
ISEM Lecture 6

Technische Universiteit Delft

December 12, 2015

Exercise 1. Let µ ∈ M([0, 1]) and let µn be the sequence defined by (6.1.1);
prove that |µn|([0, 1]) ≤ |µ|([0, 1]).

Proof. Let µ ∈M([0, 1]) and let µn be the sequence defined by

µn = µ({1})δq +

2n−1∑
i=0

µ

([
i

2n
,
i+ 1

2n

))
δ i+1

2n

We want to prove that |µn|([0, 1]) ≤ |µ|([0, 1]).

We have that

|µ|([0, 1]) = sup

∞∑
h=1

|µ(Eh)|

≥
2n−1∑
i=1

∣∣∣∣µ([ i2n , i+ 1

2n

))∣∣∣∣+ |µ({1})|

= |µn|([0, 1])

Exercise 2. Show that if (µn) is a sequence of real measures on (X,F1) weakly
convergent to µ and (νn) is a sequence of measures on (Y,F2) weakly convergent
to ν then the sequence (µn ⊗ νn) converges weakly to µ⊗ ν, cf. statements (ii)
and (iii) in Lemma 6.1.1.

For general metric spaces it could be a quite difficult exercise, so one has to
assume additional restrictions on X and Y . Let X and Y be complete sepa-
rable metric spaces, F1,F2 be Borel σ-algebras. Then one can apply Prohorov
theorem (see [1, Theorem 8.6.2]):

Theorem 1. Let X be a complete separable metric space and let M be a family
of Borel measures on X. Then the following conditions are equivalent:

(i) every sequence {µn}∞n=1 ⊂M contains a weakly convergent subsequence;

(ii) the family M uniformly bounded in the variation norm and uniformly
tight, i.e. for each ε > 0 there exists a compact set Kε ⊂ X such that
supµ∈M |µ|(X \Kε) < ε.

We also will need the following lemma, which is an easy consequence of the
Stone-Weierstrass theorem:
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Lemma 1. Let X,Y be complete separable metric spaces, K1 ⊂ X,K2 ⊂ Y
be compact. Then span {f1|K1

f2|K2
: f1 ∈ Cb(X), f2 ∈ Cb(Y )} is dense in

Cb(K1 ×K2).

Proof of Exercise 2. Let f ∈ Cb(X × Y ). Fix ε > 0. Let KX
ε ⊂ X, KY

ε ⊂ Y be
compact sets obtained by Theorem 1, namely

sup
n
|µn|(X \KX

ε ) < ε,

sup
n
|νn|(Y \KY

ε ) < ε.

Obviously the same inequalities hold true for µ and ν (one can just extend
these compact sets because µ and ν are Radon measures). Now one can find
{fk}∞k=1 ⊂ span {f1f2 : f1 ∈ Cb(X), f2 ∈ Cb(Y )} such that ‖f−fk‖C(KX

ε ×KY
ε ) →

0 as k →∞. Also by redefining fk := fk∧‖f‖C(X×Y )∨−‖f‖C(X×Y ) one derives

‖fk‖C(X×Y ) ≤ ‖f‖C(X×Y ). We know that

lim
n→∞

∫
X×Y

fkd(µn ⊗ νn) =

∫
X×Y

fkd(µ⊗ ν)

for each fixed k ≥ 1. Let k ≥ 1 be such that ‖f − fk‖C(KX
ε ×KY

ε ) ≤ ε. Then

lim sup
n→∞

∫
X×Y

fd(µn ⊗ νn) ≤ 2ε‖f‖C(X×Y ) + lim sup
n→∞

∫
KX
ε ×KY

ε

fd(µn ⊗ νn)

≤ ε(2‖f‖C(X×Y ) +K) + lim sup
n→∞

∫
KX
ε ×KY

ε

fkd(µn ⊗ νn)

≤ ε(3‖f‖C(X×Y ) +K) + lim sup
n→∞

∫
X×Y

fkd(µn ⊗ νn)

≤ ε(3‖f‖C(X×Y ) +K) +

∫
X×Y

fkd(µ⊗ ν)

≤ ε(3‖f‖C(X×Y ) + 2K) +

∫
X×Y

fd(µ⊗ ν),

where K = supn |µn|(X)|νn|(Y )∨ |µ|(X)|ν|(Y ). (The supremum exists by The-
orem 1.) Getting ε→ 0 yields

lim sup
n→∞

∫
X×Y

fd(µn ⊗ νn) ≤
∫
X×Y

fd(µ⊗ ν).

The same type of inequality can be proven for lim infn→∞
∫
X×Y fd(µn⊗νn), so

lim
n→∞

∫
X×Y

fd(µn ⊗ νn) =

∫
X×Y

fd(µ⊗ ν),

which means that µ⊗ ν is a weak limit of µn ⊗ νn.

Remark 1. The exercise holds true for so-called Prohorov spaces, i.e. for
metric spaces, in which Prohorov theorem holds true. We refer the reader to [1,
Chapter 8.10(ii)].
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Exercise 3. Verify that the eigenvalues of Q in Theorem 6.2.1 are given by
(6.2.4) and that the eigenfunctions with unit norm are given by (6.2.5).

Proof. We have to solve the following equation:
λf ′′ + f = 0,

f(0) = 0,

f ′(1) = 0.

Suppose that f(x) = ecx is a solution. Then:

λc2ecx + ecx = 0.

If λ < 0, then the solution has the form f(x) = c1e
1√
−λx + c2e

− 1√
−λx, x ∈ (0, 1),

and following the initial conditions one easily derives that c1 = c2 = 0. So let
λ ≥ 0. Then one has that f(x) = c1 cos( x√

λ
) + c2 sin( x√

λ
). If we now substitute

the beginning condition f(0) = 0, then we get: 0 = f(0) = c1. Now we look at
f ′(1) = 0. Suppose that c2=1. Then

f ′(x) = − 1√
λ
· cos(

x√
λ

),

f ′(1) = − 1√
λ
· cos(

1√
λ

).

So

f ′(1) = − 1√
λ
· cos(

1√
λ

) = 0 (1)

This holds true only for λk = 1
π2·(k+ 1

2 )
2 , k ∈ N.

Exercise 4. Prove that the stochastic processes defined in (6.3.4) are standard
Brownian motions, i.e. Definition 5.2.4.

Before solving the exercise, we recall Definition 5.2.4.

Definition 1 (Definition 5.2.4). A real valued standard Brownian motion on
[0, 1] is a stochastic process (Bt)t∈[0,1] on a probability space (Ω,F ,P) such that

(1.) B0 = 0 almost surely;

(2.) for any t, s ∈ [0, 1], s < t, the law of both random variables Bt − Bs and
Bt−s is equal to N (0, t− s);

(3.) for any 0 ≤ s < t, Bs and Bt −Bs are independent.

Proof of Exercise 4. We start with the proof that (C[0, 1],B(C[0, 1]), γW ), and
maps Wt : C[0, 1] → R, defined by Wt(f) = f(t) defines a standard Brownian
motion.

As the defining properties of standard Brownian motion are phrased in terms
of there finite-dimensional distributions, we will calculate the corresponding
characteristic functions. Exercise 1.6 and 1.7, will then show that indeed, (1.)-
(3.) are satisfied.
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We recall the result from Proposition 6.1.2. For µ ∈M([0, 1]), we have

γ̂W (µ) = exp

{
−1

2

∫
[0,1]

x ∧ y µ⊗ µ(dx, dy)

}
. (2)

(2.): Fix t, s ∈ [0, 1], s < t, we prove that Wt(f) −Ws(f) and Wt−s(f) have a
N (0, t − s) distribution. It suffices to prove the first claim. The second claim
follows from the first one as we can relabel t = t− s and s = 0, noting the first
claim also implies that W0(f) = 0 almost surely. This in turn also proves (1.).

Thus, we prove that Wt(f) −Ws(f) has a N (0, t − s) distribution. Fix some

ξ ∈ R. We calculate the characteristic function ˆWt(f)(ξ):

Ŵt(ξ) =

∫
ei〈ξ,Wt(f)−Ws(f)〉γW (df)

Note that Wt : C([0, 1]) → R is a continuous linear map. Therefore, we can
consider its adjoint W ∗t : R → M([0, 1]). By the definition of the adjoint:
〈ξ,Wt(f)〉 = 〈W ∗t (ξ), f〉 :=

∫
f dW ∗t (ξ), we see that W ∗t (ξ) = ξδt. Using this

representation, we find

Ŵt(ξ) =

∫
ei〈ξ,Wt(f)−Ws(f)〉γW (df)

=

∫
ei〈W

∗
t (ξ)−W

∗
s (ξ),f〉γW (df)

= γ̂W (W ∗t (ξ)−W ∗s (ξ))

Evaluating (2) for µ = W ∗t (ξ)−W ∗s (ξ), we find

γ̂W (ξ(δt − δs)) = exp

{
−ξ

2

2

∫
[0,1]

x ∧ y (δt − δs)⊗ (δt − δs)(dx, dy)

}

= exp

{
−ξ

2

2
(t− 2s+ s)

}
= exp

{
−ξ

2

2
(t− s)

}
.

Recalling that this equals to the characteristic function of a N (0, t− s) random
variable, we see that (2.) is satisfied by Exercise 1.6 and 1.7.

We proceed with the verification of (3.). For this we determine the two dis-
tribution of the vector (Ws(f),Wt(f) −Ws(f)) in R2. We will show that the
characteristic function of this vector agrees with the characteristic function of
the product distribution of a normal N (0, s) variable, with the distribution of
a N (0, ts) random variable. The result follows then from Exercise 1.6 and 1.7.

Fix ξ1, ξ2 ∈ R. We calculate the characteristic function of the 2-d vector:∫
ei〈ξ1,Ws(f)〉+i〈ξ2,Wt(f)−Ws(f)〉γW (df)

=

∫
ei〈ξ1δs+ξ2(δt−δs),f〉γW (df)

= γ̂W (ξ1δs + ξ2(δt − δs))
= γ̂W ((ξ1 − ξ2)δs + ξ2δt)
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By (2), we obtain that

γ̂W ((ξ1 − ξ2)δs + ξ2δt)

= exp

{
−1

2

∫
[0,1]

x ∧ y ((ξ1 − ξ2)δs + ξ2δt)⊗ ((ξ1 − ξ2)δs + ξ2δt)(dx, dy)

}

= exp

{
−1

2

(
(ξ1 − ξ2)2s+ 2(ξ1 − ξ2)ξ2s+ ξ22t

)}
= exp

{
−1

2

(
ξ21s+ ξ22(t− s)

)}
= exp

{
−1

2
sξ21

}
exp

{
−1

2
(t− s)ξ22

}
So indeed, the characteristic function of the vector (Ws(f),Wt(f)−Ws(f)) in R2

equals the characteristic function of the product distribution (N (0, s),N (0, t−
s)). As a consequence, Ws(f) and Wt(f)−Ws(f) are independent.

We proceed with the verification that the collection of maps W̃t(f) defines stan-
dard Brownian motion on L2[0, 1]. As was mentioned in the discussion board,
the definition of W̃t(f) = f(t) has some issues. First of all, as we work on
L2[0, 1] the evaluation at a point is not well defined. However, Jürgen Voigt
and Mattia Calzi have pointed out on the discussion board that C[0, 1] is a
Borel subset of L2[0, 1]. As such, we can define

W̃t(f) =

{
f(t) if f ∈ C[0, 1]

0 otherwise.

This is indeed well-defined as these maps are measurable from L2[0, 1] into R.
This follows because for every fixed t, we have that for f ∈ C[0, 1] that

1

[(t+ ε) ∧ 1]− [(t− ε) ∨ 0]

∫ (t+ε)∧1

t−ε∨0
f(s) ds→ f(t).

The maps on the left hand side are continuous from L2[0, 1] to R and converge
point-wise as ε ↓ 0 on C[0, 1] to the evaluation map Wt(f).

Using these definitions, we find that the law of W̃t(f) on R is given by the
push-forward of γ̃W : (W̃t)#(γ̃W ). But γ̃W is the push forward of γW under

ι: (W̃t)#ι#(γW ). By definition, however, W̃t ◦ ι = Wt. Thus we find that the

law of W̃t(f) on R equals the law of Wt(f) on R. Similarly, we find that all
finite dimensional distributions agree to those obtained via {Ws}0≤s≤1. Thus
(1.)− (3.) follow from the first part of this exercise.

Exercise 5. (i) Prove that the function gn in formula (6.3.5) is given by

gn(x) = µ

([
[2nx]

2n
, 1

])
,

where [2nx] is the integer part of 2nx.

(ii) Prove that if µ ∈M([0, 1]), then j(µ) = IC[0,1](g), where g(x) := µ([x, 1]).
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Proof of Exercise 5. (i) Let x ∈ [0, 1), say x ∈
[
k
2n ,

k+1
2n

)
with k ∈ {0, 1, . . . , 2n−

1}. Then 2nx ∈ [k, k + 1), so that [2nx] = k, and

gn(x)
(6.3.5)

=

2n−1∑
j=0

µ

([
j

2n
, 1

])
1[ j

2n ,
j+1
2n )(x) = µ

([
k

2n
, 1

])
= µ

([
[2nx]

2n
, 1

])
.

(ii) Put

µn :=

2n−1∑
j=0

cn,j(δ j+1
2n
− δ j

2n
), n ∈ N.

Then (as in the beginning of the proof of Proposition 6.3.5) I(gn) = j(µn) for
all n ∈ N. Furthermore, (from the end of the proof of Proposition 6.3.5 we
know that) j(µ) = limn→∞ j(µn) in L2(C[0, 1], γW ). Since IC[0,1] : L2(0, 1) −→
L2(C[0, 1], γW ) is continuous (being an isometry by Theorem 6.3.1), it thus is
enough to show that g = limn→∞ gn in L2(0, 1).
In order to show that g = limn→∞ gn in L2(0, 1), we check the conditions of
the Lebesgue dominated convergence theorem. As a consequence of the formula
from (i) we have the domination |gn| ≤ |µ|([0, 1]) for all n ∈ N. To see that

g = limn→∞ gn pointwise almost everywhere, let x ∈ [0, 1). Then [2nx]
2n ↗ x as

n→∞; indeed, if x ∈
[
k
2n ,

k+1
2n

)
with k ∈ {0, 1, . . . , 2n−1}, then 2nx ∈ [k, k+1)

and 2n+1x ∈ [2k, 2k + 2) so that [2nx]
2n = k

2n = 2k
2n+1 ≤ [2n+1x]

2n+1 and
∣∣∣ [2nx]2n − x

∣∣∣ <
2−n. So

{[
[2nx]
2n , 1

]}
n∈N

is a decreasing sequence of intervals whose intersection

is [x, 1], from which it follows that

g(x) = µ([x, 1]) = lim
n→∞

µ

([
[2nx]

2n
, 1

])
(i)
= lim

n→∞
gn(x).

This completes the proof.

Exercise 6. Prove that for any µ ∈M([0, 1]), the function

u(y) =

∫
[0,1]

min{x, y}µ(dx), y ∈ [0, 1]

is continuous.

Proof of Exercise 6. For any y, z ∈ [0, 1] (w.l.o.g. assume y ≤ z), we consider

|u(y)− u(z)| =

∣∣∣∣∣
∫
[0,1]

min{x, y}µ(dx)−
∫
[0,1]

min{x, z}µ(dx)

∣∣∣∣∣
=

∣∣∣∣∣
∫
[0,1]

(min{x, y} −min{x, z})µ(dx)

∣∣∣∣∣
=

∣∣∣∣∣
∫
[0,y]

(x− x)µ(dx) +

∫
(y,z]

(y − x)µ(dx) +

∫
(z,1]

(y − z)µ(dx)

∣∣∣∣∣
=

∣∣∣∣∣
∫
(y,z]

(y − x)µ(dx) +

∫
(z,1]

(y − z)µ(dx)

∣∣∣∣∣ .
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Now, by Exercise 1.2 and the non-positivity of the two integrands on the corre-
sponding domains, we can easily give the following upper bounds

|u(y)− u(z)| ≤

∣∣∣∣∣
∫
(y,z]

(y − x)
(
µ+ + µ−

)
(dx) +

∫
(z,1]

(y − z)
(
µ+ + µ−

)
(dx)

∣∣∣∣∣
≤ sup
x∈(y,z]

|y − x| · |µ|((y, z]) + |y − z| · |µ|((z, 1])

≤ 2 |y − z| · |µ|([0, 1]),

where we simply used the definition of total variation |µ| to obtain the last
inequality. Since µ ∈ M([0, 1]) is a finite measure, ‖µ‖TV := |µ|([0, 1]) < ∞;
hence for any fixed ε > 0, up to choose δ := ε/ (2‖µ‖TV ), we can conclude
that for any y, z ∈ [0, 1] such that |y − z| < δ, then |u(y) − u(z)| < ε, i.e. u
is (uniformly) continuous. Moreover, u is Lipschitz-continuous with Lipschitz
constant L := 2‖µ‖TV .
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