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Exercise 5.1

Claim: The real valued random variables X and Y on a probability space (€2,.%, P) are inde-
pendent if and only if the joint distribution Po (X,Y)~! coincides with (Po X 1)® (PoY 1),
Proof: 1) By Corollary 5.1.4, the independence of X and Y implies

E[f(X)g(Y)] = E[f(X)]Elg(Y)]

for all bounded and measurable functions f and g. In particular, it we choose f = 1p, and
g = 1p, for Borel sets By, B, C R, we obtain

(Po(X,Y) ™) (B x By) = P((X,Y) € By x By)

_ /R 5, ()15, (p)d(P o (X,Y) )z, y)

= E[]‘Bl (X)le (Y)] = E[131 (X)]E[]-Bz (Y)]
=P(Xe€B)P(Y €By)=((Po X H®@(PoY 1)) (B x By).

Thus P o (X,Y)™! coincides with P o X' ® P o Y~! on cylindrical sets. Since they are
stable under intersections and generate the Borel o-algebra on R?, we have (P o (X,Y)™!) =
(PoX )@ (PoY™1).

2) We now assume (Po (X,Y) ) = ((PoX 1) ® (PoY™1)). Then one has

P(X €BLY € By) = (Po (X,Y) ™ )(By x By) = (Po X)) ® (P oY 1))(By x By)
— P(X € B)P(Y € By)

for Borel sets By, By C R, which is the desired result.

Exercise 5.2
Assumptions: Let u be a real valued finitely additive set function on an algebra 7.
Claim: p is countably additive (o-additive) if and only if it is continuous at 0, i.e.,

lim p(A,) =0

n—-+00

for every decreasing sequence of sets (A,) C & with (), oy An = 0.

Proof: 1) Let first be p continuous at (). Let (A,) C & be a sequence of pairwise disjoint sets.
Define By, := J,;», An for all k € N. From (", oy Br = 0 and the fact that (By) is decreasing,
we infer limy_,, o p(Bg) = 0. The finite additivity thus implies

M(UAO :u(Alu...UAk_lLJUAn) = (A1 U...UAs1UBy)

neN n>k
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|
_

:U’(An) + M(Bk)

n=1

for all £ € N. So we derive

k—1

(U A) =D (4

neN n=1

lim
k—+o0

= tm |u(By)| =0,

which yields (the existence of)

ol An) = i::u(flz)-

neN

2) Conversely, let p be countably additive. Let (A,) C o be a decreasing sequence with
Nyen An = 0. We obtain

() = (L AR\ A)) = D7 (A Age)

k>n

for all n € N, using that the sets Ay \ Agy; are disjoint. Since p(A,) is finite for each n € N,
for all € > 0 there exists an index ng € N such that

Z (AR \ Ap—1)
k=l
for every [ > ng, which is the desired continuity of u at ().

Exercise 5.3
Assumption: Let u be a positive measure on (2,.4).
Claim: Given a measurable function f with |f|® € L*(Q, 1) for some 3 > 0, one has

n({If] = A}) < A‘B/Qlﬂﬁdu

for all A > 0.
Proof: The monotonicity of the integral yields

/ P = / P dut / P> / X di = Nu({lf] = A)).
Q {1f1=A} {If1<A} {If1=2}

Exercise 5.4

Assumptions: Let .4 ([0, 1]) be the space of all real finite measures on [0, 1].

Claim: #([0,1]) together with the norm | x|l = |u| ([0, 1]) is a Banach space.

Proof: 1t is clear that the set of all real finite measures on [0, 1] is a vector space. In the
following we use

il = Ll (0,1]) = sup{ Fdu: fec(01), 1 fll. < 1}7

[0,1]

compare equation (1.1.3) in Lecture 1. We observe that we can also write
el =son {| [ ]fdu‘ S eIl <1}
0,1
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We now show that ||-|| is a norm on .Z ([0, 1]). Let pu,v € #([0,1]). Then

|m+uw=wp{“mfau+w:fecmubmmw31}

§sup{/ fd,u‘—i—/ fdv
[0,1] [0,1]

Sam{Amfwﬁfeamummus1}

+ sup { / fdv
[0,1]

= [l Il -

:feamﬁmmus@

:feamummu31}

For p € #([0,1]) and @ € R we compute

\Muuzam{\m”fdmwﬂ:fecxmﬂnwfmos1}

:mm{mrAmfdﬂzfecwauxwmms1}:kwmw

For all € #([0,1]) we have

Il =0 = [ ]fdu:O for all f € C([0,1]) with |[f]|, <1 <= pu=0.
0,1

So we have seen that ||-|| is a norm on .Z([0, 1]).
It remains to show the completeness. Let (u,,), C M([0,1]) a Cauchy sequence, i.e.,

| ttn, — pin| ([0, 1]) := sup {Z ltin (ER) — pm(ER)| : Ep € B([0,1]) pairwise disjoint} 0.
h=1
In particular we have
SUp (1 A) = jin(A)] 2255 0, 0
AeB([0,1])

Therefore we can define p(A) := lim,, o i, (A) for all A € B([0, 1]). Moreover, ([1)) implies

sup [pn (A) — p(A)] === 0. (2)
AeB([0,1])

Clearly, u is a finite set function on B([0, 1]), which satisfies () = 0. It is straight forward to
check that p is finitely additive. So, it remains to prove that u is o-additive, or, equivalently by
Exercise 5.2, to show that y is continuous at (). Let ¢ > 0 and (Ag)r C B(]0, 1]) be a decreasing
sequence with (,cy Ax = 0. By (2) we fix an index ny € N such that

sup |n(A) — p(A)] < 2
AeB([0,1])

for all n > ng. Then the continuity of u, at () yields

k—o0

|1 (Ap)| < [1(Ar) = pn(Ap)| + [0 (Ar)| < € + [1n(Ar)| — &,
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for all n > ng.

Exercise 5.5
Assumptions: Let t1,...,t, € [0,1]. Define the map P : RO — R” via

P(w) := <Btl(w), ce Btn(w)> :

Claim 1: P is F-measurable.
Proof: By the proof of Theorem 5.2.7, there is an F-measurable set A C RI%! of full measure
with

Bi(w) = lim Bs(w)= lim w(s).

D>s—t D>s—t

for all w € A and ¢ € [0,1]. Moreover, B;(w) = 0 for w € A¢ and ¢ € [0,1]. We can choose
S

sequences (S7"),.cy»---» (50") ey With

n
m—00 m— 00

P(w) = lim (w(sf"),...,w(s;)) = lim Prm g (w).

for w € A. The maps Prem . smy for m € N are F-measurable by the definition of the o-algebra
F, so that the restriction P : A — R is measurable. Since P = 0 on A° the claim follows
thanks to the pointwise convergence.

Claim 2: One has
PYopPt=PVorT !
where P" o T7! is the law of the random variable defined by
T(w) = (b)), - w(ta)) = (Bo, @), ., Buy ()

for w € RO,

Proof: Theorem 5.2.7 yields that for each ¢ € [0,1] there is a null set A, with B;(w) = B;(w)
for all w ¢ A;. Defining the null set N by N := (Jj_, A, we obtain T'(w) = P(w) for all w ¢ N
and hence P =T almost surely. For a Borel set B C R™ we conclude

@ 0P B) = [ 16(PW) AP ) = [ 1n(P)dPV ()

= [ L@@)aPY @) = [ 1) aP e
= (IP’W o T 1) (B),

which implies the assertion.

Claim 3: Let F = {t1,...,t,}, C € €r and B C R" be a Borel set with C = P.'(B). Then
we have

ur(C) = (PY o P)(B).
Proof: We have

C={w e RO (w(ty),...,w(ty)) € B} = {w e RO . T(w) € B}.



Using the Theorem 5.2.3. and Claim 2 we conclude

pr(C) =PY(C)=PY(T € B) = (PY o T71)(B) = (P" o P71)(B).

Exercise 5.6

Assumption: Let (X,,), a sequence of random variables on a probability space (€,.%, P) con-
verging to the random variables X and Y on (Q,.%, P) in law.

Claim: In general the statement X =Y a.s. is not true.

Proof: Consider a sequence (X,,), of random variables with distribution N (0, 1). Clearly by def-
inition of convergence in law it converges to any N (0, 1) distributed X since Po X ' = Po X!
for all n € N. Unfortunately Y = —X is also N(0, 1) distributed and we have PoY ! = Po X!
for all n € N. But {Y = X} = {X = 0} is a set of measure zero.

Exercise 5.6, second try

Assumption: Let (X,,), a sequence of random variables on a probability space (2, .4, P) con-
verging to the random variables X and Y on (2,4, P) in probability.

Claim: X =Y almost surely.

Proof: Given € > 0 we have P(|X — Y| > ¢) = 0. Indeed the triangle inequality yields

PlX -Y|>e) < P(|X - X,| +]X, - Y| >¢)
<P(X =X, >5or | X, -Y]>5)
< P(IX = X, > 5) + P(IY = X,| > 5) = 0.

Moreover, exploiting the continuity of the measure P we obtain

P(X£Y) = P(U{]X—Y| > 5}) = lim P(IX - Y| > 1) =0,

n=1

which implies the claimed result.



