Lecture 3

The Cameron–Martin space

In this Lecture we present the Cameron-Martin space. It consists of the elements $h \in X$ such that the measure $\gamma_h(B) := \gamma(B - h)$ is absolutely continuous with respect to γ . As we shall see, the Cameron-Martin space is fundamental when dealing with the differential structure in X mainly in connection with integration by parts formulae.

3.1 The Cameron–Martin space

We start with the definition of the Cameron–Martin space.

Definition 3.1.1 (Cameron-Martin space). For every $h \in X$ set

$$
|h|_H := \sup \Big\{ f(h) : f \in X^*, \ \|j(f)\|_{L^2(X,\gamma)} \le 1 \Big\},\tag{3.1.1}
$$

where $j: X^* \to L^2(X, \gamma)$ is the embedding defined in (2.3.4). The Cameron-Martin space is defined by

$$
H := \Big\{ h \in X : \ |h|_H < \infty \Big\}. \tag{3.1.2}
$$

Calling c the norm of $j: X^* \to L^2(X, \gamma)$, we have

$$
||h||_X = \sup\{f(h): ||f||_{X^*} \le 1\} \le \sup\{f(h): ||j(f)||_{L^2(X,\gamma)} \le c\} = c|h|_H,\tag{3.1.3}
$$

and then H is continuously embedded in X . We shall see that this embedding is even compact and that the norms $\|\cdot\|_X$ and $|\cdot|_H$ are not equivalent in H.

The Cameron-Martin space inherits a natural Hilbert space structure from the space X^*_{γ} through the $L^2(X,\gamma)$ Hilbert structure.

Proposition 3.1.2. An element $h \in X$ belongs to H if and only if there is $\hat{h} \in X^*_{\gamma}$ such that $h = R_{\gamma} \hat{h}$. In this case,

$$
|h|_H = \|\hat{h}\|_{L^2(X,\gamma)}.\tag{3.1.4}
$$

$$
[h,k]_H := \langle \hat{h}, \hat{k} \rangle_{L^2(X,\gamma)}
$$

whenever $h = R_{\gamma} \hat{h}$, $k = R_{\gamma} \hat{k}$.

Proof. If $|h|_H < \infty$, we define the map $L : j(X^*) \to \mathbb{R}$ setting

$$
L(j(f)) := f(h), \qquad \forall f \in X^*.
$$

Such map is well defined since the estimate

$$
|f(h)| \le ||j(f)||_{L^2(X,\gamma)}|h|_H \tag{3.1.5}
$$

 \Box

implies that if $j(f_1) = j(f_2)$, then $f_1(h) = f_2(h)$. The map L is also continuous with respect to the L^2 topology again by estimate (3.1.5). Then L can be continuously extended to X^*_γ ; by the Riesz representation theorem there is a unique $\hat{h} \in X^*_\gamma$ such that the extension (still denoted by L) is given by

$$
L(\phi) = \int_X \phi(x)\hat{h}(x)\,\gamma(dx), \qquad \forall \phi \in X^*_\gamma.
$$

In particular, for any $f \in X^*$,

$$
f(h) = L(j(f)) = \int_X j(f)(x)\hat{h}(x)\,\gamma(dx) = f(R_\gamma\hat{h}),
$$

therefore $R_{\gamma}\hat{h} = h$ and

$$
|h|_H = \sup \Big\{ f(h) : f \in X^*, \ ||j(f)||_{L^2(X,\gamma)} \le 1 \Big\} = ||\hat{h}||_{L^2(X,\gamma)}.
$$

Conversely, if $h = R_{\gamma} \hat{h}$, then by (2.3.7) for all $f \in X^*$ we have

$$
f(h) = f(R_{\gamma}\hat{h}) = \int_{X} j(f)(x)\hat{h}(x)\,\gamma(dx) \leq \|\hat{h}\|_{L^{2}(X,\gamma)}\|j(f)\|_{L^{2}(X,\gamma)},\tag{3.1.6}
$$

whence $|h|_H < \infty$.

The space $L^2(X, \gamma)$ (hence its subspace X^*_{γ} as well) is separable, because X is separable, see e.g. [Br, Theorem 4.13]. Therefore, H , being isometric to a separable space, is separable.

Remark 3.1.3. The map $R_{\gamma}: X_{\gamma}^* \to X$ can be defined directly using the Bochner integral through the formula

$$
R_{\gamma}f := \int_X (x-a)f(x)\,\gamma(dx),
$$

where a is the mean of γ . We do not assume the knowledge of Bochner intregal. We shall say something about it in one of the following lectures.

Before going on, let us describe the finite dimensional case $X = \mathbb{R}^d$. If $\gamma = \mathcal{N}(a, Q)$ then for $f \in \mathbb{R}^d$ we have

$$
||j(f)||_{L^2(\mathbb{R}^d,\gamma)}^2 = \int_{\mathbb{R}^d} \langle x-a,f\rangle_{\mathbb{R}^d}^2 \mathcal{N}(a,Q)(dx) = \langle Qf,f\rangle_{\mathbb{R}^d}
$$

and therefore $|h|_H$ is finite if and only if $h \in Q(\mathbb{R}^d)$ and, as a consequence, $H = Q(\mathbb{R}^d)$ is the range of Q . According to the notation introduced in Proposition 3.1.2, if Q is invertible, $h = R_{\gamma} \hat{h}$ iff $\hat{h}(x) = \langle Q^{-1}h, x \rangle_{\mathbb{R}^d}$. Moreover, if γ is nondegenerate the measures γ_h defined by $\gamma_h(B) = \gamma(B - h)$ are all equivalent to γ in the sense of Section 1.1 and an elementary computation shows that, writing $\gamma_h = \varrho_h \gamma$, we have

$$
\varrho_h(x) := \exp\Big\{ \langle Q^{-1}h, x \rangle_{\mathbb{R}^d} - \frac{1}{2}|h|^2 \Big\} = \exp\Big\{\hat{h}(x) - \frac{1}{2}|h|^2\Big\}.
$$

In the infinite dimensional case the situation is completely different. We start with a preliminary result.

Lemma 3.1.4. For any $g \in X^*_\gamma$, the measure

$$
\mu_g = \exp\left\{g - \frac{1}{2}||g||^2_{L^2(X,\gamma)}\right\}\gamma
$$

is a Gaussian measure with characteristic function

$$
\widehat{\mu}_g(f) = \exp\Big\{if(R_\gamma g) + ia_\gamma(f) - \frac{1}{2}||j(f)||^2_{L^2(X,\gamma)}\Big\}.
$$
\n(3.1.7)

Proof. First of all, we notice that the image of γ under the measurable function g: $X \to \mathbb{R}$ is still a Gaussian measure given by $\mathcal{N}(0, \|g\|_{L^2(X,\gamma)}^2)$ thanks to Proposition 2.3.5. Therefore,

$$
\int_X \exp\{|g(x)|\}\,\gamma(dx) = \int_{\mathbb{R}} e^{|t|} \,\mathcal{N}(0, \|g\|_{L^2(X,\gamma)}^2)(dt) < +\infty,
$$

hence $\exp\{|g|\} \in L^1(X,\gamma)$ and μ_g is a finite measure. In addition, μ_g is a probability measure since

$$
\mu_g(X) = \int_X \exp\left\{g(x) - \frac{1}{2} ||g||^2_{L^2(X,\gamma)}\right\} \gamma(dx)
$$

=
$$
\exp\left\{-\frac{1}{2} ||g||^2_{L^2(X,\gamma)}\right\} \int_{\mathbb{R}} e^t \mathcal{N}(0, ||g||^2_{L^2(X,\gamma)})(dt) = 1.
$$

In order to prove that (3.1.7) holds, we observe that for every $t \in \mathbb{R}$ we have

$$
\exp\left\{-\frac{1}{2}\|g\|_{L^{2}(X,\gamma)}^{2}\right\}\int_{X}\exp\{i(f(x) - tg(x))\}\gamma(dx)
$$

\n
$$
=\exp\left\{-\frac{1}{2}\|g\|_{L^{2}(X,\gamma)}^{2}\right\}\hat{\gamma}(f - tg)
$$

\n
$$
=\exp\left\{-\frac{1}{2}\|g\|_{L^{2}(X,\gamma)}^{2}\right\}\exp\left\{ia_{\gamma}(f - tg) - \frac{1}{2}\|j(f - tg)\|_{L^{2}(X,\gamma)}^{2}\right\}
$$

\n
$$
=\exp\left\{tf(R_{\gamma}g) - \frac{1+t^{2}}{2}\|g\|_{L^{2}(X,\gamma)}^{2} + ia_{\gamma}(f) - \frac{1}{2}\|j(f)\|_{L^{2}(X,\gamma)}^{2}\right\}.
$$

So, the entire holomorphic functions

$$
z \mapsto \exp\left\{-\frac{1}{2}||g||_{L^{2}(X,\gamma)}^{2}\right\} \int_{X} \exp\{i(f(x) - zg(x))\} \gamma(dx)
$$

$$
z \mapsto \exp\left\{zf(R_{\gamma}g) - \frac{1+z^{2}}{2}||g||_{L^{2}(X,\gamma)}^{2} + ia_{\gamma}(f) - \frac{1}{2}||j(f)||_{L^{2}(X,\gamma)}^{2}\right\}
$$

coincide for $z \in \mathbb{R}$, hence they coincide in \mathbb{C} . In particular, taking $z = i$ we obtain

$$
\widehat{\mu}_g(f) = \exp\Big\{ia_\gamma(f) - \frac{1}{2}||j(f)||^2_{L^2(X,\gamma)} + iR_\gamma g(f)\Big\}.
$$

Theorem 3.1.5 (Cameron-Martin Theorem). For $h \in X$, define the measure $\gamma_h(B)$:= $\gamma(B-h)$. If $h \in H$ the measure γ_h is equivalent to γ and $\gamma_h = \varrho_h \gamma$, with

$$
\varrho_h(x) := \exp\left\{\hat{h}(x) - \frac{1}{2}|h|_H^2\right\},\tag{3.1.8}
$$

 \Box

where $\hat{h} = R_{\gamma}^{-1}h$. If $h \notin H$ then $\gamma_h \perp \gamma$. Hence, $\gamma_h \approx \gamma$ if and only if $h \in H$.

Proof. For $h \in H$, let us compute the characteristic function of γ_h . For any $f \in X^*$ we have

$$
\hat{\gamma}_h(f) = \int_X \exp\{if(x)\} \gamma_h(dx) = \int_X \exp\{if(x+h)\} \gamma(dx)
$$

=
$$
\exp\{if(R_\gamma \hat{h}) + ia_\gamma(f) - \frac{1}{2} ||j(f)||^2_{L^2(X,\gamma)}\}, \qquad f \in X^*.
$$

Taking into account Lemma 3.1.4 and Proposition 2.1.2, we obtain that $\gamma_h = \varrho_h \gamma$, where the density ρ_h is given by (3.1.8).

Now, let us see that if $h \notin H$ then $\gamma_h \perp \gamma$. To this aim, let us first consider the 1-dimensional case. If γ is a Dirac measure in R, then $\gamma_h \perp \gamma$ for any $h \neq 0$ and $|\gamma - \gamma_h|(\mathbb{R}) = 2$. Otherwise, if $\gamma = \mathcal{N}(a, \sigma^2)$ is a nondegenerate Gaussian measure in \mathbb{R} , then $\gamma_h \ll \gamma$ with $\frac{d\gamma_h}{d\gamma}(t) = \exp\{-\frac{h^2}{2\sigma^2} + \frac{h(t-a)}{\sigma^2}\}\.$ We can apply Hellinger Theorem 1.1.10 with $\lambda = \gamma$, whence by Exercise 3.2

$$
H(\gamma, \gamma_h) = \exp\left\{-\frac{h^2}{8\sigma^2}\right\},\tag{3.1.9}
$$

and then (1.1.7) implies

$$
|\gamma - \gamma_h|(\mathbb{R}) \ge 2\left(1 - \exp\left\{-\frac{1}{8\sigma^2}h^2\right\}\right). \tag{3.1.10}
$$

In any case, (3.1.10) holds true.

Let us go back to X. For every $f \in X^*$, using just the definition, it is immediate to verify that $\gamma_h \circ f^{-1} = (\gamma \circ f^{-1})_{f(h)}$ and

$$
|\gamma \circ f^{-1} - (\gamma \circ f^{-1})_{f(h)}|(\mathbb{R}) \le |\gamma - \gamma_h|(X);
$$

30

If $h \notin H$, there exists a sequence $(f_n) \subset X^*$ with $||j(f_n)||_{L^2(X,\gamma)} = 1$ and $f_n(h) \geq n$. By $(3.1.10)$ we obtain

$$
|\gamma - \gamma_h|(X) \ge |(\gamma \circ f_n^{-1}) - (\gamma \circ f_n^{-1})_{f_n(h)}|(\mathbb{R}) \ge 2\left(1 - \exp\left\{-\frac{1}{8}f_n(h)^2\right\}\right)
$$

$$
\ge 2\left(1 - \exp\left\{-\frac{1}{8}n^2\right\}\right).
$$

This implies that $|\gamma - \gamma_h|(X) = 2$, hence by Corollary 1.1.11, $\gamma_h \perp \gamma$.

From now on, we denote by $B^H(0,r)$ the open ball of centre 0 and radius r in H and by $\overline{B}^H(0,r)$ its closure in H. In the proof of Theorem 3.1.8 we need the following result.

Proposition 3.1.6. If $A \in borel(X)$ is such that $\gamma(A) > 0$, then there is $r > 0$ such that $B^H(0, r) \subset A - A$.

Proof. Let us introduce the function $H \ni h \mapsto \phi(h) := \gamma((A + h) \cap A)$, i.e.,

$$
\phi(h) = \gamma((A+h) \cap A) = \int_X 1\!\mathrm{l}_A(x-h)1\!\mathrm{l}_A(x)\,\gamma(dx).
$$

We claim that

$$
\liminf_{|h|_H\to 0}\phi(h)>0.
$$

Let us first assume that A is open; then

$$
1\!\!1_A(x) = \sup\{\varphi(x) : \varphi \in C(X), 0 \le \varphi(x) \le 1\!\!1_A(x)\}.
$$

In particular we consider the sequence of functions

$$
\varphi_n(x) = \min\Big\{n\text{dist}(x, A^c), 1\Big\}.
$$

For every $n, \varphi_n = 0$ on $A^c, \varphi_n = 1$ on $\{x \in A : \text{dist}(x, A^c) \geq \frac{1}{n}\}$ $\frac{1}{n}$, it is Lipschitz continuous and $\varphi_n(x) \to 1\!\!1_A(x)$ for any $x \in X$. By continuity and by the fact that $||h||_X \le c|h|_H$, for any $x \in X$

$$
\lim_{|h|_H \to 0} \varphi_n(x - h) = \varphi_n(x).
$$

Then by the Fatou Lemma we have

$$
\int_X \varphi_n(x)^2 \gamma(dx) = \int_X \lim_{|h|_H \to 0} \varphi_n(x-h) \varphi_n(x) \gamma(dx)
$$

$$
\leq \liminf_{|h|_H \to 0} \int_X \mathbb{1}_A(x-h) \mathbb{1}_A(x) \gamma(dx).
$$

Letting $n \to +\infty$, by Lebesgue Dominated Convergence Theorem, we obtain

$$
\gamma(A) = \lim_{n \to +\infty} \int_X \varphi_n(x)^2 \gamma(dx) \le \liminf_{|h|_H \to 0} \int_X \mathbb{1}_A(x-h) \mathbb{1}_A(x) \gamma(dx),
$$

 \Box

and we have proved the claim for A open.

Let us now consider an arbitrary $A \in \mathcal{B}(X)$; in the proof of Proposition 1.1.5 we have seen that for any $\varepsilon > 0$ there exists an open set $A_{\varepsilon} \supset A$ with $\gamma(A_{\varepsilon} \setminus A) < \varepsilon$. Taking into account that $h \in H$, we get

$$
\int_X \mathbb{1}_A(x-h) \mathbb{1}_A(x) \gamma(dx) =
$$
\n
$$
= \int_X \mathbb{1}_{A_\varepsilon}(x-h) \mathbb{1}_A(x) \gamma(dx) + \int_X (\mathbb{1}_A(x-h) - \mathbb{1}_{A_\varepsilon}(x-h)) \mathbb{1}_A(x) \gamma(dx)
$$
\n
$$
= \int_X \mathbb{1}_{A_\varepsilon}(x-h) \mathbb{1}_{A_\varepsilon}(x) \gamma(dx) + \int_X \mathbb{1}_{A_\varepsilon}(x-h) (\mathbb{1}_A(x) - \mathbb{1}_{A_\varepsilon}(x)) \gamma(dx) +
$$
\n
$$
+ \int_X (\mathbb{1}_A(x-h) - \mathbb{1}_{A_\varepsilon}(x-h)) \mathbb{1}_A(x) \gamma(dx)
$$
\n
$$
\geq \int_X \mathbb{1}_{A_\varepsilon}(x-h) \mathbb{1}_{A_\varepsilon}(x) \gamma(dx) - \int_X |\mathbb{1}_A(x) - \mathbb{1}_{A_\varepsilon}(x)| \gamma(dx) +
$$
\n
$$
- \int_X |\mathbb{1}_A(x-h) - \mathbb{1}_{A_\varepsilon}(x-h)| \gamma(dx)
$$
\n
$$
= \int_X \mathbb{1}_{A_\varepsilon}(x-h) \mathbb{1}_{A_\varepsilon}(x) \gamma(dx) - \gamma(A_\varepsilon \setminus A) +
$$
\n
$$
- \int_X |\mathbb{1}_A(x) - \mathbb{1}_{A_\varepsilon}(x)| \exp\{-\hat{h}(x) - \frac{1}{2}|h|_H^2\} \gamma(dx).
$$

Now we claim that

$$
\lim_{|h|_H \to 0} \int_X |\mathbb{1}_A(x) - \mathbb{1}_{A_\varepsilon}(x)| \exp\left\{-\hat{h}(x) - \frac{1}{2}|h|_H^2\right\} \gamma(dx) = \gamma(A_\varepsilon \setminus A). \tag{3.1.11}
$$

Once (3.1.11) is proved, it implies

$$
\liminf_{|h|_H \to 0} \int_X 1\!\!1_A(x-h) 1\!\!1_A(x)\gamma(dx) \ge \liminf_{|h|_H \to 0} \int_X 1\!\!1_{A_\varepsilon}(x-h) 1\!\!1_{A_\varepsilon}(x)\gamma(dx) +
$$
\n
$$
-2\gamma(A_\varepsilon \setminus A) \ge \gamma(A_\varepsilon) - 2\varepsilon \ge \gamma(A) - 2\varepsilon > 0
$$

if $\varepsilon < \gamma(A)/2$. Then there is $r > 0$ such that $\phi(h) > 0$ for $|h|_H < r$ and therefore for any $|h|_H < r, (A + h) \cap A \neq \emptyset$, so that $B^H(0,r) \subset A - A$.

To prove that (3.1.11) holds, we notice that since the image measure of γ under \hat{h} is $\mathcal{N}(0, |h|_H^2)$, then

$$
\int_X \left| \exp \left\{-\hat{h}(x) - \frac{1}{2}|h|_H^2\right\} - 1 \right| \gamma(dx) = \int_{\mathbb{R}} \left| \exp \left\{-t|h|_H - \frac{1}{2}|h|_H^2\right\} - 1 \right| \gamma_1(dt),
$$

and the right hand side vanishes as $|h|_H \to 0$ by the Dominated Convergence Theorem. \Box

We give the following technical result that we shall need for instance in the proof of Theorem 3.1.8; it will be rephrased with a probabilistic language in the sequel.

Lemma 3.1.7. Let $f, g \in X^*$ and set $T : X \to \mathbb{R}^2$, $T(x) := (f(x), g(x))$. Then $\gamma \circ T^{-1} = (\gamma \circ f^{-1}) \otimes (\gamma \circ g^{-1})$

iff $j(f)$ and $j(g)$ are orthogonal in $L^2(X, \gamma)$.

Proof. We just compute the characteristic function. For every $\xi \in \mathbb{R}^2$ we have

$$
\widehat{\gamma \circ T^{-1}}(\xi) = \int_X \exp\{i\xi(T(x))\} \gamma(dx) = \int_X \exp\{i(\xi_1 f + \xi_2 g)(x)\} \gamma(dx) \n= \exp\{\{i\xi_1 a_{\gamma}(f) + i\xi_2 a_{\gamma}(g) - \frac{1}{2} ||j(\xi_1 f + \xi_2 g)||_{L^2(X,\gamma)}^2\}.
$$

On the other hand, if $\mu = (\gamma \circ f^{-1}) \otimes (\gamma \circ g^{-1})$, then

$$
\widehat{\mu}(\xi) = (\widehat{\gamma \circ f^{-1}})(\xi_1)(\widehat{\gamma \circ g^{-1}})(\xi_2) \n= \exp \left\{ i\xi_1 a_{\gamma}(f) + i\xi_2 a_{\gamma}(g) - \frac{\xi_1^2}{2} ||j(f)||^2_{L^2(X,\gamma)} - \frac{\xi_2^2}{2} ||j(g)||^2_{L^2(X,\gamma)} \right\},
$$

whence the conclusion, since

$$
||j(\xi_1 f + \xi_2 g)||_{L^2(X,\gamma)}^2 = \xi_1^2 ||j(f)||_{L^2(X,\gamma)}^2 + \xi_2^2 ||j(g)||_{L^2(X,\gamma)}^2
$$

if and only if $\langle f, g \rangle_{L^2(X,\gamma)} = 0.$

In the proof of the following result we deal with a nonmetrisable topology, and this requires the use of nets. Let us recall that a *directed set* is an ordered set (we denote by \geq the order relation) in which any couple of elements possess a common majorant. A net is a function whose domain is a directed set. If S is a topological space, a net $(x_{\alpha})_{\alpha \in A} \subset S$ is said to converge to $x \in S$ iff for any neighbourhood U of x there is $\alpha_0 \in A$ such that $x_{\alpha} \in U$ for all $\alpha \geq \alpha_0$. A point x belongs to the closure of a set $E \subset S$ iff there is a net $(x_{\alpha})_{\alpha\in\mathbb{A}}\subset A$ converging to x.

Theorem 3.1.8. Let γ be a Gaussian measure in a separable Banach space X, and let H be its Cameron–Martin space. The following statements hold.

- (i) The unit ball $B^H(0,1)$ of H is relatively compact in X and hence the embedding $H \hookrightarrow X$ is compact.
- (ii) H is the intersection of all the Borel full measure subspaces of X.
- (iii) If X^*_{γ} is infinite dimensional then $\gamma(H) = 0$.

Proof. (i) By inequality (3.1.3), the ball $\overline{B}^H(0,1)$ is bounded in X. Let us prove that it is weakly closed. To this aim, consider a net $(h_{\alpha}) \subset \overline{B}^{H}(0,1)$ weakly converging to $h \in X$. For every $f \in X^*$ with $||j(f)||_{L^2(X,\gamma)} \leq 1$ the inequality $|f(h)| \leq 1$ holds because $f(h) = \lim_{\alpha} f(h_{\alpha})$ and $||f||_{X^*} \le ||j(f)||_{L^2(X,\gamma)}$. Hence $\overline{B}^H(0,1)$ is weakly closed, then it is

 \Box

closed in X since it is convex, see e.g. [Br, Theorem 3.7]. To prove that the embedding of H in X is compact, it is sufficient to prove that $\overline{B}^H(0,r)$ is compact in X for some $r > 0$. Fix any compact set $K \subset X$ with $\gamma(K) > 0$; by Lemma 3.1.6 there is $r > 0$ such that the ball $B^H(0,r)$ is contained in the compact set $K - K$, which implies that $\overline{B}^H(0,r)$ is contained in $K - K$ and the proof is complete.

(ii) Let V be a subspace of X with $\gamma(V) = 1$ and fix $h \in H$; by Theorem 3.1.5,

$$
\gamma(V - h) = \gamma_h(V) = \int_V \exp\left\{\hat{h}(x) - \frac{1}{2}|h|_H^2\right\} \gamma(dx)
$$

$$
= \int_X \exp\left\{\hat{h}(x) - \frac{1}{2}|h|_H^2\right\} \gamma(dx) = 1.
$$

This implies that $h \in V$, since otherwise $V \cap (V - h) = \emptyset$ and we would have

$$
1 = \gamma(X) \ge \gamma(V) + \gamma(V - h) = 2,
$$

a contradiction. Therefore, $H \subset V$ for all subspaces V of full measure.

To prove that the intersection of all subspaces of X with full measure is contained in H, fixed any $h \notin H$, we construct a full measure subspace V such that $h \notin V$. If $h \notin H$, then $|h|_H = +\infty$ and there is a sequence $(f_n) \subset X^*$ with $||j(f_n)||_{L^2(X,\gamma)} = 1$ and $f_n(h) \geq n$. Since

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} \int_X |j(f_n)(x)| \, \gamma(dx) \le \sum_{n=1}^{\infty} \frac{1}{n^2} \|j(f_n)\|_{L^2(X,\gamma)} < \infty
$$

the space (which is a Borel set, see Exercise 3.1)

$$
V := \left\{ x \in X : \text{ the series } \sum_{n=1}^{\infty} \frac{1}{n^2} j(f_n)(x) \text{ is convergent } \right\}
$$
 (3.1.12)

has full measure, and $h \notin V$.

(iii) Let us assume that X^*_{γ} is infinite dimensional. Then, there exists an orthonormal basis $\{f_n: n \in \mathbb{N}\}\$ of X^*_{γ} in particular for any $n \in \mathbb{N}$, $\gamma \circ f_n^{-1} = \mathcal{N}(0, 1)$. For every $M > 0$ and $n \in \mathbb{N}$ we have

$$
\gamma(\{x \in X : |f_n(x)| \le M\}) = \mathcal{N}(0,1)(-M,M) =: a_M < 1;
$$

as a consequence, since the functions f_n mutually are orthogonal, by Lemma 3.1.7 we have

$$
\gamma(\{x \in X : |f_k(x)| \le M \text{ for } k = 1, \dots, n\}) = a_M^n \to 0 \quad \text{as } n \to \infty
$$

and then

$$
\gamma\Big(\Big\{x\in X:\sup_{n\in\mathbb{N}}|f_n(x)|\leq M\Big\}\Big)=\gamma\Big(\bigcap_{n\in\mathbb{N}}\{x\in X:\ |f_k(x)|\leq M, k=1,\ldots,n\}\Big)=0.
$$

Since $\{f_n: n \in \mathbb{N}\}\$ is a basis of X^*_γ , for any $h \in H$ we have

$$
|h|_H^2 = \|\hat{h}\|_{L^2(X,\gamma)}^2 = \sum_{n=1}^{\infty} \langle f_n, \hat{h} \rangle_{L^2(X,\gamma)}^2 = \sum_{n=1}^{\infty} f_n(h)^2.
$$

Therefore

$$
H = \left\{ x \in X : \sum_{n=1}^{\infty} f_n(x)^2 < \infty \right\} \subset \bigcup_{M > 0} \left\{ x \in X : \sup_{n \in \mathbb{N}} |f_n(x)| \le M \right\}
$$

and it has measure 0.

We close this lecture with a couple of properties of the reproducing kernel and of the Cameron–Martin space. First we show that it is always possible to consider orthonormal basis in X^*_{γ} made by elements of $j(X^*)$; this fact can be very useful in some proofs. Then we see that the norm of the space X is somehow irrelevant in the theory, in the sense that the Cameron–Martin space remains unchanged if we replace the norm of X by a weaker norm.

Lemma 3.1.9. There exists an orthonormal basis of X^*_{γ} contained in $j(X^*)$.

Proof. Let $\{f_k: k \in \mathbb{N}\}\$ be an orthonormal basis of X^*_γ . In its turn, every f_k is the $L^2(X,\gamma)$ -limit of a sequence of elements $j(g_n^{(k)})$ with $g_n^{(k)} \in X^*$. Let us enumerate the set $\{j(g_n^{(k)}) : k, n \in \mathbb{N}\}\$, for instance by the diagonal procedure. On span $\{j(g_n^{(k)}) : k, n \in \mathbb{N}\}\$ $\mathbb{N}\}$ we construct an orthonormal basis \mathcal{V} , by the Gram–Schmidt procedure (see e.g. [L, Theorem V.2.1]). The linear combinations of the elements of such a basis approach every $j(g_n^{(k)})$ and hence every f_k in $L^2(X, \gamma)$. Therefore, the linear space spanned by $\mathcal V$ is dense in X^*_{γ} . \Box

Proposition 3.1.10. Let γ be a Gaussian measure on a Banach space X. Let us assume that X is continuously embedded in another Banach space Y, i.e., there exists a continuous injection $i: X \to Y$. Then the Cameron–Martin space H associated with the measure γ is isomorphic to the Cameron–Martin space H_Y associated with the image measure $\gamma_Y := \gamma \circ i^{-1}$ in Y.

Proof. Let $f \in Y^*$; then $f \circ i \in X^*$ by the continuity of the injection i. Moreover

$$
a_{\gamma}(f \circ i) = \int_{X} f(i(x)) \gamma(dx) = \int_{Y} f(y) \gamma_{Y}(dy) = a_{\gamma_{Y}}(f).
$$

Denoting by $j_Y : Y^* \to Y^*_{\gamma_Y}$ the embedding of Y^* into $L^2(Y, \gamma_Y)$, we have $j(f \circ i) = j_Y(f) \circ i$ and

$$
||j(f \circ i)||_{L^{2}(X,\gamma)}^{2} = \int_{X} j(f \circ i)(x)^{2} \gamma(dx) = \int_{Y} j_{Y}(f)(y)^{2} \gamma_{Y}(dy) = ||j_{Y}(f)||_{L^{2}(Y,\gamma_{Y})}^{2}.
$$

We prove now that $i : H \to H_Y$ is an isometry. First of all, $i(h) \in H_Y$ for any $h \in H$ since for any $f \in Y^*$

$$
|f(i(h))| = |(f \circ i)(h)| \le ||j(f \circ i)||_{L^2(X,\gamma)}|h|_H
$$

 \Box

and then

$$
|i(h)|_{H_Y}=\sup\{f(i(h)): f\in Y^*,\, \|j_Y(f)\|_{L^2(Y,\gamma_Y)}\leq 1\}\leq |h|_H<+\infty.
$$

Hence $i(H) \subset H_Y$ and

$$
|i(h)|_{H_Y} \le |h|_H. \tag{3.1.13}
$$

We prove now the inclusion $H_Y \subset i(H)$; since $i(X)$ has full measure in Y, we have $H_Y \subset i(X)$ by statement (ii) of Theorem 3.1.8. Then, for any $h_Y \in H_Y$, there exists a unique $h \in X$ with $i(h) = h_Y$; since

$$
\gamma_Y(B - h_Y) = \gamma(i^{-1}(B) - h),
$$

then $h_Y \in H_Y$ if and only if $h \in H$. In this case

$$
\gamma_Y(B - h_Y) = \int_B \exp\left\{\hat{h}_Y(y) - \frac{1}{2}|h_Y|_{H_Y}^2\right\} \gamma_Y(dy)
$$

$$
= \int_{i^{-1}(B)} \exp\left\{\hat{h}_Y(i(x)) - \frac{1}{2}|h_Y|_{H_Y}^2\right\} \gamma(dx)
$$

is equal to

$$
\gamma(i^{-1}(B) - h) = \int_{i^{-1}(B)} \exp\left\{\hat{h}(x) - \frac{1}{2}|h|_{H}^{2}\right\} \gamma(dx).
$$

This implies

$$
\hat{h}_Y(i(x)) - \frac{1}{2}|h_Y|_{H_Y}^2 = \hat{h}(x) - \frac{1}{2}|h|_H^2
$$
\n(3.1.14)

for γ -a.e. $x \in X$. By (3.1.13) we obtain $\hat{h}_Y(i(x)) - \hat{h}(x) \leq 0$ for γ -a.e. $x \in X$, and then, since

$$
\int_X (\hat{h}_Y(i(x)) - \hat{h}(x)) \gamma(dx) = \int_Y \hat{h}_Y(y) \gamma_Y(dy) - \int_X \hat{h}(x) \gamma(dx) = 0,
$$

we conclude that $\hat{h}_Y(i(x)) = \hat{h}(x)$ for γ -a.e. $x \in X$ and then by (3.1.14) $|h_Y|_{H_Y} =$ $|i(h)|_{H_Y} = |h|_H.$

3.2 Exercises 3

Exercise 3.1. Prove that the space V in $(3.1.12)$ is a Borel set.

Exercise 3.2. Show that $(3.1.9)$ holds.

Exercise 3.3. Let γ be the measure on \mathbb{R}^2 defined by

$$
\gamma(B) = \gamma_1(\{x \in \mathbb{R} : (x, 0) \in B\}), \qquad B \in \mathcal{B}(\mathbb{R}^2).
$$

Prove that the Cameron–Martin space H is given by $\mathbb{R} \times \{0\}$.

36

Exercise 3.4. Let γ , μ be equivalent Gaussian measures in X, and denote by H_{γ} , H_{μ} the associated Cameron–Martin spaces. Prove that for every $x \in X$, $x \in H_{\gamma}$ iff $x \in H_{\mu}$, and if in addition γ and μ are centered, then $X^*_{\gamma} = X^*_{\mu}$. Prove that if γ , μ are centred Gaussian measures in X such that $\gamma \perp \mu$, then $\gamma_x \perp \mu_y$, for all $x, y \in X$.

Exercise 3.5. Prove that the Cameron–Martin space is invariant by translation, i.e. for any $x \in X$, the measure

$$
\gamma_x(B) = \gamma(B - x), \qquad \forall B \in \mathcal{B}(X)
$$

has the same Cameron–Martin space as γ even when $\gamma_x \perp \gamma$.

Bibliography

- [Br] H. Brezis: Functional Analysis, Sobolev spaces and partial differential equations, Springer, 2011.
- [L] S. Lang: Linear Algebra, Springer, 1987.