
116



Lecture A

Addendum to Lecture 7

Aim of this short note is to fix some problem present in Lecture 7. There we made the
wrong assertion that B(X) = E (X,H ), where H = {`k : k ∈ N} is a subset of X∗ such
that {hk = Rγj(`k) : k ∈ N} is an orthonormal basis of H.

First of all we prove a result concerning the σ–algebra E (X,H ) and then we use such
result to rewrite the proof of Proposition 7.4.5.

A.1 Completion of E (X,H )

Theorem A.1.1. Let X be a separable Banach space and let γ be a centred Gaussian
measure on X. If {hk : k ∈ N} is an orthonormal basis of H contained in Rγ(X∗), then

B(X)γ = E (X,H )γ

with H = {ĥk : k ∈ N} .

We need some preliminary result.

Lemma A.1.2. Let γ be a centred Gaussian measure and let x∗, y∗ ∈ X∗ be such that
‖j(x∗)‖L2(X,γ) = ‖j(y∗)‖L2(X,γ) = 1 and ‖j(x∗)− j(y∗)‖2L2(X,γ) = ε. Then for any α ∈ R

γ({x∗ ≥ α}∆{y∗ ≥ α}) ≤ 2

π

√
ε

4− ε
,

where A∆B = (A \B) ∪ (B \A).

Proof. We use essentially the fact that x∗, y∗ : X → R are random variables with image
measures N (0, 1). Let us define the map T : X → R2,

Tx =
1√
2

(x∗(x) + y∗(x), x∗(x)− y∗(x)).
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Since
ε = ‖j(x∗)− j(y∗)‖2L2(X,γ) = 2(1− 〈j(x∗), j(y∗)〉L2(X,γ)),

we deduce, by Exercise 2.4, that γ ◦ T−1 = N (0, Q) with

Q =

(
2− ε

2 0
0 ε

2

)
.

Set E = {x ∈ X : x∗(x) ≥ α}, F = {x ∈ X : y∗(x) ≥ α}. Then E = T−1(A), F = T−1(B)
where

A = {(u, v) ∈ R2 : u+ v ≥ α
√

2}, B = {(u, v) ∈ R2 : u− v ≥ α
√

2},

and we have

γ(E∆F ) =

∫
X
|1lE(x)− 1lF (x)|γ(dx) =

∫
X
|1lA(Tx)− 1lB(Tx)|γ(dx)

=

∫
R2

|1lA(u, v)− 1lB(u, v)|N (0, Q)(d(u, v))

=

∫
R2

|1lA′(s, t)− 1lB′(s, t)|N (0, I2)(d(s, t))

=2N (0, I2)(A
′ \B′),

where the sets A′ and B′ are obtained by the change of variables s = u√
2− ε

2

, t = v√
ε
2

and

then

A′ =

{
(s, t) ∈ R2 : t ≥ −

√
4− ε
ε

s+
2α√
ε

}
, B′ =

{
(s, t) ∈ R2 : t ≤

√
4− ε
ε

s− 2α√
ε

}
.

We have

A′ \B′ =
{

(s, t) ∈ R2 : −t
√

ε

4− ε
< s− 2α√

4− ε
≤ t
√

ε

4− ε

}
,

and therefore

γ(E∆F ) =2N (0, I2)(A
′ \B′)

=
1

π

∫ +∞

0
e−

t2

2

(∫ √ ε
4−ε t+

2α√
4−ε

−
√

ε
4−ε t+

2α√
4−ε

e−
s2

2 ds

)
dt

≤ 2

π

√
ε

4− ε

∫ +∞

0
te−

t2

2 dt.

Proposition A.1.3. Let x∗ ∈ X∗ and let (x∗n) be a sequence in X∗ such that j(x∗n)
converges to j(x∗) in L2(X, γ) and ‖j(x∗)‖L2(X,γ) = ‖j(x∗n)‖L2(X,γ) = 1 for any n ∈ N.
Fixed any α ∈ R, set E = {x : x∗(x) ≥ α}, En = {x : x∗n(x) ≥ α}. Then

lim
n→+∞

γ(E∆En) = 0.

In addition, if G is a sub–σ algebra of F and En ∈ G for any n ∈ N, then E ∈ (G )γ.
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Proof. The first assertion follows by Lemma A.1.2 since

‖1lE − 1lEn‖L1(X,γ) = γ(En∆E) ≤ 2

π

√
‖j(x∗)− j(x∗n)‖L2(X,γ)

4− ‖j(x∗)− j(x∗n)‖L2(X,γ)
.

Let us prove the second statement. Since 1lEn → 1lE in L1(X, γ), 1lEn is a Cauchy
sequence in L1(X,G , γ). Hence, there are a subsequence and A ∈ G with γ(A) = 1 such
that 1lEn(x) converges for any x ∈ A. Set g(x) = 0 for x ∈ X \A and

g(x) = lim
k→+∞

1lEnk (x), ∀x ∈ A.

Then g is G –measurable. Since 1lEnk has values in {0, 1}, g is the characteristic function
of some set F ⊂ A; the measurability of g implies that F ∈ G . By the Dominated
Convergence Theorem, 1lEnk converges to 1lF in L1(X,G , γ) and hence also in L1(X, γ).
On the other hand,

γ(E∆F ) = ‖1lE − 1lF ‖L1(X,γ) ≤ ‖1lE − 1lEnk‖L1(X,γ) + ‖1lEnk − 1lF ‖L1(X,γ) ∀k ∈ N.

Since 1lEn converges to 1lE in L1(X, γ), the right hand side vanishes as k → +∞, γ(E∆F ) =
0 and E ∈ (G )γ .

We can then prove the main result.

Proof. (of Theorem A.1.1) Since E (X,H ) ⊂ B(X), the inclusion

E (X,H )γ ⊂ B(X)γ

is immediate. Let us prove the reverse inclusion. Arguing as in Theorem 2.1.1, it is enough
to prove that B(x0, r) ∈ E (X,H )γ for any x0 ∈ X, r > 0. Since there exists a sequence
x∗n ∈ X∗ such that

B(x0, r) =
⋂
n∈N
{x ∈ X : |x∗(x− x0)| ≤ r},

we are reduced to show that

Ex
∗
x0,r := {x ∈ X : x∗(x0)− r ≤ x∗(x) ≤ x∗(x0) + r} ∈ E (X,H )γ

for any x∗ ∈ X∗, x0 ∈ X and r > 0. Let us distinguish the cases ‖j(x∗)‖L2(X,γ) = 0 and
‖j(x∗)‖L2(X,γ) 6= 0.

If x∗ ∈ X∗ is such that ‖j(x∗)‖L2(X,γ) = 0, then γ ◦ (x∗)−1 is a Dirac measure and then

γ(Ex
∗
x0,r) ∈ {0, 1}

depending on the fact that 0 ∈ [x∗(x0) − r, x∗(x0) + r] or not. In any case, Ex
∗
x0,r is a

null measure set modification of either the empty set or the whole space X, and then
Ex
∗
x0,r ∈ E (X,H )γ .
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In the case ‖j(x∗)‖L2(X,γ) 6= 0, we have

Ex
∗
x0,r = {x ∈ X : α1 ≤ x̄∗(x) ≤ α2} = {x̄∗ ≥ α1} ∩ {−x̄∗ ≥ −α2},

where x̄∗ ∈ X∗ is defined by

x̄∗ =
1

‖j(x∗)‖L2(X,γ)
x∗

so that ‖j(x̄∗)‖L2(X,γ) = 1 and

α1 =
x∗(x0)− r
‖j(x∗)‖L2(X,γ)

, α2 =
x∗(x0) + r

‖j(x∗)‖L2(X,γ)
.

We then apply Proposition A.1.3 with

x∗n = cn

n∑
k=1

〈j(x̄∗), ĥk〉L2(X,γ)`k,

where cn > 0 is a normalising constant such that ‖j(x∗n)‖L2(X,γ) = 1, and then, since j(x∗n)

converges to j(x∗) in L2(X, γ), we deduce that Ex
∗
x0,r ∈ E (X,H )γ .

A.2 Proof of Proposition 7.4.5

Proof. Let us fix f ∈ Lp(X, γ). We know that for any ε > 0 there exists a simple function
sε,

sε =

m∑
i=1

ci1lAi , Ai ∈ B(X), ci ∈ R \ {0},

such that ‖f − sε‖Lp(X,γ) < ε. Since B(X) ⊂ E (X,H )γ , for any i = 1, . . . ,m there exists

Ãi ∈ E (X,H ) withγ(Ai∆Ãi) = 0. Since E (X,H ) is the σ–algebra generated by the
algebra {

E (X,Fn) : n ∈ N, Fn = {`1, . . . , `n}
}
,

for any i = 1, . . . ,m there exists ni and Ci ∈ E (X,Fni) with γ(Ãi∆Ci) ≤ εp

mp|ci|p . The
choice of the sets Ci implies that by defining

s̃ε =

m∑
i=1

ci1lCi ,

we have

‖sε − s̃ε‖Lp(X,γ) ≤
m∑
i=1

|ci|‖1lAi − 1lCi‖Lp(X,γ)

=

m∑
i=1

|ci|γ(Ai∆Ci)
p = ε.
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Then, if n = max{ni : i = 1, . . . ,m}, since s̃ε is E (X,Fn)–measurable, by property 6. of
Proposition 7.2.3 Ens̃ε = s̃ε and then

‖f − Enf‖Lp(X,γ) ≤‖f − sε‖Lp(X,γ) + ‖sε − s̃ε‖Lp(X,γ)+
+ ‖s̃ε − Ensε‖Lp(X,γ) + ‖Ensε − Enf‖Lp(X,γ)
≤‖f − sε‖Lp(X,γ) + ‖sε − s̃ε‖Lp(X,γ)+

+ ‖En(s̃ε − sε)‖Lp(X,γ) + ‖En(sε − f)‖Lp(X,γ)
≤2‖f − sε‖Lp(X,γ) + 2‖sε − s̃ε‖Lp(X,γ) < 4ε,

where we have used the contractivity property of the conditional expectation. The proof
is then completed.


