
Lecture 5

The Brownian motion

In this and in the next Lecture we present a very important example: the classical Wiener
space, which is to some extent the basic and main reference example of the theory. To do
this, we introduce the Wiener measure and we define the Brownian motion. With these
tools, in the next Lecture we shall define the stochastic integral and we shall use it to
characterise the reproducing kernel X⇤

�

when � is the Wiener measure on X = C([0, 1]),
the Banach space of real valued continuos functions. For the material of this chapter we
refer the reader for instance to the books [Ba, D].

5.1 Some notions from Probability Theory

In this section we recall a few notions of probability theory. As in Definition 1.1.2, a
probability is nothing but a positive measure P on a measurable (or probability) space
(⌦,F ) such that P(⌦) = 1.

Any measurable Rd-valued function defined on a a probability space (⌦,F ,P) is called
random variable. Usually, random variables are denoted by the last letters of the alphabet.

Using the image measure, we call P � X

�1 the law of the Rd-valued random variable
X : ⌦ ! Rd. The law of a random variable is obviously a probability measure.

Given a real valued random variable X 2 L

1(⌦,F ,P), we denote by

E[X] =

Z

⌦
XdP

the average or the expectation ofX. We also define the variance of the real random variable
X, in case X 2 L

2(⌦,F ,P), as

Var[X] = E[(X � E[X])2] =

Z

⌦
(X � E[X])2dP.

Let us introduce the notion of stochastic process.
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Definition 5.1.1. A stochastic process (X
t

)
t2I on a probability space (⌦,F ,P) indexed

on the interval [0, 1] is a function X : [0, 1] ⇥ ⌦ ! R such that for any t 2 [0, 1] the
function X

t

(·) = X(t, ·) is a random variable on (⌦,F ,P).

We give now the notion of independence, both for sets and for functions. Notice that
a measurable set is often called event in the present context.

Definition 5.1.2 (Independence). Let (⌦,F ,P) be a probability space. Two sets or events
A,B 2 F are independent if

P(A \B) = P(A) · P(B).

Two sub-�-algebras F1,F2 of F are independent if any set A 2 F1 is independent of any
set B 2 F2, that is

P(A \B) = P(A) · P(B), 8A 2 F1, 8B 2 F2.

Given a real random variable X and F 0 sub-�-algebra contained in F , we say that X

is independent of F 0 if the �-algebras �(X) and F 0 are independent (1). Two random
variables X and Y are independent if �(X) and �(Y ) are independent. Two stochastic
processes (X

t

)
t2I and (Y

t

)
t2I are independent if �(X

t

) and �(Y
t

) are independent for any
t 2 I.

One of the first properties of independence is expressed in the following

Proposition 5.1.3. Let X and Y be two independent real random variables on (⌦,F ,P).
If X,Y,X · Y 2 L

1(⌦,F ,P), then

E[X · Y ] = E[X] · E[Y ].

Proof. Splitting both X and Y in positive and negative part, it is not restrictive to as-
sume that X and Y are nonnegative. Let us consider two sequences of simple functions
(s

i

)
i2N, (s0

i

)
i2N ⇢ S+ such that s

i

is �(X)-measurable and s

0
i

is �(Y )-measurable for any
i 2 N, and such that

E[X] = lim
i!+1

E[s
i

], E[Y ] = lim
i!+1

E[s0
i

].

We have

s

i

=
n

iX

h=1

c

i,h

1l
A

i,h

, s

0
i

=
m

iX

h=1

c

0
i,k

1l
A

0
i,k

withA

i,h

2 �(X), A0
i.k

2 �(Y ). Then (s
i

·s0
i

)
i2N is a sequence of simple functions converging

(1)We recall that �(X) is the �–algebra generated by the sets {! 2 ⌦ : X(!) < a} with a 2 R.
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to X · Y and then, by independence

E[X · Y ] = lim
i!+1

E[s
i

· s0
i

] = lim
i!+1

n

iX

h=1

m

iX

k=1

c

i,h

c

0
i,k

E[1l
A

i,h

· 1l
A

0
i,k

]

= lim
i!+1

n

iX

h=1

m

iX

k=1

c

i,h

c

0
i,k

P(A
i,h

\A

0
i,k

)

= lim
i!+1

n

iX

h=1

m

iX

k=1

c

i,h

c

0
i,k

P(A
i,h

) · P(A0
i,k

)

= lim
i!+1

n

iX

h=1

c

i,h

P(A
i,h

)
m

iX

k=1

c

0
i,k

P(A0
i,k

)

= lim
i!+1

E[s
i

] · E[s0
i

] = E[X] · E[Y ].

In the same way it is possible to prove the next result; we leave its verification as an
exercise.

Corollary 5.1.4. Let X and Y be two independent real random variables on (⌦,F ,P)
and let f, g : R ! R be two Borel functions. If f(X), g(Y ), f(X) · g(Y ) 2 L

1(⌦,F ,P),
then

E[f(X) · g(Y )] = E[f(X)] · E[g(Y )].

Remark 5.1.5. Using Corollary 5.1.4, it is possible to prove that two random variables X
and Y are independent if and only if P�(X,Y )�1 = (P�X�1)⌦(P�Y �1), see Exercise 5.1.
As a consequence, Lemma 3.1.7 can be rephrased saying that for every f , g 2 X

⇤, the
elements j(f), j(g) are orthogonal in X

⇤
�

i↵ they are independent.

5.2 The Wiener measure PW

and the Brownian motion

We start by considering the space R[0,1], the set of all real valued functions defined on
[0, 1]. We introduce the �–algebra F generated by the sets

{! 2 R[0,1] : P
F

(!) 2 B},

where F = {t1, . . . , tm} is any finite set contained in [0, 1], B 2 B(Rm) and P

F

: R[0,1] !
Rm is defined by

P

F

(!) = (!(t1), . . . ,!(tm)).

We denote by C
F

the �–algebra P

�1
F

(B(Rm)), and we define a measure µ

F

on C
F

by
setting, in the case 0 < t1 < . . . < t

m

µ

F

(A) =
1

(2⇡)
m

2

p
t1(t2 � t1) · . . . · (tm � t

m�1)

Z

P

F

(A)
e

� x

2
1

2t1
+...� (x

m

�x

m�1)
2

2(t
m

�t

m�1)
dx;
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in the case 0 = t1 < . . . < t

m

µ

F

(A) =
1

(2⇡)
m�1

2

p
t2 · . . . · (tm � t

m�1)

Z

(P
F

(A))0

e

� x

2
2

2t2
+...� (x

m

�x

m�1)
2

2(t
m

�t

m�1)
dx

0

where
(P

F

(A))0 = {x0 2 Rm�1 : (0, x0) 2 P

F

(A)}.

For F = {0}, we set µ{0} = �0, the Dirac measure at 0. In this way we have defined a
family of measures µ

F

on the �–algebras C
F

.
We shall use the following result to extend the family of measure µ

F

to a unique
probability measure on (R[0,1]

,F ). It is known as the Daniell–Kolmogorov extension
theorem, that we present only in the version we need for our purposes. Its proof relies on
the following basic results.

Proposition 5.2.1. Let µ be a real valued finitely additive set function on an algebra A .
Then µ is countably additive on A if and only if it is continuous at ;, i.e.

lim
n!+1

µ(A
n

) = 0

for every decreasing sequence of sets (A
n

) ⇢ A such that \
n2NAn

= ;.

Theorem 5.2.2. Let µ be a real valued countably additive set function on an algebra A .
Then µ extends to a unique finite measure on the �-algebra generated by A .

The proof of Proposition 5.2.1 is left as an exercise, see Exercise 5.2. For Theorem
5.2.2 we refer to [D, Theorems 3.1.4, 3.1.10]).

Theorem 5.2.3 (Daniell–Kolmogorov extension). There exists a unique probability mea-
sure PW , called the Wiener measure on (R[0,1]

,F ) such that for every finite F ⇢ [0, 1],
PW (A) = µ

F

(A) if A 2 C
F

.

Proof. We notice that if F 0 = F [ {t
m+1} with t

m

< t

m+1  1, then for any B 2 B(Rm),
P

�1
F

(B) = P

�1
F

0 (B ⇥ R), so that

µ

F

(P�1
F

(B)) = µ

F

0(P�1
F

0 (B ⇥ R)).

This argument can be generalised to the case F ⇢ G ⇢ [0, 1], F and G finite sets with
cardinality m and n respectively, to conclude that if A = P

�1
F

(B) = P

�1
G

(B0), B 2 B(Rm),
B

0 2 B(Rn), then µ

F

(A) = µ

G

(A). So, for A 2 C
F

, we can set

PW (A) := µ

F

(A).

The set function PW is defined on the algebra

A =
[

F⇢[0,1] finite

C
F

;
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it is finitely additive since if A 2 C
F

and B 2 C
G

are two disjoint sets, then A[B 2 C
F[G

and

PW (A [B) = µ

F[G(A [B) = µ

F[G(A) + µ

F[G(B) = µ

F

(A) + µ

G

(B)

= PW (A) + PW (B).

Moreover, PW (R[0,1]) = 1. To extend PW to the �–algebra F , we apply Proposition 5.2.1
and Theorem 5.2.2. Let us prove that PW is continuous at ;. Assume by contradiction
that there are " > 0 and a sequence (A

n

) 2 A of decreasing sets whose intersection is
empty, such that

PW (A
n

) > ", 8n 2 N.
Without loss of generality, we may assume that A

n

= P

�1
F

n

(B
n

) with F

n

containing n

points and B

n

2 B(Rn), and that F
n

⇢ F

n+1. Denote by ⇡

n

: Rn+1 ! Rn the projection
such that ⇡

n

� P

F

n+1 = P

F

n

. Since each measure µ

F

n

� P

�1
F

n

is a Radon measure in Rn,

for every n 2 N there is a compact set K

n

⇢ B

n

such that PW (A
n

\ C

n

) <

"

2n , where

C

n

= P

�1
F

n

(K
n

). By replacing K

n+1 by K̃

n+1 = K

n+1\⇡

�1
n

(K
n

), we get K̃
n+1 ⇢ ⇡

�1
n

(K̃
n

).

In order to see that the K̃

n

are nonempty, we bound from below their measure. Setting
as before C̃

n

= P

�1
F

n

(K̃
n

), we have

µ

F

n

� P�1
F

n

(K̃
n

) = PW (C̃
n

) = PW (A
n

)� PW (A
n

\ C̃
n

)

= PW (A
n

)� PW

⇣ n[

k=1

A

n

\ C
k

⌘
� PW (A

n

)� PW

⇣ n[

k=1

A

k

\ C
k

⌘

� "�
nX

k=1

"

2k
> 0.

Therefore, for any n 2 N we can pick an element

x

(n) = (x(n)1 , . . . , x

(n)
n

) 2 K̃

n

.

Since K̃
n

⇢ ⇡

�1
n�1(K̃n�1), the sequence (x

(n)
1 ) is contained in K̃1, then up to subsequences, it

converges to y1 2 K̃1, i.e. there exists (x
(k

n

)
1 ) converging to y1. The sequence (x

(k
n

)
1 , x

(k
n

)
2 )

is contained in K̃2, then up to subsequences, there exists y2 such that it converges to
(y1, y2) 2 K̃2. Iterating the procedure, we can define a sequence (y

n

) such that

(y1, . . . , yn) 2 K̃

n

, 8n 2 N.

Then
P

�1
F

n

({(y1, . . . , yn)}) ⇢ C̃

n

⇢ A

n

, 8n 2 N,
hence

S := {! 2 R[0,1] : !(t
j

) = y

j

8j 2 N} ⇢
1\

n=1

A

n

which is a contradiction, as S 6= ;. Therefore, PW is continuous at ;. By Proposition
5.2.1, PW is countably additive, and by Theorem 5.2.2 it has a unique extension (still
denoted by PW ) to the �-algebra F generated by A .
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Once the Wiener measure has been defined, we give a formal definition of the Brownian
motion.

Definition 5.2.4 (Standard Brownian motion). A real valued standard Brownian motion
on [0, 1] is a stochastic process (B

t

)
t2[0,1] on a probability space (⌦,F ,P) such that:

1. B0 = 0 almost surely;

2. for any t, s 2 [0, 1], s < t, the law of both random variables B

t

� B

s

and B

t�s

is
equal to N (0, t� s);

3. for any 0  s < t, B
s

and B

t

�B

s

are independent.

An explicit construction of a Brownian motion is in the following proposition.

Proposition 5.2.5 (Construction and properties of Brownian motion). Given the proba-
bility space (R[0,1]

,F ), the family of functions B

t

: R[0,1] ! R defined by

B

t

(!) = !(t), t 2 [0, 1]

is a real valued standard Brownian motion on [0, 1].

Proof. The proof relies on the equalities

B

t

(!) = !(t) = P{t}(!).

First of all we notice that for any t 2 [0, 1]

B

�1
t

(B(R)) = C{t}.

Then B

t

is F -measurable and (B
t

)
t2[0,1] is a stochastic process.

By definition of the Wiener measure, we have

PW (B0 2 A) = µ{0}(P
�1
{0}(A)) = �0(A), 8A 2 B(R),

and then B0 = 0, PW –almost surely. Let us now compute PW �B�1
t�s

, for t > s. For every
Borel set A ⇢ R,

PW (B
t�s

2 A) =PW (P�1
{t�s}(A)) = µ{t�s}(P

�1
{t�s}(A))

=
1p

2⇡(t� s)

Z

A

e

� x

2

2(t�s)
dx = N (0, t� s)(A).

On the other hand, if we define h : R2 ! R, h(x, y) := y � x, then

{! 2 R[0,1] : B
t

(!)�B

s

(!) 2 A} = {! 2 R[0,1] : !(t)� !(s) 2 A}

= {! 2 R[0,1] : h(P{s,t}(!)) 2 A} = P

�1
{s,t}(h

�1(A)).
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Hence

PW ({B
t

�B

s

2 A}) =µ{s,t}(P
�1
{s,t}(h

�1(A))) =
1

2⇡
p
s(t� s)

Z

h

�1(A)
e

�x

2

2s +
(y�x)2

2(t�s)
dxdy

=
1p
2⇡s

Z

R

✓
1p

2⇡(t� s)

Z

(h�1(A))
x

e

� (y�x)2

2(t�s)
dy

◆
e

�x

2

2s
dx

where

(h�1(A))
x

= {y 2 R : (x, y) 2 h

�1(A)} = {y 2 R : y � x 2 A} = A+ x.

As a consequence,

1p
2⇡(t� s)

Z

(h�1(A))
x

e

� (y�x)2

2(t�s)
dy =

1p
2⇡(t� s)

Z

A+x

e

� (y�x)2

2(t�s)
dy

=
1p

2⇡(t� s)

Z

A

e

� z

2

2(t�s)
dz

= N (0, t� s)(A),

and therefore PW ({B
t

�B

s

2 A}) = N (0, t� s)(A).
In order to verify independence, we fix 0 < s < t and A1, A2 2 B(R). Then

{B
s

2 A1} = P

�1
{s}(A1) = P

�1
{s,t}(A1 ⇥ R),

and

{B
t

�B

s

2 A2} = P

�1
{s,t}(h

�1(A2)),

so we have

PW ({B
s

2 A1} \ {B
t

�B

s

2 A2}) = PW (P�1
{s,t}((A1 ⇥ R) \ h

�1(A2))

= µ{s,t}(P
�1
{s,t}((A1 ⇥ R) \ h

�1(A2))

=
1

2⇡

1p
s(t� s)

Z

(A1⇥R)\h�1(A2)
e

�x

2

2s �
(y�x)2

2(t�s)
dxdy

=
1

2⇡

1p
s(t� s)

Z

R
e

�x

2

2s

 Z

((A1⇥R)\h�1(A2))x

e

� (y�x)2

2(t�s)
dy

!
dx

=
1

2⇡

1p
s(t� s)

Z

A1

e

�x

2

2s

✓Z

A2+x

e

� (y�x)2

2(t�s)
dy

◆
dx

=
1p
2⇡s

Z

A1

e

�x

2

2s
dx

1p
2⇡(t� s)

Z

A2

e

� z

2

2(t�s)
dz

= PW ({B
s

2 A1}) · PW ({B
t

�B

s

2 A2}).
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Now, we have a measure on (R[0,1]
,F ), but we are looking for a measure on a separable

Banach space. We now show how to define the measure PW on C([0, 1]); this is not
immediate because C([0, 1]) does not belong to F . To avoid this problem, the main
point is to prove that the Brownian motion (B

t

) can be modified in a convenient way to
obtain a process with continuous trajectories. We prove something more, namely that the
trajectories are Hölder continuous for PW a.e. ! 2 R[0,1].

We need the following useful lemma. We recall that the limsup of a sequence of sets
(A

n

) is defined by

lim sup
n!+1

A

n

:=
\

n2N

[

k�n

A

k

and it is the set of points ! such that ! 2 A

n

for infinitely many n 2 N.

Lemma 5.2.6 (Borel-Cantelli). Let (⌦,F ,P) be a probability space and let (A
n

)
n2N ⇢ F

be a sequence of measurable sets. If

X

n2N
P(A

n

) < +1,

then

P
✓
lim sup
n!+1

A

n

◆
= 0.

Proof. We define the sets

B

n

:=
[

k�n

A

k

.

Then B

n+1 ⇢ B

n

for every n, and setting

B :=
\

n2N
B

n

= lim sup
n!+1

A

n

,

by the continuity property of measures along monotone sequences (see Remark 1.1.3)

P(B) = lim
n!+1

P(B
n

).

On the other hand,

lim
n!+1

P(B
n

) = lim
n!+1

P

0

@
[

k�n

A

k

1

A

 lim
n!+1

X

k�n

P(A
k

) = 0.
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Now we state and prove the Kolmogorov continuity theorem; we need the notion of
version of a stochastic process. Given two stochastic processes X

t

,

e
X

t

, t 2 [0, 1] on a
probability space (⌦,F ,P), we say that eX

t

is a version of X
t

if

P({X
t

6= e
X

t

}) = 0, 8t 2 [0, 1].

We use also the Chebychev’s inequality, whose proof is left as Exercise 5.3. For any � > 0,
for any measurable function f such that |f |� 2 L

1(⌦, µ) we have

µ({|f | � �})  1

�

�

Z

⌦
|f |�dµ 8� > 0.

Theorem 5.2.7 (Kolmogorov continuity Theorem). Let (X
t

)
t2[0,1] be a stochastic process

on a probability space (⌦,F ,P) and assume that there exist ↵,� > 0, such that

E[|X
t

�X

s

|� ]  C|t� s|1+↵

, t, s 2 [0, 1].

Then there exists a version ( eX
t

)
t2[0,1] such that the map t 7! e

X

t

(!) is �–Hölder continuous
for any � <

↵

�

and for P–a.e. ! 2 ⌦.

Proof. Let us define

D
n

=

⇢
k

2n
: k = 0, . . . , 2n

�
, D =

[

n2N
D

n

.

We compute the measures of the sets

A

n

=

⇢
max

1k2n

���X k

2n
�X

k�1
2n

��� �
1

2�n

�
;

using Chebychev’s inequality. We have

P(A
n

) = P
 

2n[

k=1

⇢���X k

2n
�X

k�1
2n

��� �
1

2�n

�!


2nX

k=1

P
✓⇢���X k

2n
�X

k�1
2n

��� �
1

2�n

�◆


2nX

k=1

2�n�E
���X k

2n
�X

k�1
2n

���
�

�

 C

2nX

k=1

2�n�
����
k

2n
� k � 1

2n

����
1+↵

= C2�n(↵���)
.

As a consequence we obtain that the series
X

n2N
P(A

n

)  C

X

n2N
2�n(↵���)
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is convergent if � <

↵

�

. In this case, by the Borel-Cantelli Lemma 5.2.6, the set

A = ⌦ \ lim sup
n!+1

A

n

has full measure, P(A) = 1. By construction, for any ! 2 A there exists N(!) such that

max
1k2n

���X k

2n
(!)�X

k�1
2n

(!)
���  2��n

, 8n � N(!).

We claim that for every ! 2 A the restriction of the function t ! X

t

(!) to D is �–Hölder
continuous, i.e.,

9 C > 0 such that |X
t

(!)�X

s

(!)|  C|t� s|� (5.2.1)

for all t, s 2 D . Indeed, it is enough prove that (5.2.1) holds for t, s 2 D with |t � s| 
2�N(!).

Fixed t, s 2 D such that |t � s|  2�N(!), there exists a unique n � N(!) such that
2�n�1

< |t� s|  2�n. We consider the sequences s
k

 s, t
k

 t, s
k

, t

k

2 D, defined by

s

k

=
kX

i=0

[2is]

2i
, t

k

=
kX

i=0

[2it]

2i
,

where [x] is the integer part of x. Such sequences are monotone increasing, and since
t, s 2 D , they are eventually constant. Moreover,

s

k+1 � s

k

 1

2k+1
, t

k+1 � t

k

=
1

2k+1
, k 2 N.

Then,

X

t

(!)�X

s

(!) = X

t

n

(!)�X

s

n

(!) +
X

k�n

(X
t

k+1(!)�X

t

k

(!))�
X

k�n

(X
s

k+1(!)�X

s

k

(!))

where the series are indeed finite sums. Hence

|X
t

(!)�X

s

(!)|  2��n + 2
X

k�n

2��(k+1) =
2��n

1� 2��

=
2��

1� 2��

|t� s|� .

So (5.2.1) holds with C = 2��

1�2��

, for t, s 2 D with |t � s|  2�N(!). Covering [0, 1] by

a finite number of intervals with length 2�N(!), we obtain that (5.2.1) holds for every
t, s 2 D (possibly, with a larger constant C). In particular, the mapping t 7! X

t

(!) is
uniformly continuous on the dense set D ; therefore it admits a unique continuous extension
to the whole [0, 1] which is what we need to define eX

t

(!).
Let us define for ! 2 A

e
X

t

(!) = lim
D3s!t

X

s

(!),

and for ! 62 A

e
X

t

(!) = 0.
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It is clear that P({X
t

6= e
X

t

}) = 0 if t 2 D . For an arbitrary t 2 [0, 1], there exists a
sequence (t

h

) in D such that X
t

h

converges to eX
t

P–a.e.. We use Egoro↵’s Theorem, see
for instance [D, Theorem 7.5.1]: for any " > 0 there exists E

"

2 F such that P(E
"

) < "

and X

t

h

converges uniformly to e
X

t

on ⌦ \ E
"

. This implies convergence in measure, i.e.
for any � > 0

lim
h!+1

P({|X
t

h

� e
X

t

| > �}) = 0.

On the other hand, we know that

P({|X
t

h

�X

t

| > �})  1

�

�

E[|X
t

h

�X

t

|� ]  C|t
h

� t|1+↵

�

�

and then
lim

h!+1
P({|X

t

h

�X

t

| > �}) = 0.

We deduce that eX
t

= X

t

P–a.e., see Exercise 5.6. Hence ( eX
t

) is a version of (X
t

).

Our aim now is to define a Borel measure (the Wiener measure) on the Banach space
C([0, 1]) endowed as usual with the sup norm. To do this we use the Brownian motion
(B

t

)
t2[0,1] on (R[0,1]

,F ).

Lemma 5.2.8. Let PW be the Wiener measure on (R[0,1]
,F ) and let (B

t

)
t2[0,1] be the

Brownian motion defined in Proposition 5.2.5. Then, for any k 2 N

E[(B
t

�B

s

)k] =

8
><

>:

0 if k odd

k!

( k

2 )!2
k

2
|t� s|

k

2 if k even.

Proof. Let us take 0 < s < t. Since the law of B
t

�B

s

is N (0, t� s), we get

I

k

:= E[(B
t

�B

s

)k] =
1p

2⇡(t� s)

Z

R
x

k

e

� x

2

2(t�s)
dx.

As a consequence I

k

= 0 if k is odd, whereas integrating by parts one obtains I0 = 1,
I2 = (t� s) and I2h = (2h� 1)(t� s)I2h�2 for h � 2.

Lemma 5.2.8 and Theorem 5.2.7 yield that, fixed any � < 1/2, there exists a version
( eB

t

) of (B
t

) such that the trajectories t 7! e
B

t

(!) are �–Hölder continuous, in particular
they are continuous. For any t, the random variables B

t

and e
B

t

have the same law,
PW �B�1

t

= PW � eB�1
t

. The map P : R[0,1] ! Rn,

P (!) = ( eB
t1(!), . . . , eBt

n

(!)) (5.2.2)

is measurable for any choice t1, . . . , tn 2 [0, 1], and the image measure of PW under the
map P is the same as the image measure of PW under the map

! 7! (B
t1(!), . . . , Bt

n

(!)).
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Finally, for C 2 C
F

, PW � P�1(E) = µ

F

(E). We leave the verification of these properties
as an exercise, see Exercise 5.5.

We recall some facts. The first one is the characterisation of the dual space (C([0, 1]))⇤.
We denote by M ([0, 1]) the space of all real finite measures on [0, 1]; it is a real Banach
space with the norm kµk = |µ|([0, 1]), see Exercise 5.4.

Theorem 5.2.9 (Riesz representation Theorem). There is a linear isometry between the
space M ([0, 1]) of finite measures and (C([0, 1]))⇤, i.e. L 2 (C([0, 1]))⇤ i↵ there exists
µ 2 M ([0, 1]) such that

L(f) =

Z

[0.1]
!(t)µ(dt), 8! 2 C([0, 1]).

In addition kLk = |µ|([0, 1]).

We refer to [D, Theorem 7.4.1] for a proof.
We define the �–algebra C 0

F

for F = {t1, . . . , tn} as the family of sets

C = {! 2 C([0, 1]) : (!(t1), . . . ,!(tn)) 2 B},

where B 2 B(Rn). We also define the algebra

A 0 =
[

F⇢[0,1], F finite

C 0
F

and we denote by F 0 the �–algebra generated by A 0. Using Theorem 5.2.9 and the fact
that any Dirac measure �

t

is in (C([0, 1]))⇤, it is clear that F 0 ⇢ B(C([0, 1])); indeed, if
F = {t1, . . . , tn} and B 2 B(Rn), we have

C :={! 2 C([0, 1]) : (!(t1), . . . ,!(tn)) 2 B}
={! 2 C([0, 1]) : (�

t1(!), . . . , �tn(!) 2 B} 2 E (C([0, 1]), {�
t1 , . . . , �tn}).

We have also the reverse inclusion, i.e. B(C([0, 1])) ⇢ F 0; the proof is similar to the
proof of Theorem 2.1.1. Indeed, fix !0 2 C([0, 1]), r > 0 and let D be the set in the
proof of the Kolmogorov continuity Theorem 5.2.7. Note that ! 2 B(!0, r) if and only if
k! � !0k1  r, and by continuity this is equivalent to |!(t) � !0(t)|  r for any t 2 D .
Then

B(!0, r) =
\

n2N

⇢
! 2 C([0, 1]) : !

⇣
k

2n

⌘
2
h
r � !0

⇣
k

2n

⌘
, r + !0

⇣
k

2n

⌘i
, 8k = 0, . . . , 2n

�
.

The set in the right hand side belongs to F 0. Since C([0, 1]) is separable then as in the
proof of Theorem 2.1.1 B(C([0, 1])) ⇢ F 0.

Now we consider a version ( eB
t

) of (B
t

), constructed using the Kolmogorov continuity
Theorem 5.2.7 and a set A 2 F such that PW (A) = 1 and t 7! e

B

t

(!) is continuous for
any ! 2 A. We define the restricted �–algebra

F
A

= {E \A : E 2 F}

and the restriction PW

A

of PW to F
A

.
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Proposition 5.2.10. The map eB : (A,F
A

) ! (C([0, 1]),B(C([0, 1]))) defined by

e
B(!)(t) := e

B

t

(!)

is measurable. The image measure PW

A

� eB�1, called the Wiener measure on C([0, 1]), has
the property that for any E 2 C 0

F

PW

A

� eB�1(E) = µ

F

( eB�1(E)). (5.2.3)

Proof. We know that B(C([0, 1])) = F 0, so it is su�cient to prove that for every finite
set F = {t1, . . . , tn} ⇢ [0, 1], we have

e
B

�1(C) 2 F
A

, 8C 2 C 0
F

.

Let E 2 B(Rn) and
C = {! 2 A : (!(t1), . . . ,!(tn)) 2 E}.

Then
e
B

�1(C) = {! 2 A : ( eB
t1(!), . . . , eBt

n

(!)) 2 E} = A \ P

�1(E)

where P is the map defined in (5.2.2). Since P is measurable, then e
B

�1(C) 2 F
A

The
last assertion follows from the fact that PW (A) = 1 and

(PW

A

� eB�1)(C) = PW (A \ P

�1(E)) = PW (P�1(E)) = µ

F

(P�1(E))

since P

�1(E) 2 C
F

.

5.3 Exercises

Exercise 5.1. Use Corollary 5.1.4 to prove that two random variables X and Y on a
probability space (⌦,F ,P) are independent if and only if P � (X,Y )�1 = (P �X�1)⌦ (P �
Y

�1).

Exercise 5.2. Prove Proposition 5.2.1.

Exercise 5.3. Prove the Chebychev’s inequality: if � > 0 and f is a measurable function
uch that |f |� 2 L

1(⌦, µ), we have for any � > 0

µ({|f | � �})  1

�

�

Z

⌦
|f |�dµ.

Exercise 5.4. Prove that the vector space M ([0, 1]) with norm given by the total variation
is a Banach space.

Exercise 5.5. Prove that the map P : R[0,1] ! Rn, defined by (5.2.2), is measurable.
Prove that PW � P�1 = PW � T�1 with

T (!) = (!(t1), . . . ,!(tn)) = (B
t1(!), . . . , Bt

n

(!)).

Prove in addition that if C 2 C
F

, then

(PW � P�1)(C) = µ

F

(C).

Exercise 5.6. Let (X
n

) be a sequence of random variables on a probability space (⌦,F ,P),
that converge in law to X and to Y . Prove that X = Y , P–a.e.
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