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Exercise 5.1
Claim: The real valued random variables X and Y on a probability space (Ω,F , P ) are inde-
pendent if and only if the joint distribution P ◦ (X, Y )−1 coincides with (P ◦X−1)⊗ (P ◦Y −1).
Proof: 1) By Corollary 5.1.4, the independence of X and Y implies

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

for all bounded and measurable functions f and g. In particular, it we choose f = 1B1 and
g = 1B2 for Borel sets B1, B2 ⊂ R, we obtain

(P ◦ (X, Y )−1)(B1 ×B2) = P ((X, Y ) ∈ B1 ×B2)

=

∫
R2

1B1(x)1B2(y)d(P ◦ (X, Y )−1)(x, y)

= E[1B1(X)1B2(Y )] = E[1B1(X)]E[1B2(Y )]

= P (X ∈ B1)P (Y ∈ B2) = ((P ◦X−1)⊗ (P ◦ Y −1))(B1 ×B2).

Thus P ◦ (X, Y )−1 coincides with P ◦ X−1 ⊗ P ◦ Y −1 on cylindrical sets. Since they are
stable under intersections and generate the Borel σ-algebra on R2, we have (P ◦ (X, Y )−1) =
((P ◦X−1)⊗ (P ◦ Y −1)).
2) We now assume (P ◦ (X, Y )−1) = ((P ◦X−1)⊗ (P ◦ Y −1)). Then one has

P (X ∈ B1, Y ∈ B2) = (P ◦ (X, Y )−1)(B1 ×B2) = ((P ◦X−1)⊗ (P ◦ Y −1))(B1 ×B2)

= P (X ∈ B1)P (Y ∈ B2)

for Borel sets B1, B2 ⊂ R, which is the desired result.

Exercise 5.2
Assumptions : Let µ be a real valued finitely additive set function on an algebra A .
Claim: µ is countably additive (σ-additive) if and only if it is continuous at ∅, i. e.,

lim
n→+∞

µ(An) = 0

for every decreasing sequence of sets (An) ⊂ A with
⋂
n∈NAn = ∅.

Proof : 1) Let first be µ continuous at ∅. Let (An) ⊂ A be a sequence of pairwise disjoint sets.
Define Bk :=

⋃
n≥k An for all k ∈ N. From

⋂
k∈NBk = ∅ and the fact that (Bk) is decreasing,

we infer limk→+∞ µ(Bk) = 0. The finite additivity thus implies

µ
(⋃
n∈N

An

)
= µ

(
A1 ∪ . . . ∪ Ak−1 ∪

⋃
n≥k

An

)
= µ(A1 ∪ . . . ∪ Ak−1 ∪Bk)
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=
k−1∑
n=1

µ(An) + µ(Bk)

for all k ∈ N. So we derive

lim
k→+∞

∣∣∣∣∣µ(⋃
n∈N

An

)
−

k−1∑
n=1

µ(An)

∣∣∣∣∣ = lim
k→+∞

|µ(Bk)| = 0,

which yields (the existence of)

µ
(⋃
n∈N

An

)
=
∞∑
l=1

µ(Al).

2) Conversely, let µ be countably additive. Let (An) ⊂ A be a decreasing sequence with⋂
n∈NAn = ∅. We obtain

µ(An) = µ
(⋃
k≥n

(Ak \ Ak+1)
)

=
∞∑
k=n

µ(Ak \ Ak+1)

for all n ∈ N, using that the sets Ak \ Ak+1 are disjoint. Since µ(An) is finite for each n ∈ N,
for all ε > 0 there exists an index n0 ∈ N such that

µ(Al) =
∞∑
k=l

µ(Ak \ Ak−1) < ε

for every l ≥ n0, which is the desired continuity of µ at ∅.

Exercise 5.3
Assumption: Let µ be a positive measure on (Ω,A).
Claim: Given a measurable function f with |f |β ∈ L1(Ω, µ) for some β > 0, one has

µ({|f | ≥ λ}) ≤ λ−β
∫

Ω

|f |β dµ

for all λ > 0.
Proof : The monotonicity of the integral yields∫

Ω

|f |β dµ =

∫
{|f |≥λ}

|f |β dµ+

∫
{|f |<λ}

|f |β dµ ≥
∫
{|f |≥λ}

λβ dµ = λβµ({|f | ≥ λ}).

Exercise 5.4
Assumptions : Let M ([0, 1]) be the space of all real finite measures on [0, 1].
Claim: M ([0, 1]) together with the norm ‖µ‖ = |µ| ([0, 1]) is a Banach space.
Proof : It is clear that the set of all real finite measures on [0, 1] is a vector space. In the
following we use

‖µ‖ = |µ| ([0, 1]) = sup

{∫
[0,1]

f dµ : f ∈ C([0, 1]), ‖f‖∞ ≤ 1

}
,

compare equation (1.1.3) in Lecture 1. We observe that we can also write

‖µ‖ = sup

{∣∣∣∣∫
[0,1]

f dµ

∣∣∣∣ : f ∈ C([0, 1]), ‖f‖∞ ≤ 1

}
.
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We now show that ‖·‖ is a norm on M ([0, 1]). Let µ, ν ∈M ([0, 1]). Then

‖µ+ ν‖ = sup

{∣∣∣∣∫
[0,1]

f d(µ+ ν)

∣∣∣∣ : f ∈ C([0, 1]), ‖f‖∞ ≤ 1

}
≤ sup

{∣∣∣∣∫
[0,1]

f dµ

∣∣∣∣+

∣∣∣∣∫
[0,1]

f dν

∣∣∣∣ : f ∈ Cb([0, 1]), ‖f‖∞ ≤ 1

}
≤ sup

{∣∣∣∣∫
[0,1]

f dµ

∣∣∣∣ : f ∈ C([0, 1]), ‖f‖∞ ≤ 1

}
+ sup

{∣∣∣∣∫
[0,1]

f dν

∣∣∣∣ : f ∈ C([0, 1]), ‖f‖∞ ≤ 1

}
= ‖µ‖+ ‖ν‖ .

For µ ∈M ([0, 1]) and α ∈ R we compute

‖αµ‖ = sup

{∣∣∣∣∫
[0,1]

f d(αµ)

∣∣∣∣ : f ∈ C([0, 1]), ‖f‖∞ ≤ 1

}
= sup

{
|α|
∣∣∣∣∫

[0,1]

f dµ

∣∣∣∣ : f ∈ C([0, 1]), ‖f‖∞ ≤ 1

}
= |α| ‖µ‖ .

For all µ ∈M ([0, 1]) we have

‖µ‖ = 0⇐⇒
∫

[0,1]

f dµ = 0 for all f ∈ C([0, 1]) with ‖f‖∞ ≤ 1⇐⇒ µ = 0.

So we have seen that ‖·‖ is a norm on M ([0, 1]).
It remains to show the completeness. Let (µn)n ⊂M([0, 1]) a Cauchy sequence, i.e.,

|µn − µm|([0, 1]) := sup

{
∞∑
h=1

|µn(Eh)− µm(Eh)| : Eh ∈ B([0, 1]) pairwise disjoint

}
m,n→∞−−−−→ 0.

In particular we have

sup
A∈B([0,1])

|µn(A)− µm(A)| m,n→∞−−−−→ 0. (1)

Therefore we can define µ(A) := limn→∞ µn(A) for all A ∈ B([0, 1]). Moreover, (1) implies

sup
A∈B([0,1])

|µn(A)− µ(A)| m,n→∞−−−−→ 0. (2)

Clearly, µ is a finite set function on B([0, 1]), which satisfies µ(∅) = 0. It is straight forward to
check that µ is finitely additive. So, it remains to prove that µ is σ-additive, or, equivalently by
Exercise 5.2, to show that µ is continuous at ∅. Let ε > 0 and (Ak)k ⊂ B([0, 1]) be a decreasing
sequence with

⋂
k∈NAk = ∅. By (2) we fix an index n0 ∈ N such that

sup
A∈B([0,1])

|µn(A)− µ(A)| < ε

for all n ≥ n0. Then the continuity of µn at ∅ yields

|µ(Ak)| ≤ |µ(Ak)− µn(Ak)|+ |µn(Ak)| ≤ ε+ |µn(Ak)|
k→∞−−−→ ε,
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for all n ≥ n0.

Exercise 5.5
Assumptions: Let t1, . . . , tn ∈ [0, 1]. Define the map P : R[0,1] → Rn via

P (ω) :=
(
B̃t1(ω), . . . , B̃tn(ω)

)
.

Claim 1 : P is F -measurable.
Proof : By the proof of Theorem 5.2.7, there is an F -measurable set A ⊂ R[0,1] of full measure
with

B̃t(ω) = lim
D3s→t

Bs(ω) = lim
D3s→t

ω(s).

for all ω ∈ A and t ∈ [0, 1]. Moreover, B̃t(ω) = 0 for ω ∈ Ac and t ∈ [0, 1]. We can choose
sequences (sm1 )m∈N , . . . , (s

m
n )m∈N with

P (ω) = lim
m→∞

(ω(sm1 ), . . . , ω(smn )) = lim
m→∞

P{sm1 ,...,smn }(ω).

for ω ∈ A. The maps P{sm1 ,...,smn } for m ∈ N are F -measurable by the definition of the σ-algebra
F , so that the restriction P : A → R is measurable. Since P = 0 on Ac, the claim follows
thanks to the pointwise convergence.

Claim 2 : One has

PW ◦ P−1 = PW ◦ T−1,

where PW ◦ T−1 is the law of the random variable defined by

T (ω) = (ω(t1), . . . , ω(tn)) = (Bt1(ω), . . . , Btn(ω))

for ω ∈ R[0,1].
Proof : Theorem 5.2.7 yields that for each t ∈ [0, 1] there is a null set At with Bt(ω) = B̃t(ω)
for all ω /∈ At. Defining the null set N by N :=

⋃n
j=1 Atj , we obtain T (ω) = P (ω) for all ω /∈ N

and hence P = T almost surely. For a Borel set B ⊂ Rn we conclude

(PW ◦ P−1)(B) =

∫
R[0,1]

1B(P (ω)) dPW (ω) =

∫
A

1B(P (ω)) dPW (ω)

=

∫
A

1B(T (ω)) dPW (ω) =

∫
R[0,1]

1B(T (ω)) dPW (ω)

= (PW ◦ T−1)(B),

which implies the assertion.

Claim 3: Let F = {t1, . . . , tn}, C ∈ CF and B ⊂ Rn be a Borel set with C = P−1
F (B). Then

we have

µF (C) = (PW ◦ P−1)(B).

Proof : We have

C = {ω ∈ R[0,1] : (ω(t1), . . . , ω(tn)) ∈ B} = {ω ∈ R[0,1] : T (ω) ∈ B}.
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Using the Theorem 5.2.3. and Claim 2 we conclude

µF (C) = PW (C) = PW (T ∈ B) = (PW ◦ T−1)(B) = (PW ◦ P−1)(B).

Exercise 5.6
Assumption: Let (Xn)n a sequence of random variables on a probability space (Ω,F , P ) con-
verging to the random variables X and Y on (Ω,F , P ) in law.
Claim: In general the statement X = Y a. s. is not true.
Proof : Consider a sequence (Xn)n of random variables with distribution N(0, 1). Clearly by def-
inition of convergence in law it converges to any N(0, 1) distributed X since P ◦X−1 = P ◦X−1

n

for all n ∈ N. Unfortunately Y = −X is also N(0, 1) distributed and we have P ◦Y −1 = P ◦X−1
n

for all n ∈ N. But {Y = X} = {X = 0} is a set of measure zero.

Exercise 5.6, second try
Assumption: Let (Xn)n a sequence of random variables on a probability space (Ω,A, P ) con-
verging to the random variables X and Y on (Ω,A, P ) in probability.
Claim: X = Y almost surely.
Proof : Given ε > 0 we have P (|X − Y | > ε) = 0. Indeed the triangle inequality yields

P (|X − Y | > ε) ≤ P (|X −Xn|+ |Xn − Y | > ε)

≤ P (|X −Xn| > ε
2

or |Xn − Y | > ε
2
)

≤ P (|X −Xn| > ε
2
) + P (|Y −Xn| > ε

2
)
n→∞−−−→ 0.

Moreover, exploiting the continuity of the measure P we obtain

P (X 6= Y ) = P
( ∞⋃
n=1

{|X − Y | > 1
n
}
)

= lim
n→∞

P (|X − Y | > 1
n
) = 0,

which implies the claimed result.
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