
Exercise 4.1

(i) Prove that the dual space of R∞ is R∞c .

(ii) Prove that the closure of R∞c in R∞ with respect to the topology induced
by the norm ‖·‖`2 is `2.

Proof of (i): We show equality as sets.
“R∞c ⊂ (R∞)∗”: Let (ξk) ∈ R∞c . Then

fξ : R∞ → R

fξ(x) :=
∞∑
k=1

ξkxk

defines a linear function. Let (xn)n∈N be a sequence in R∞ such that

xn
R∞
−→ x ∈ R∞ i.e. xnk → xk ∀k ∈ N.

Since there is a number N ∈ N such that ξj = 0 ∀j > N , the following holds:

fξ(x
n) =

N∑
k=1

ξkx
n
k
n→∞−→

N∑
k=1

ξkxk = fξ(x),

i.e. fξ is continuous. Thus (ξk) ∼= fξ ∈ (R∞)∗.
“R∞c ⊃ (R∞)∗”: Let f ∈ (R∞)∗ and define ξk := f(ek) ∀k ∈ N. Suppose

for contradiction that (ξk) /∈ R∞c , i.e. ξkn 6= 0 ∀n ∈ N, kn ↑ ∞. Define
xn := eknξ

−1
kn
∀n ∈ N. Then R∞c ⊃ (xn) → 0 because d(xn, 0) ≤ 1

2kn
→ 0 as

n → ∞, but f(xn) = 1 6→ 0. Hence f is not continuous (in 0), which is a
contradiction to f ∈ (R∞)∗. Consequently (ξk) ∈ R∞c and f = fξ.

Proof of (ii): The formulation of this exercise is somewhat unfortunate in
that it is up to interpretation what the topology on R∞ induced by the `2-
norm is supposed to be. As suggested by Jürgen Voigt, we show that the map
E : x 7→ x is continuous as map (`2, ‖·‖`2)→ (R∞, d). It is then clear that E is
the unique continuous extension of its restriction to R∞c as R∞c is dense in `2.
In fact, for the latter let a ∈ `2 and define xn := (a1, a2, . . . , an, 0, . . .) ∈ R∞c .
Then xn → a in `2 as n → ∞ since ‖a − xn‖`2 =

∑∞
j=n+1 a

2
j and for every

ε > 0 there is N ∈ N such that
∑∞

j=n a
2
j < ε ∀n > N .

It remains to show that E is continuous in the above sense. So suppose
that xn → x in `2. Then xnk → xk for all k ∈ N, which is equivalent to
d(xn, x)→ 0 as n→∞. So if xn → x in `2, then Exn → Ex in (R∞, d) and
E is therefore continuous.
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Exercise 4.2

Let X be a real Hilbert space, and let B : X×X → R be bilinear, symmetric
and continuous. Prove that there exists a unique self-adjoint operator Q ∈
L(X) such that B(x, y) = 〈Qx, y〉X for every x, y ∈ X.

Proof. Fix x ∈ X. Then B(x, ·) ∈ X∗ and by Riesz–Fréchet’s theorem we
get

∃! Qx ∈ X such that B(x, y) = 〈Qx, y〉X ∀y ∈ X, ‖B(x, ·)‖ = ‖Qx‖.

Moreover, as |B(x, y)| ≤ C‖x‖‖y‖, which is a consequence of the uniform
boundedness principle, it follows that

‖Qx‖ = sup
‖y‖≤1
|B(x, y)| ≤ C‖x‖.

So Q is a bounded operator. Since B is symmetric and X is a real Hilbert
space we get

〈Qx, y〉 = B(x, y) = B(y, x) = 〈Qy, x〉 = 〈y,Q∗x〉 = 〈Q∗x, y〉

for all y ∈ X. Hence Q∗ = Q and Q is self-adjoint.

Exercise 4.3

Let L : `2 → `2 be the operator defined by Lx = (x2, x1, x4, x3, . . .), for
x = (x1, x2, x3, x4, . . .) ∈ `2. Show that L is self-adjoint and 〈Lek, ek〉`2 = 0
and that L is not compact.

Proof. L self-adjoint: For x, y ∈ `2 we have 〈Lx, y〉`2 ≤ ‖Lx‖`2‖y‖`2 =
‖x‖`2‖y‖`2 and

〈Lx, y〉`2 = x2y1 + x1y2 + x4y3 + x3y4 + . . .

= x1y2 + x2y1 + x3y4 + x4y3 + . . . = 〈x, Ly〉`2

So L is bounded and self-adjoint.
L zero on diagonal: We know that 〈ek, ej〉`2 = δkj. As

〈Lek, ek〉`2 =

{
〈ek+1, ek〉`2 k odd,

〈ek−1, ek〉`2 k even,

it follows that 〈Lek, ek〉`2 = 0 ∀k ∈ N.
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L not compact: Define U1 := {x ∈ `2 : ‖x‖ ≤ 1}. Since ‖x‖ = ‖Lx‖, the
image of U1 under L is again U1. Thus L is not compact as `2 is infinite-
dimensional.

Note that this is no contradiction to Proposition 4.2.2 because L is not
nonnegative.

Exercise 4.4

Check the computation of the integral in (4.2.7).

Proof. To simplify notation we omit the index k in the subscripts. The
following calculation is straightforward and only involves substitutions and
completing the square. We note that 1− 2αλ > 0 by assumption.∫

R
exp(αx2) exp(− 1

2λ
(x− a)2) dx =

∫
R

exp
(

1
2λ

(−(1− 2αλ)x2 + 2ax− a2)
)

dx

=
1√

1− 2αλ
exp(− a2

2λ
)

∫
R

exp
(

1
2λ

(−u2 + 2a√
1−2αλu)

)
du

=
1√

1− 2αλ
exp
(

a2

2λ(1−2αλ) −
a2

2λ

) ∫
R

exp
(
− 1

2λ
(u− a√

1−2αλ)2
)

du

=
1√

1− 2αλ
exp
(

αa2

1−2αλ

) ∫
R

exp(− v2

2λ
) dv

=
√

2πλ
1√

1− 2αλ
exp
(

αa2

1−2αλ

)
This shows in particular that the integral is finite. However, in the current
version of the lecture notes the formula given in (4.2.7) is missing a factor
of
√

2πλ that cancels with a corresponding factor in the previous displayed
equation.

Exercise 4.5

Prove that if X is a separable Hilbert space, then h ∈ Rγ(j(X
∗)) if and only

if h = Qx, x ∈ X, and that in this case |h|H = ‖Q1/2x‖X .

Proof. For f̃ ∈ X∗ let us write f for the element of X such that f̃(x) =
〈f, x〉X for all x ∈ X, and vice versa. Let f̃ ∈ X∗ and suppose h = Rγ(j(f̃))
for h ∈ X. Then

〈h, g〉 = g̃(h) =

∫
X

〈f, x− a〉X 〈g, x− a〉X dγ(x) = 〈Qf, g〉
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for all g ∈ X by (4.2.4). So h ∈ rgQ. The same reasoning applies the other
way around.

If h = Qf , then |h|H = ‖j(f̃)‖L2(X,γ) by Proposition 3.1.2. But

‖j(f̃)‖2L2(X,γ) = 〈Qf, f〉X = ‖Q1/2f‖2X ,

which establishes the last claim.

Exercise 4.6

Modify the proof of Theorem 4.2.6 in order to consider also degenerate Gaus-
sian measures.

We have to slightly adapt the formulation of Theorem 4.2.6 to accom-
modate the case of general Gaussian measures. Note that γ = N (a,Q) is
degenerate if and only if there exists f̃ ∈ X∗ \ {0} such that γ ◦ f̃−1 is the
Dirac measure δf̃(a), which is the case if and only if

Bγ(f̃ , f̃) =

∫
R
|t− f̃(a)|2 d(γ ◦ f̃−1)(t) = 0.

So this is equivalent for an f ∈ X \ {0} to exist such that 〈Qf, f〉 = 0. As
kerQ = kerQ1/2, one has 〈Qf, f〉 = 0 if and only if f ∈ kerQ.

Theorem 4.2.6 (general). Let γ = N (a,Q) be a Gaussian measure in a
separable Hilbert space X. Let (λk) be the strictly positive eigenvalues of Q
and (ek) be the corresponding orthonormal system of eigenvectors in X. For
all k and x ∈ X we set xk := 〈x, ek〉. Then

X∗γ =
{
f : X → R : f(x) =

∑
k

(xk − ak)zkλ−1/2k for a z ∈ X
}

and the Cameron–Martin space is the range of Q1/2, i.e.,

H =
{
x ∈ (kerQ)⊥ :

∑
k

x2kλ
−1
k <∞

}
.

For h = Q1/2z ∈ H we have

ĥ(x) =
∑
k

(xk − ak)zkλ−1/2k .
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Proof. We use the notation from the proof in the lecture notes. We denote
by P the orthogonal projection in X onto (kerQ)⊥. It follows in exactly the
same way as in the lecture notes that

‖f‖2L2(X,γ) = ‖Pz‖2X .

No further change is needed for the proof of V ⊂ X∗γ . Also the opposite

inclusion follows as before after noting that z(n) − z is in the closure of the
range of Q1/2, which is equal to (kerQ)⊥. So ‖P (z(n) − z)‖2X = ‖z(n) − z‖2X .

Regarding the Cameron–Martin space, let f ∈ X∗γ be given, i.e., f(x) =∑
k(xk − ak)zkλ

−1/2
k for a z ∈ X. As in the lectures Rγf = h with h =∑

k zkλ
1/2
k ek. Observe that h = Q1/2z ∈ (kerQ)⊥. No further modifications

are required.
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