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Exercise 1. Let p € M([0,1]) and let p, be the sequence defined by (6.1.1);
prove that | ([0, 1) < |al([0, 1))-

Proof. Let p € M([0,1]) and let p, be the sequence defined by

o (i i+1
fin = p({1})dq + Z p ({2”7 2n)> diga
i=0

We want to prove that |u,|([0,1]) < |u|(]0, 1]).

We have that
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Exercise 2. Show that if (1) is a sequence of real measures on (X, F1) weakly
convergent to p and (vy,) s a sequence of measures on (Y, Fa) weakly convergent
to v then the sequence (p, @ vy) converges weakly to p @ v, cf. statements (ii)
and (i) in Lemma 6.1.1.

For general metric spaces it could be a quite difficult exercise, so one has to
assume additional restrictions on X and Y. Let X and Y be complete sepa-
rable metric spaces, F1, F2 be Borel o-algebras. Then one can apply Prohorov
theorem (see |1, Theorem 8.6.2]):

Theorem 1. Let X be a complete separable metric space and let M be a family
of Borel measures on X. Then the following conditions are equivalent:

(1) every sequence {un,}52 1 C M contains a weakly convergent subsequence;

(i) the family M uniformly bounded in the variation norm and uniformly
tight, i.e. for each € > 0 there exists a compact set K. C X such that
Sup,em ll(X\ Ke) <e.

We also will need the following lemma, which is an easy consequence of the
Stone-Weierstrass theorem:



Lemma 1. Let X,Y be complete separable metric spaces, K1 C X, Ko C Y
be compact. Then span {filk, f2lk, : J1 € Co(X), fa € Co(Y)} is dense in
Cb(Kl X Kg)

Proof of Ezercise[d Let f € Cp(X x Y). Fixe > 0. Let KX C X, KY CY be
compact sets obtained by Theorem [} namely

sup |pn|(X \ KX) < e,
n

sup [v,|(Y\ KY) < e.

Obviously the same inequalities hold true for p and v (one can just extend
these compact sets because p and v are Radon measures). Now one can find
{/7}2, Cspan {f1fo: f1 € Co(X), fa € Cy(Y)} such that || f—f*|lcixx xxy) =
0 as k — oco. Also by redefining f* := fk/\||fHC(X><Y)\/*||f||C(X><Y) one derives
/¥ lcxxyy < Ifllccxxyy- We know that

i [ o) = [ e
XXY

n— oo XxY

for each fixed k > 1. Let k£ > 1 be such that ||f — kaC(stxKEY) < e. Then

n— oo n—00

timsup [ fd(n 9 ) < 220l s [ falu, 90n)
XxXY KXxKY

< @ floxxy) + K) + limsup / (i ® )
KXxKY

n—oo

< B3l o) + K) + limsup / Fod (i © )
XxXY

n— oo

35(3||f||C(XxY)+K)+/X Yf’“d(,u@u)

Se(3||f||c<ny>+2K)+/ fd(p®v),
XxXY

where K = sup,, |pn|(X)|vn|(Y) V |e|(X)|v|(Y). (The supremum exists by The-
orem ) Getting € — 0 yields

tmsup [ fdu o)< [ fapen)
n—oo XxXY XxXY
The same type of inequality can be proven for liminf,, fXXY fd(pn, ®vy), so
i [ s = [ gduon),
=0 X xy X XY

which means that p ® v is a weak limit of u, ® v,.
O

Remark 1. The exercise holds true for so-called Prohorov spaces, i.e. for
metric spaces, in which Prohorov theorem holds true. We refer the reader to [1,
Chapter 8.10(ii)].



Exercise 3. Verify that the eigenvalues of Q) in Theorem 6.2.1 are given by
(6.2.4) and that the eigenfunctions with unit norm are given by (6.2.5).

Proof. We have to solve the following equation:

M+ F=0,
7(0) =0,
@ =o.

Suppose that f(z) = e°® is a solution. Then:
A2 et = ().

If A < 0, then the solution has the form f(z) = 16V g VRO 3 € (0,1),
and following the initial conditions one easily derives that ¢; = ¢co = 0. So let

A > 0. Then one has that f(z) = ¢ COS(%) ) sin(%). If we now substitute

the beginning condition f(0) = 0, then we get: 0 = f(0) = ¢;. Now we look at
f'(1) = 0. Suppose that ca=1. Then

(@) = = -cos( ).
F1(1) = - cos( ).
So
F/(1) =~ cos(=) =0 (1)
N SR
This holds true only for A\ = Wl-ﬁ-%)“ k e N. O]

Exercise 4. Prove that the stochastic processes defined in (6.3.4) are standard
Brownian motions, i.e. Definition 5.2.4.

Before solving the exercise, we recall Definition 5.2.4.

Definition 1 (Definition 5.2.4). A real valued standard Brownian motion on
[0, 1] is a stochastic process (Bt)ie[o,1] on a probability space (2, F,P) such that

(1.) By =0 almost surely;

(2.) for any t,s € [0,1],s < t, the law of both random variables By — Bs and
By;_s is equal to N'(0,t — s);

(3.) for any 0 < s <t, By and By — By are independent.

Proof of Ezercise[f} We start with the proof that (C[0, 1], B(C[0,1]),7"), and
maps W; : C[0,1] — R, defined by Wi(f) = f(¢) defines a standard Brownian
motion.

As the defining properties of standard Brownian motion are phrased in terms
of there finite-dimensional distributions, we will calculate the corresponding
characteristic functions. Exercise 1.6 and 1.7, will then show that indeed, (1.)-
(3.) are satisfied.



We recall the result from Proposition 6.1.2. For p € M([0,1]), we have

ﬁw(u)=exp{—;/[0”xAy u®u(dw,dy)}- (2)

(2.): Fix t,s € [0,1],s < t, we prove that Wi (f) — Ws(f) and W;_s(f) have a
N(0,t — s) distribution. It suffices to prove the first claim. The second claim
follows from the first one as we can relabel t =t — s and s = 0, noting the first
claim also implies that Wy (f) = 0 almost surely. This in turn also proves (1.).

Thus, we prove that W;(f) — Ws(f) has a N(0,¢ — s) distribution. Fix some
& € R. We calculate the characteristic function Wy (f)(&):

W) = / HEWI D= W.(D) e (df)

Note that W; : C([0,1]) — R is a continuous linear map. Therefore, we can
consider its adjoint W : R — M([0,1]). By the definition of the adjoint:
(EWi(f)) = (Wi, f) == [ fdW(§), we see that W;(€) = £0;. Using this

representation, we find

Wi(e) = / CHEWAN =W () (af)

_ / (HWE©O-WI O (af)
=Jw (W (§) = Wi(8))
Evaluating for = Wp(§) — Wx(€), we find
2

(€03 = 8.)) = exp {—52 JAREICEATICS 6s><dx,dy>}

oS- 201.9)

cen{ o)

Recalling that this equals to the characteristic function of a A (0,¢ — s) random
variable, we see that (2.) is satisfied by Exercise 1.6 and 1.7.

We proceed with the verification of (3.). For this we determine the two dis-
tribution of the vector (Ws(f), Wi(f) — Ws(f)) in R2. We will show that the
characteristic function of this vector agrees with the characteristic function of
the product distribution of a normal A/(0,s) variable, with the distribution of
a N (0,ts) random variable. The result follows then from Exercise 1.6 and 1.7.

Fix &1,& € R. We calculate the characteristic function of the 2-d vector:

CHEWL D& W)= W- () ()

—

ei<§165+§2(5t755)1f>r)/w (df)

—

= Aw (§10s + &2(0 — d5))
= Aw (&1 — &2)0s + £20¢)



By , we obtain that
Aw (€1 — €2)0s + §201)

= exp ! / T AY (€1 —&2)0s +&§201) @ (&1 — &§2)0s + §20¢) (da, dy)
2 Jo
= exp {—; (61— &)*s+2(& — &)&os + fgt)}

—on{-} (@s+0-9)}

~exp {—;sﬁ} exp {‘;“ - s)ﬁ}

So indeed, the characteristic function of the vector (W (f), Wi(f)—Ws(f)) in R?
equals the characteristic function of the product distribution (N(0, s), N (0,t —
s)). As a consequence, W(f) and Wy(f) — W(f) are independent.

We proceed with the verification that the collection of maps W (f) defines stan-
dard Brownian motion on L?[0,1]. As was mentioned in the discussion board,
the definition of W,(f) = f(t) has some issues. First of all, as we work on
L5[0,1] the evaluation at a point is not well defined. However, Jiirgen Voigt
and Mattia Calzi have pointed out on the discussion board that C[0,1] is a
Borel subset of Ly[0,1]. As such, we can define

= _ f@) if feClo,1)
Wilf) = {0 otherwise.

This is indeed well-defined as these maps are measurable from L[0, 1] into R.
This follows because for every fixed ¢, we have that for f € C[0,1] that

1 (t+e)Al
TRV oy T8 0

The maps on the left hand side are continuous from L2[0, 1] to R and converge
point-wise as € | 0 on C[0,1] to the evaluation map Wi(f).

Using these definitions, we find that the law of Wt( f) on R is given by the
push-forward of Ay : (Wt)#(ﬁw). But A4y is the push forward of ~y under
v (W)t (yw). By definition, however, W; ot = W;. Thus we find that the
law of W;(f) on R equals the law of W;(f) on R. Similarly, we find that all
finite dimensional distributions agree to those obtained via {Ws}o<s<1. Thus
(1.) — (3.) follow from the first part of this exercise. O

Exercise 5. (i) Prove that the function g, in formula (6.3.5) is given by

o= ([221.1]).

where [2"x] is the integer part of 2"x.

(ii) Prove that if p € M([0,1]), then j(u) = Icjo,1)(9), where g(x) = p([z,1]).



Proof of Ezercise[5 (i) Let z € [0,1), say z € [£%, EEL) with k € {0,1,...,2"—

1}. Then 2"z € [k, k + 1), so that [2"z] = k, and

L = Z Cn,j(fs% - 52%)7 n e N.

Jj=

(=)

Then (as in the beginning of the proof of Proposition 6.3.5) I(g,) = j(uy,) for
all n € N. Furthermore, (from the end of the proof of Proposition 6.3.5 we
know that) j(u) = lim,, o0 () in L2(C[0,1],7"). Since Icjo : L?(0,1) —
L?(C[0,1],4") is continuous (being an isometry by Theorem 6.3.1), it thus is
enough to show that g = lim,, .. g, in L?(0,1).

In order to show that g = lim,, ,o g, in L?(0,1), we check the conditions of
the Lebesgue dominated convergence theorem. As a consequence of the formula
from (i) we have the domination |g,| < |u|([0,1]) for all n € N. To see that
g = lim,,—, o g, pointwise almost everywhere, let « € [0,1). Then [2;”95] S xas
n — oo; indeed, if z € [, EtL) with k € {0,1,...,2" —1}, then 2"z € [k, k+1)

ny 9n
[2n+1x]

and 2"+ € [2k, 2k +2) so that 22 = & = 2 < B ang |2 g

<

27", So { [[2;?] , 1} } N is a decreasing sequence of intervals whose intersection
ne

is [z, 1], from which it follows that

9(2) = ([, 1]) = Timm u([[2””] 1]) D Jim g, (a).

n—oo n— oo

This completes the proof. O

Exercise 6. Prove that for any p € M([0,1]), the function

u(y) = /[ minga ),y e (01

18 continuous.

Proof of Ezercise[l For any y,z € [0,1] (w.l.o.g. assume y < z), we consider

Ju(y) — u(z)| = /H min{z, y}u(dz) — /H min{z, z}(dz)

= / (min{z,y} — min{z, z}) p(dx)
[0,1]

- /[O,y] (x — ) pu(de) + /(] (v =) ulda) + [ (=) n(da)

(1]

_ /(] (v =) ptde) + [ (=) nlda)

(1]




Now, by Exercise 1.2 and the non-positivity of the two integrands on the corre-
sponding domains, we can easily give the following upper bounds

u(y) —u(2)] <

/(](y:c)(u++u)(dx)+/ (y—2) (u* +p7) (do)

(2:1]

< sup_ ly = x| - ul((y, 2]) + 1y — 2] - [ul((2,1])
re(y,z

< 2|y — 2| - |ul((0,1]),

where we simply used the definition of total variation |u| to obtain the last
inequality. Since pu € M([0,1]) is a finite measure, ||u|lrv := |u|([0,1]) < oc;
hence for any fixed € > 0, up to choose 0 := ¢/ (2| |p|lrv), we can conclude
that for any y,z € [0,1] such that |y — z| < 4§, then |u(y) — u(z)| < ¢, Le. u
is (uniformly) continuous. Moreover, w is Lipschitz-continuous with Lipschitz
constant L := 2||u|lrv. O
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