}}s - \frac{2\alpha}{\sqrt{\varepsilon}} \right\}.$$

We have

$$A' \setminus B' = \left\{ (s,t) \in \mathbb{R}^2 : -t\sqrt{\frac{\varepsilon}{4-\varepsilon}} < s - \frac{2\alpha}{\sqrt{4-\varepsilon}} \le t\sqrt{\frac{\varepsilon}{4-\varepsilon}} \right\},$$

and therefore

$$\begin{split} \gamma(E\Delta F) &= 2\mathscr{N}(0, I_2)(A' \setminus B') \\ &= \frac{1}{\pi} \int_0^{+\infty} e^{-\frac{t^2}{2}} \left(\int_{-\sqrt{\frac{\varepsilon}{4-\varepsilon}}t + \frac{2\alpha}{\sqrt{4-\varepsilon}}}^{\sqrt{\frac{\varepsilon}{4-\varepsilon}}t + \frac{2\alpha}{\sqrt{4-\varepsilon}}} e^{-\frac{s^2}{2}} \, ds \right) dt \\ &\leq & \frac{2}{\pi} \sqrt{\frac{\varepsilon}{4-\varepsilon}} \int_0^{+\infty} t e^{-\frac{t^2}{2}} \, dt. \end{split}$$

Proposition A.1.3. Let $x^* \in X^*$ and let (x_n^*) be a sequence in X^* such that $j(x_n^*)$ converges to $j(x^*)$ in $L^2(X,\gamma)$ and $\|j(x^*)\|_{L^2(X,\gamma)} = \|j(x_n^*)\|_{L^2(X,\gamma)} = 1$ for any $n \in \mathbb{N}$. Fixed any $\alpha \in \mathbb{R}$, set $E = \{x : x^*(x) \ge \alpha\}$, $E_n = \{x : x_n^*(x) \ge \alpha\}$. Then

$$\lim_{n \to +\infty} \gamma(E\Delta E_n) = 0.$$

In addition, if \mathscr{G} is a sub- σ algebra of \mathscr{F} and $E_n \in \mathscr{G}$ for any $n \in \mathbb{N}$, then $E \in (\mathscr{G})_{\gamma}$.

Proof. The first assertion follows by Lemma A.1.2 since

$$\|\mathbb{1}_{E} - \mathbb{1}_{E_{n}}\|_{L^{1}(X,\gamma)} = \gamma(E_{n}\Delta E) \leq \frac{2}{\pi}\sqrt{\frac{\|j(x^{*}) - j(x_{n}^{*})\|_{L^{2}(X,\gamma)}}{4 - \|j(x^{*}) - j(x_{n}^{*})\|_{L^{2}(X,\gamma)}}}.$$

Let us prove the second statement. Since $\mathbb{1}_{E_n} \to \mathbb{1}_E$ in $L^1(X, \gamma)$, $\mathbb{1}_{E_n}$ is a Cauchy sequence in $L^1(X, \mathscr{G}, \gamma)$. Hence, there are a subsequence and $A \in \mathscr{G}$ with $\gamma(A) = 1$ such that $\mathbb{1}_{E_n}(x)$ converges for any $x \in A$. Set g(x) = 0 for $x \in X \setminus A$ and

$$g(x) = \lim_{k \to +\infty} \mathbb{1}_{E_{n_k}}(x), \qquad \forall x \in A.$$

Then g is \mathscr{G} -measurable. Since $\mathbb{1}_{E_{n_k}}$ has values in $\{0,1\}$, g is the characteristic function of some set $F \subset A$; the measurability of g implies that $F \in \mathscr{G}$. By the Dominated Convergence Theorem, $\mathbb{1}_{E_{n_k}}$ converges to $\mathbb{1}_F$ in $L^1(X, \mathscr{G}, \gamma)$ and hence also in $L^1(X, \gamma)$. On the other hand,

$$\gamma(E\Delta F) = \|\mathbb{1}_E - \mathbb{1}_F\|_{L^1(X,\gamma)} \le \|\mathbb{1}_E - \mathbb{1}_{E_{n_k}}\|_{L^1(X,\gamma)} + \|\mathbb{1}_{E_{n_k}} - \mathbb{1}_F\|_{L^1(X,\gamma)} \qquad \forall k \in \mathbb{N}.$$

Since $\mathbb{1}_{E_n}$ converges to $\mathbb{1}_E$ in $L^1(X, \gamma)$, the right hand side vanishes as $k \to +\infty$, $\gamma(E\Delta F) = 0$ and $E \in (\mathscr{G})_{\gamma}$.

We can then prove the main result.

Proof. (of Theorem A.1.1) Since $\mathscr{E}(X, \mathscr{H}) \subset \mathscr{B}(X)$, the inclusion

$$\mathscr{E}(X,\mathscr{H})_{\gamma} \subset \mathscr{B}(X)_{\gamma}$$

is immediate. Let us prove the reverse inclusion. Arguing as in Theorem 2.1.1, it is enough to prove that $\overline{B}(x_0, r) \in \mathscr{E}(X, \mathscr{H})_{\gamma}$ for any $x_0 \in X, r > 0$. Since there exists a sequence $x_n^* \in X^*$ such that

$$\overline{B}(x_0, r) = \bigcap_{n \in \mathbb{N}} \{ x \in X : |x^*(x - x_0)| \le r \},\$$

we are reduced to show that

$$E_{x_0,r}^{x^*} := \{ x \in X : x^*(x_0) - r \le x^*(x) \le x^*(x_0) + r \} \in \mathscr{E}(X, \mathscr{H})_{\gamma}$$

for any $x^* \in X^*$, $x_0 \in X$ and r > 0. Let us distinguish the cases $||j(x^*)||_{L^2(X,\gamma)} = 0$ and $||j(x^*)||_{L^2(X,\gamma)} \neq 0$.

If $x^* \in X^*$ is such that $\|j(x^*)\|_{L^2(X,\gamma)} = 0$, then $\gamma \circ (x^*)^{-1}$ is a Dirac measure and then

$$\gamma(E_{x_0,r}^{x^*}) \in \{0,1\}$$

depending on the fact that $0 \in [x^*(x_0) - r, x^*(x_0) + r]$ or not. In any case, $E_{x_0,r}^{x^*}$ is a null measure set modification of either the empty set or the whole space X, and then $E_{x_0,r}^{x^*} \in \mathscr{E}(X, \mathscr{H})_{\gamma}$.

In the case $||j(x^*)||_{L^2(X,\gamma)} \neq 0$, we have

$$E_{x_0,r}^{x^*} = \{ x \in X : \alpha_1 \le \bar{x}^*(x) \le \alpha_2 \} = \{ \bar{x}^* \ge \alpha_1 \} \cap \{ -\bar{x}^* \ge -\alpha_2 \},\$$

where $\bar{x}^* \in X^*$ is defined by

$$\bar{x}^* = \frac{1}{\|j(x^*)\|_{L^2(X,\gamma)}} x^*$$

so that $||j(\bar{x}^*)||_{L^2(X,\gamma)} = 1$ and

$$\alpha_1 = \frac{x^*(x_0) - r}{\|j(x^*)\|_{L^2(X,\gamma)}}, \qquad \alpha_2 = \frac{x^*(x_0) + r}{\|j(x^*)\|_{L^2(X,\gamma)}}$$

We then apply Proposition A.1.3 with

$$x_n^* = c_n \sum_{k=1}^n \langle j(\bar{x}^*), \hat{h}_k \rangle_{L^2(X,\gamma)} \ell_k,$$

where $c_n > 0$ is a normalising constant such that $||j(x_n^*)||_{L^2(X,\gamma)} = 1$, and then, since $j(x_n^*)$ converges to $j(x^*)$ in $L^2(X,\gamma)$, we deduce that $E_{x_0,r}^{x^*} \in \mathscr{E}(X,\mathscr{H})_{\gamma}$.

A.2 Proof of Proposition 7.4.5

Proof. Let us fix $f \in L^p(X, \gamma)$. We know that for any $\varepsilon > 0$ there exists a simple function s_{ε} ,

$$s_{\varepsilon} = \sum_{i=1}^{m} c_i \mathbb{1}_{A_i}, \qquad A_i \in \mathscr{B}(X), c_i \in \mathbb{R} \setminus \{0\},$$

such that $||f - s_{\varepsilon}||_{L^{p}(X,\gamma)} < \varepsilon$. Since $\mathscr{B}(X) \subset \mathscr{E}(X,\mathscr{H})_{\gamma}$, for any $i = 1, \ldots, m$ there exists $\tilde{A}_{i} \in \mathscr{E}(X,\mathscr{H})$ with $\gamma(A_{i}\Delta\tilde{A}_{i}) = 0$. Since $\mathscr{E}(X,\mathscr{H})$ is the σ -algebra generated by the algebra

$$\Big\{\mathscr{E}(X,F_n):n\in\mathbb{N},F_n=\{\ell_1,\ldots,\ell_n\}\Big\},\$$

for any $i = 1, \ldots, m$ there exists n_i and $C_i \in \mathscr{E}(X, F_{n_i})$ with $\gamma(\tilde{A}_i \Delta C_i) \leq \frac{\varepsilon^p}{m^p |c_i|^p}$. The choice of the sets C_i implies that by defining

$$\tilde{s}_{\varepsilon} = \sum_{i=1}^{m} c_i 1\!\!1_{C_i},$$

we have

$$\begin{aligned} \|s_{\varepsilon} - \tilde{s}_{\varepsilon}\|_{L^{p}(X,\gamma)} &\leq \sum_{i=1}^{m} |c_{i}| \|\mathbb{1}_{A_{i}} - \mathbb{1}_{C_{i}}\|_{L^{p}(X,\gamma)} \\ &= \sum_{i=1}^{m} |c_{i}| \gamma (A_{i} \Delta C_{i})^{p} = \varepsilon. \end{aligned}$$

120

Then, if $n = \max\{n_i : i = 1, ..., m\}$, since \tilde{s}_{ε} is $\mathscr{E}(X, F_n)$ -measurable, by property 6. of Proposition 7.2.3 $\mathbb{E}_n \tilde{s}_{\varepsilon} = \tilde{s}_{\varepsilon}$ and then

$$\begin{split} \|f - \mathbb{E}_n f\|_{L^p(X,\gamma)} &\leq \|f - s_{\varepsilon}\|_{L^p(X,\gamma)} + \|s_{\varepsilon} - \tilde{s}_{\varepsilon}\|_{L^p(X,\gamma)} + \\ &+ \|\tilde{s}_{\varepsilon} - \mathbb{E}_n s_{\varepsilon}\|_{L^p(X,\gamma)} + \|\mathbb{E}_n s_{\varepsilon} - \mathbb{E}_n f\|_{L^p(X,\gamma)} \\ &\leq \|f - s_{\varepsilon}\|_{L^p(X,\gamma)} + \|s_{\varepsilon} - \tilde{s}_{\varepsilon}\|_{L^p(X,\gamma)} + \\ &+ \|\mathbb{E}_n(\tilde{s}_{\varepsilon} - s_{\varepsilon})\|_{L^p(X,\gamma)} + \|\mathbb{E}_n(s_{\varepsilon} - f)\|_{L^p(X,\gamma)} \\ &\leq 2\|f - s_{\varepsilon}\|_{L^p(X,\gamma)} + 2\|s_{\varepsilon} - \tilde{s}_{\varepsilon}\|_{L^p(X,\gamma)} < 4\varepsilon, \end{split}$$

where we have used the contractivity property of the conditional expectation. The proof is then completed. $\hfill \Box$