Solutions to the exercises of Lecture 5 of the ISem 2015/16

Team Karlsruhe

November 17, 2015

Exercise 5.1

Claim: The real valued random variables X and Y on a probability space (Ω, \mathscr{F}, P) are independent if and only if the joint distribution $P \circ (X, Y)^{-1}$ coincides with $(P \circ X^{-1}) \otimes (P \circ Y^{-1})$. *Proof:* 1) By Corollary 5.1.4, the independence of X and Y implies

$$
E[f(X)g(Y)] = E[f(X)]E[g(Y)]
$$

for all bounded and measurable functions f and g. In particular, it we choose $f = \mathbf{1}_{B_1}$ and $g = \mathbf{1}_{B_2}$ for Borel sets $B_1, B_2 \subset \mathbb{R}$, we obtain

$$
(P \circ (X, Y)^{-1})(B_1 \times B_2) = P((X, Y) \in B_1 \times B_2)
$$

=
$$
\int_{\mathbb{R}^2} \mathbf{1}_{B_1}(x) \mathbf{1}_{B_2}(y) d(P \circ (X, Y)^{-1})(x, y)
$$

=
$$
E[\mathbf{1}_{B_1}(X) \mathbf{1}_{B_2}(Y)] = E[\mathbf{1}_{B_1}(X)] E[\mathbf{1}_{B_2}(Y)]
$$

=
$$
P(X \in B_1) P(Y \in B_2) = ((P \circ X^{-1}) \otimes (P \circ Y^{-1}))(B_1 \times B_2).
$$

Thus $P \circ (X, Y)^{-1}$ coincides with $P \circ X^{-1} \otimes P \circ Y^{-1}$ on cylindrical sets. Since they are stable under intersections and generate the Borel σ -algebra on \mathbb{R}^2 , we have $(P \circ (X, Y)^{-1}) =$ $((P \circ X^{-1}) \otimes (P \circ Y^{-1})).$

2) We now assume $(P \circ (X, Y)^{-1}) = ((P \circ X^{-1}) \otimes (P \circ Y^{-1}))$. Then one has

$$
P(X \in B_1, Y \in B_2) = (P \circ (X, Y)^{-1})(B_1 \times B_2) = ((P \circ X^{-1}) \otimes (P \circ Y^{-1}))(B_1 \times B_2)
$$

= $P(X \in B_1)P(Y \in B_2)$

for Borel sets $B_1, B_2 \subset \mathbb{R}$, which is the desired result.

Exercise 5.2

Assumptions: Let μ be a real valued finitely additive set function on an algebra $\mathscr A$. *Claim:* μ is countably additive (σ -additive) if and only if it is continuous at \emptyset , i.e.,

$$
\lim_{n \to +\infty} \mu(A_n) = 0
$$

for every decreasing sequence of sets $(A_n) \subset \mathscr{A}$ with $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$.

Proof: 1) Let first be μ continuous at \emptyset . Let $(A_n) \subset \mathscr{A}$ be a sequence of pairwise disjoint sets. Define $B_k := \bigcup_{n \geq k} A_n$ for all $k \in \mathbb{N}$. From $\bigcap_{k \in \mathbb{N}} B_k = \emptyset$ and the fact that (B_k) is decreasing, we infer $\lim_{k\to+\infty} \mu(B_k) = 0$. The finite additivity thus implies

$$
\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\mu\Big(A_1\cup\ldots\cup A_{k-1}\cup\bigcup_{n\geq k}A_n\Big)=\mu(A_1\cup\ldots\cup A_{k-1}\cup B_k)
$$

$$
= \sum_{n=1}^{k-1} \mu(A_n) + \mu(B_k)
$$

for all $k \in \mathbb{N}$. So we derive

$$
\lim_{k \to +\infty} \left| \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) - \sum_{n=1}^{k-1} \mu(A_n) \right| = \lim_{k \to +\infty} |\mu(B_k)| = 0,
$$

which yields (the existence of)

$$
\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\sum_{l=1}^{\infty}\mu(A_l).
$$

2) Conversely, let μ be countably additive. Let $(A_n) \subset \mathscr{A}$ be a decreasing sequence with $\bigcap_{n\in\mathbb{N}} A_n = \emptyset$. We obtain

$$
\mu(A_n) = \mu\Big(\bigcup_{k \ge n} (A_k \setminus A_{k+1})\Big) = \sum_{k=n}^{\infty} \mu(A_k \setminus A_{k+1})
$$

for all $n \in \mathbb{N}$, using that the sets $A_k \setminus A_{k+1}$ are disjoint. Since $\mu(A_n)$ is finite for each $n \in \mathbb{N}$, for all $\varepsilon > 0$ there exists an index $n_0 \in \mathbb{N}$ such that

$$
\mu(A_l) = \sum_{k=l}^{\infty} \mu(A_k \setminus A_{k-1}) < \varepsilon
$$

for every $l \geq n_0$, which is the desired continuity of μ at \emptyset .

Exercise 5.3

Assumption: Let μ be a positive measure on (Ω, \mathcal{A}) .

Claim: Given a measurable function f with $|f|^{\beta} \in L^1(\Omega, \mu)$ for some $\beta > 0$, one has

$$
\mu({\{|f| \ge \lambda\}}) \le \lambda^{-\beta} \int_{\Omega} |f|^{\beta} d\mu
$$

for all $\lambda > 0$.

Proof: The monotonicity of the integral yields

$$
\int_{\Omega} |f|^{\beta} d\mu = \int_{\{|f| \geq \lambda\}} |f|^{\beta} d\mu + \int_{\{|f| < \lambda\}} |f|^{\beta} d\mu \geq \int_{\{|f| \geq \lambda\}} \lambda^{\beta} d\mu = \lambda^{\beta} \mu(\{|f| \geq \lambda\}).
$$

Exercise 5.4

Assumptions: Let $\mathcal{M}([0,1])$ be the space of all real finite measures on [0, 1].

Claim: $\mathscr{M}([0,1])$ together with the norm $\|\mu\| = |\mu|([0,1])$ is a Banach space.

Proof: It is clear that the set of all real finite measures on $[0, 1]$ is a vector space. In the following we use

$$
\|\mu\| = |\mu|([0,1]) = \sup \left\{ \int_{[0,1]} f d\mu : f \in C([0,1]), \|f\|_{\infty} \le 1 \right\},\
$$

compare equation (1.1.3) in Lecture 1. We observe that we can also write

$$
\|\mu\| = \sup \left\{ \left| \int_{[0,1]} f \, \mathrm{d}\mu \right| : f \in C([0,1]), \|f\|_{\infty} \le 1 \right\}.
$$

We now show that $\|\cdot\|$ is a norm on $\mathscr{M}([0, 1])$. Let $\mu, \nu \in \mathscr{M}([0, 1])$. Then

$$
||\mu + \nu|| = \sup \left\{ \left| \int_{[0,1]} f d(\mu + \nu) \right| : f \in C([0,1]), ||f||_{\infty} \le 1 \right\}
$$

\n
$$
\le \sup \left\{ \left| \int_{[0,1]} f d\mu \right| + \left| \int_{[0,1]} f d\nu \right| : f \in C_b([0,1]), ||f||_{\infty} \le 1 \right\}
$$

\n
$$
\le \sup \left\{ \left| \int_{[0,1]} f d\mu \right| : f \in C([0,1]), ||f||_{\infty} \le 1 \right\}
$$

\n
$$
+ \sup \left\{ \left| \int_{[0,1]} f d\nu \right| : f \in C([0,1]), ||f||_{\infty} \le 1 \right\}
$$

\n
$$
= ||\mu|| + ||\nu||.
$$

For $\mu \in \mathcal{M}([0,1])$ and $\alpha \in \mathbb{R}$ we compute

$$
\|\alpha\mu\| = \sup \left\{ \left| \int_{[0,1]} f d(\alpha \mu) \right| : f \in C([0,1]), \|f\|_{\infty} \le 1 \right\}
$$

=
$$
\sup \left\{ |\alpha| \left| \int_{[0,1]} f d\mu \right| : f \in C([0,1]), \|f\|_{\infty} \le 1 \right\} = |\alpha| \|\mu\|.
$$

For all $\mu \in \mathcal{M}([0,1])$ we have

$$
\|\mu\| = 0 \Longleftrightarrow \int_{[0,1]} f d\mu = 0 \text{ for all } f \in C([0,1]) \text{ with } ||f||_{\infty} \le 1 \Longleftrightarrow \mu = 0.
$$

So we have seen that $\|\cdot\|$ is a norm on $\mathscr{M}([0, 1]).$

It remains to show the completeness. Let $(\mu_n)_n \subset M([0,1])$ a Cauchy sequence, i.e.,

$$
|\mu_n - \mu_m|([0,1]) := \sup \left\{ \sum_{h=1}^{\infty} |\mu_n(E_h) - \mu_m(E_h)| : E_h \in \mathcal{B}([0,1]) \text{ pairwise disjoint} \right\} \xrightarrow{m,n \to \infty} 0.
$$

In particular we have

$$
\sup_{A \in \mathcal{B}([0,1])} |\mu_n(A) - \mu_m(A)| \xrightarrow{m,n \to \infty} 0.
$$
 (1)

Therefore we can define $\mu(A) := \lim_{n \to \infty} \mu_n(A)$ for all $A \in \mathcal{B}([0,1])$. Moreover, [\(1\)](#page-2-0) implies

$$
\sup_{A \in \mathcal{B}([0,1])} |\mu_n(A) - \mu(A)| \xrightarrow{m,n \to \infty} 0.
$$
 (2)

Clearly, μ is a finite set function on $\mathcal{B}([0,1])$, which satisfies $\mu(\emptyset) = 0$. It is straight forward to check that μ is finitely additive. So, it remains to prove that μ is σ -additive, or, equivalently by Exercise 5.2, to show that μ is continuous at \emptyset . Let $\varepsilon > 0$ and $(A_k)_k \subset \mathcal{B}([0,1])$ be a decreasing sequence with $\bigcap_{k\in\mathbb{N}} A_k = \emptyset$. By [\(2\)](#page-2-1) we fix an index $n_0 \in \mathbb{N}$ such that

$$
\sup_{A \in \mathcal{B}([0,1])} |\mu_n(A) - \mu(A)| < \varepsilon
$$

for all $n \geq n_0$. Then the continuity of μ_n at \emptyset yields

$$
|\mu(A_k)| \leq |\mu(A_k) - \mu_n(A_k)| + |\mu_n(A_k)| \leq \varepsilon + |\mu_n(A_k)| \xrightarrow{k \to \infty} \varepsilon,
$$

for all $n \geq n_0$.

Exercise 5.5

Assumptions: Let $t_1, \ldots, t_n \in [0, 1]$. Define the map $P : \mathbb{R}^{[0,1]} \to \mathbb{R}^n$ via

$$
P(\omega) := \left(\tilde{B}_{t_1}(\omega), \ldots, \tilde{B}_{t_n}(\omega) \right).
$$

Claim 1: P is $\mathcal{F}\text{-measurable.}$

Proof: By the proof of Theorem 5.2.7, there is an F-measurable set $A \subset \mathbb{R}^{[0,1]}$ of full measure with

$$
\tilde{B}_t(\omega) = \lim_{\mathcal{D}\ni s \to t} B_s(\omega) = \lim_{\mathcal{D}\ni s \to t} \omega(s).
$$

for all $\omega \in A$ and $t \in [0,1]$. Moreover, $\widetilde{B}_t(\omega) = 0$ for $\omega \in A^c$ and $t \in [0,1]$. We can choose sequences $(s_1^m)_{m \in \mathbb{N}}, \ldots, (s_n^m)_{m \in \mathbb{N}}$ with

$$
P(\omega) = \lim_{m \to \infty} (\omega(s_1^m), \dots, \omega(s_n^m)) = \lim_{m \to \infty} P_{\{s_1^m, \dots, s_n^m\}}(\omega).
$$

for $\omega \in A$. The maps $P_{\{s_1^m,\dots,s_n^m\}}$ for $m \in \mathbb{N}$ are *F*-measurable by the definition of the σ -algebra F, so that the restriction $P: A \to \mathbb{R}$ is measurable. Since $P = 0$ on A^c , the claim follows thanks to the pointwise convergence.

Claim 2: One has

$$
\mathbb{P}^W \circ P^{-1} = \mathbb{P}^W \circ T^{-1},
$$

where $\mathbb{P}^W \circ T^{-1}$ is the law of the random variable defined by

$$
T(\omega)=(\omega(t_1),\ldots,\omega(t_n))=(B_{t_1}(\omega),\ldots,B_{t_n}(\omega))
$$

for $\omega \in \mathbb{R}^{[0,1]}$.

Proof: Theorem 5.2.7 yields that for each $t \in [0, 1]$ there is a null set A_t with $B_t(\omega) = \tilde{B}_t(\omega)$ for all $\omega \notin A_t$. Defining the null set N by $N := \bigcup_{j=1}^n A_{t_j}$, we obtain $T(\omega) = P(\omega)$ for all $\omega \notin N$ and hence $P = T$ almost surely. For a Borel set $B \subseteq \mathbb{R}^n$ we conclude

$$
(\mathbb{P}^W \circ P^{-1})(B) = \int_{\mathbb{R}^{[0,1]}} \mathbf{1}_B(P(\omega)) d\mathbb{P}^W(\omega) = \int_A \mathbf{1}_B(P(\omega)) d\mathbb{P}^W(\omega)
$$

=
$$
\int_A \mathbf{1}_B(T(\omega)) d\mathbb{P}^W(\omega) = \int_{\mathbb{R}^{[0,1]}} \mathbf{1}_B(T(\omega)) d\mathbb{P}^W(\omega)
$$

=
$$
(\mathbb{P}^W \circ T^{-1})(B),
$$

which implies the assertion.

Claim 3: Let $F = \{t_1, \ldots, t_n\}$, $C \in \mathscr{C}_F$ and $B \subset \mathbb{R}^n$ be a Borel set with $C = P_F^{-1}$ $P_F^{-1}(B)$. Then we have

$$
\mu_F(C) = (\mathbb{P}^W \circ P^{-1})(B).
$$

Proof: We have

$$
C = \{ \omega \in \mathbb{R}^{[0,1]} : (\omega(t_1), \dots, \omega(t_n)) \in B \} = \{ \omega \in \mathbb{R}^{[0,1]} : T(\omega) \in B \}.
$$

Using the Theorem 5.2.3. and Claim 2 we conclude

$$
\mu_F(C) = \mathbb{P}^W(C) = \mathbb{P}^W(T \in B) = (\mathbb{P}^W \circ T^{-1})(B) = (\mathbb{P}^W \circ P^{-1})(B).
$$

Exercise 5.6

Assumption: Let $(X_n)_n$ a sequence of random variables on a probability space (Ω, \mathscr{F}, P) converging to the random variables X and Y on (Ω, \mathscr{F}, P) in law.

Claim: In general the statement $X = Y$ a.s. is not true.

Proof: Consider a sequence $(X_n)_n$ of random variables with distribution $N(0, 1)$. Clearly by definition of convergence in law it converges to any $N(0, 1)$ distributed X since $P \circ X^{-1} = P \circ X_n^{-1}$
for all $n \in \mathbb{N}$. Unfortunately $Y = -X$ is also $N(0, 1)$ distributed and we have $P \circ Y^{-1} = P \circ X_n^{-1}$ for all $n \in \mathbb{N}$. But $\{Y = X\} = \{X = 0\}$ is a set of measure zero.

Exercise 5.6, second try

Assumption: Let $(X_n)_n$ a sequence of random variables on a probability space (Ω, \mathcal{A}, P) converging to the random variables X and Y on (Ω, \mathcal{A}, P) in probability. *Claim:* $X = Y$ almost surely.

Proof: Given $\varepsilon > 0$ we have $P(|X - Y| > \varepsilon) = 0$. Indeed the triangle inequality yields

$$
P(|X - Y| > \varepsilon) \le P(|X - X_n| + |X_n - Y| > \varepsilon)
$$

\n
$$
\le P(|X - X_n| > \frac{\varepsilon}{2} \text{ or } |X_n - Y| > \frac{\varepsilon}{2})
$$

\n
$$
\le P(|X - X_n| > \frac{\varepsilon}{2}) + P(|Y - X_n| > \frac{\varepsilon}{2}) \xrightarrow{n \to \infty} 0.
$$

Moreover, exploiting the continuity of the measure P we obtain

$$
P(X \neq Y) = P\left(\bigcup_{n=1}^{\infty} \{|X - Y| > \frac{1}{n}\}\right) = \lim_{n \to \infty} P(|X - Y| > \frac{1}{n}) = 0,
$$

which implies the claimed result.