
Lecture 3

The Cameron–Martin space

In this Lecture we present the Cameron-Martin space. It consists of the elements h ∈ X
such that the measure γh(B) := γ(B − h) is absolutely continuous with respect to γ. As
we shall see, the Cameron-Martin space is fundamental when dealing with the differential
structure in X mainly in connection with integration by parts formulae.

3.1 The Cameron–Martin space

We start with the definition of the Cameron–Martin space.

Definition 3.1.1 (Cameron-Martin space). For every h ∈ X set

|h|H := sup
{
f(h) : f ∈ X∗, ‖j(f)‖L2(X,γ) ≤ 1

}
, (3.1.1)

where j : X∗ → L2(X, γ) is the embedding defined in (2.3.4). The Cameron-Martin space
is defined by

H :=
{
h ∈ X : |h|H <∞

}
. (3.1.2)

Calling c the norm of j : X∗ → L2(X, γ), we have

‖h‖X = sup{f(h) : ‖f‖X∗ ≤ 1} ≤ sup{f(h) : ‖j(f)‖L2(X,γ) ≤ c} = c|h|H , (3.1.3)

and then H is continously embedded in X. We shall see that this embedding is even
compact and that the norms ‖ · ‖X and | · |H are not equivalent in H.

The Cameron-Martin space inherits a natural Hilbert space structure from the space
X∗γ through the L2(X, γ) Hilbert structure.

Proposition 3.1.2. An element h ∈ X belongs to H if and only if there is ĥ ∈ X∗γ such

that h = Rγ ĥ. In this case,

|h|H = ‖ĥ‖L2(X,γ). (3.1.4)
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Therefore Rγ : X∗γ → H is an isometry and H is a Hilbert space with the inner product

[h, k]H := 〈ĥ, k̂〉L2(X,γ)

whenever h = Rγ ĥ, k = Rγ k̂.

Proof. If |h|H <∞, we define the map L : j(X∗)→ R setting

L(j(f)) := f(h), ∀f ∈ X∗.

Such map is well defined since the estimate

|f(h)| ≤ ‖j(f)‖L2(X,γ)|h|H (3.1.5)

implies that if j(f1) = j(f2), then f1(h) = f2(h). The map L is also continuous with
respect to the L2 topology again by estimate (3.1.5). Then L can be continuously extended
to X∗γ ; by the Riesz representation theorem there is a unique ĥ ∈ X∗γ such that the
extension (still denoted by L) is given by

L(φ) =

∫
X
φ(x)ĥ(x) γ(dx), ∀φ ∈ X∗γ .

In particular, for any f ∈ X∗,

f(h) = L(j(f)) =

∫
X
j(f)(x)ĥ(x) γ(dx) = f(Rγ ĥ),

therefore Rγ ĥ = h and

|h|H = sup
{
f(h) : f ∈ X∗, ‖j(f)‖L2(X,γ) ≤ 1

}
= ‖ĥ‖L2(X,γ).

Conversely, if h = Rγ ĥ, then by (2.3.7) for all f ∈ X∗ we have

f(h) = f(Rγ ĥ) =

∫
X
j(f)(x)ĥ(x) γ(dx) ≤ ‖ĥ‖L2(X,γ)‖j(f)‖L2(X,γ), (3.1.6)

whence |h|H <∞.

The space L2(X, γ) (hence its subspace X∗γ as well) is separable, because X is sepa-
rable, see e.g. [Br, Theorem 4.13]. Therefore, H, being isometric to a separable space, is
separable.

Remark 3.1.3. The map Rγ : X∗γ → X can be defined directly using the Bochner integral
through the formula

Rγf :=

∫
X

(x− a)f(x) γ(dx),

where a is the mean of γ. We do not assume the knowledge of Bochner intregal. We shall
say something about it in one of the following lectures.
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Before going on, let us describe the finite dimensional case X = Rd. If γ = N (a,Q)
then for f ∈ Rd we have

‖j(f)‖2L2(Rd,γ) =

∫
Rd

〈x− a, f〉2Rd N (a,Q)(dx) = 〈Qf, f〉Rd

and therefore |h|H is finite if and only if h ∈ Q(Rd) and, as a consequence, H = Q(Rd)
is the range of Q. According to the notation introduced in Proposition 3.1.2, if Q is
invertible, h = Rγ ĥ iff ĥ(x) = 〈Q−1h, x〉Rd . Moreover, if γ is nondegenerate the measures
γh defined by γh(B) = γ(B − h) are all equivalent to γ in the sense of Section 1.1 and an
elementary computation shows that, writing γh = %hγ, we have

%h(x) := exp
{
〈Q−1h, x〉Rd −

1

2
|h|2
}

= exp
{
ĥ(x)− 1

2
|h|2
}
.

In the infinite dimensional case the situation is completely different. We start with a
preliminary result.

Lemma 3.1.4. For any g ∈ X∗γ , the measure

µg = exp
{
g − 1

2
‖g‖2L2(X,γ)

}
γ

is a Gaussian measure with characteristic function

µ̂g(f) = exp
{
if(Rγg) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
. (3.1.7)

Proof. First of all, we notice that the image of γ under the measurable function g :
X → R is still a Gaussian measure given by N (0, ‖g‖2L2(X,γ)) thanks to Proposition 2.3.5.
Therefore, ∫

X
exp{|g(x)|} γ(dx) =

∫
R
e|t|N (0, ‖g‖2L2(X,γ))(dt) < +∞,

hence exp{|g|} ∈ L1(X, γ) and µg is a finite measure. In addition, µg is a probability
measure since

µg(X) =

∫
X

exp
{
g(x)− 1

2
‖g‖2L2(X,γ)

}
γ(dx)

= exp
{
−1

2
‖g‖2L2(X,γ)

}∫
R
etN (0, ‖g‖2L2(X,γ))(dt) = 1.

In order to prove that (3.1.7) holds, we observe that for every t ∈ R we have

exp
{
−1

2
‖g‖2L2(X,γ)

}∫
X

exp{i(f(x)− tg(x))} γ(dx)

= exp
{
−1

2
‖g‖2L2(X,γ)

}
γ̂(f − tg)

= exp
{
−1

2
‖g‖2L2(X,γ)

}
exp
{
iaγ(f − tg)− 1

2
‖j(f − tg)‖2L2(X,γ)

}
= exp

{
tf(Rγg)− 1 + t2

2
‖g‖2L2(X,γ) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
.
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So, the entire holomorphic functions

z 7→ exp
{
−1

2
‖g‖2L2(X,γ)

}∫
X

exp{i(f(x)− zg(x))} γ(dx)

z 7→ exp
{
zf(Rγg)− 1 + z2

2
‖g‖2L2(X,γ) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
coincide for z ∈ R, hence they coincide in C. In particular, taking z = i we obtain

µ̂g(f) = exp
{
iaγ(f)− 1

2
‖j(f)‖2L2(X,γ) + iRγg(f)

}
.

Theorem 3.1.5 (Cameron-Martin Theorem). For h ∈ X, define the measure γh(B) :=
γ(B − h). If h ∈ H the measure γh is equivalent to γ and γh = %hγ, with

%h(x) := exp
{
ĥ(x)− 1

2
|h|2H

}
, (3.1.8)

where ĥ = R−1γ h. If h /∈ H then γh ⊥ γ. Hence, γh ≈ γ if and only if h ∈ H.

Proof. For h ∈ H, let us compute the characteristic function of γh. For any f ∈ X∗ we
have

γ̂h(f) =

∫
X

exp{if(x)} γh(dx) =

∫
X

exp{if(x+ h)} γ(dx)

= exp
{
if(Rγ ĥ) + iaγ(f)− 1

2
‖j(f)‖2L2(X,γ)

}
, f ∈ X∗.

Taking into account Lemma 3.1.4 and Proposition 2.1.2, we obtain that γh = %hγ, where
the density %h is given by (3.1.8).

Now, let us see that if h /∈ H then γh ⊥ γ. To this aim, let us first consider the
1-dimensional case. If γ is a Dirac measure in R, then γh ⊥ γ for any h 6= 0 and
|γ − γh|(R) = 2. Otherwise, if γ = N (a, σ2) is a nondegenerate Gaussian measure in R,

then γh � γ with dγh
dγ (t) = exp{− h2

2σ2 + h(t−a)
σ2 }. We can apply Hellinger Theorem 1.1.10

with λ = γ, whence by Exercise 3.2

H(γ, γh) = exp
{
− h2

8σ2

}
, (3.1.9)

and then (1.1.7) implies

|γ − γh|(R) ≥ 2

(
1− exp

{
− 1

8σ2
h2
})

. (3.1.10)

In any case, (3.1.10) holds true.
Let us go back to X. For every f ∈ X∗, using just the definition, it is immediate to

verify that γh ◦ f−1 = (γ ◦ f−1)f(h) and

|γ ◦ f−1 − (γ ◦ f−1)f(h)|(R) ≤ |γ − γh|(X);
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If h 6∈ H, there exists a sequence (fn) ⊂ X∗ with ‖j(fn)‖L2(X,γ) = 1 and fn(h) ≥ n. By
(3.1.10) we obtain

|γ − γh|(X) ≥|(γ ◦ f−1n )− (γ ◦ f−1n )fn(h)|(R) ≥ 2

(
1− exp

{
−1

8
fn(h)2

})
≥2

(
1− exp

{
−1

8
n2
})

.

This implies that |γ − γh|(X) = 2, hence by Corollary 1.1.11, γh ⊥ γ.

From now on, we denote by BH(0, r) the open ball of centre 0 and radius r in H and

by B
H

(0, r) its closure in H. In the proof of Theorem 3.1.8 we need the following result.

Proposition 3.1.6. If A ∈ borel(X) is such that γ(A) > 0, then there is r > 0 such that
BH(0, r) ⊂ A−A.

Proof. Let us introduce the function H 3 h 7→ φ(h) := γ
(
(A+ h) ∩A

)
, i.e.,

φ(h) = γ
(
(A+ h) ∩A

)
=

∫
X

1lA(x− h)1lA(x) γ(dx).

We claim that
lim inf
|h|H→0

φ(h) > 0.

Let us first assume that A is open; then

1lA(x) = sup{ϕ(x) : ϕ ∈ C(X), 0 ≤ ϕ(x) ≤ 1lA(x)}.

In particular we consider the sequence of functions

ϕn(x) = min
{
ndist(x,Ac), 1

}
.

For every n, ϕn = 0 on Ac, ϕn = 1 on {x ∈ A : dist(x,Ac) ≥ 1
n}, it is Lipschitz continuous

and ϕn(x)→ 1lA(x) for any x ∈ X. By continuity and by the fact that ‖h‖X ≤ c|h|H , for
any x ∈ X

lim
|h|H→0

ϕn(x− h) = ϕn(x).

Then by the Fatou Lemma we have∫
X
ϕn(x)2γ(dx) =

∫
X

lim
|h|H→0

ϕn(x− h)ϕn(x)γ(dx)

≤ lim inf
|h|H→0

∫
X

1lA(x− h)1lA(x)γ(dx).

Letting n→ +∞, by Lebesgue Dominated Convergence Theorem, we obtain

γ(A) = lim
n→+∞

∫
X
ϕn(x)2 γ(dx) ≤ lim inf

|h|H→0

∫
X

1lA(x− h)1lA(x)γ(dx),
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and we have proved the claim for A open.

Let us now consider an arbitrary A ∈ B(X); in the proof of Proposition 1.1.5 we have
seen that for any ε > 0 there exists an open set Aε ⊃ A with γ(Aε \ A) < ε. Taking into
account that h ∈ H, we get∫

X
1lA(x− h)1lA(x) γ(dx) =

=

∫
X

1lAε(x− h)1lA(x) γ(dx) +

∫
X

(1lA(x− h)− 1lAε(x− h))1lA(x) γ(dx)

=

∫
X

1lAε(x− h)1lAε(x) γ(dx) +

∫
X

1lAε(x− h)(1lA(x)− 1lAε(x)) γ(dx)+

+

∫
X

(1lA(x− h)− 1lAε(x− h))1lA(x) γ(dx)

≥
∫
X

1lAε(x− h)1lAε(x)γ(dx)−
∫
X
|1lA(x)− 1lAε(x)| γ(dx)+

−
∫
X
|1lA(x− h)− 1lAε(x− h)| γ(dx)

=

∫
X

1lAε(x− h)1lAε(x)γ(dx)− γ(Aε \A)+

−
∫
X
|1lA(x)− 1lAε(x)| exp

{
−ĥ(x)− 1

2
|h|2H

}
γ(dx).

Now we claim that

lim
|h|H→0

∫
X
|1lA(x)− 1lAε(x)| exp

{
−ĥ(x)− 1

2
|h|2H

}
γ(dx) = γ(Aε \A). (3.1.11)

Once (3.1.11) is proved, it implies

lim inf
|h|H→0

∫
X

1lA(x− h)1lA(x)γ(dx) ≥ lim inf
|h|H→0

∫
X

1lAε(x− h)1lAε(x)γ(dx)+

− 2γ(Aε \A) ≥ γ(Aε)− 2ε ≥ γ(A)− 2ε > 0

if ε < γ(A)/2. Then there is r > 0 such that φ(h) > 0 for |h|H < r and therefore for any
|h|H < r, (A+ h) ∩A 6= ∅, so that BH(0, r) ⊂ A−A.

To prove that (3.1.11) holds, we notice that since the image measure of γ under ĥ is
N (0, |h|2H), then∫

X

∣∣∣∣exp
{
−ĥ(x)− 1

2
|h|2H

}
−1

∣∣∣∣ γ(dx) =

∫
R

∣∣∣∣exp
{
−t|h|H −

1

2
|h|2H

}
−1

∣∣∣∣ γ1(dt),
and the right hand side vanishes as |h|H → 0 by the Dominated Convergence Theorem.

We give the following technical result that we shall need for instance in the proof of
Theorem 3.1.8; it will be rephrased with a probabilistic language in the sequel.
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Lemma 3.1.7. Let f, g ∈ X∗ and set T : X → R2, T (x) := (f(x), g(x)). Then

γ ◦ T−1 = (γ ◦ f−1)⊗ (γ ◦ g−1)

iff j(f) and j(g) are orthogonal in L2(X, γ).

Proof. We just compute the characteristic function. For every ξ ∈ R2 we have

̂γ ◦ T−1(ξ) =

∫
X

exp{iξ(T (x))}γ(dx) =

∫
X

exp{i(ξ1f + ξ2g)(x)}γ(dx)

= exp

{
iξ1aγ(f) + iξ2aγ(g)− 1

2
‖j(ξ1f + ξ2g)‖2L2(X,γ)

}
.

On the other hand, if µ = (γ ◦ f−1)⊗ (γ ◦ g−1), then

µ̂(ξ) = ̂(γ ◦ f−1)(ξ1) ̂(γ ◦ g−1)(ξ2)

= exp

{
iξ1aγ(f) + iξ2aγ(g)− ξ21

2
‖j(f)‖2L2(X,γ) −

ξ22
2
‖j(g)‖2L2(X,γ)

}
,

whence the conclusion, since

‖j(ξ1f + ξ2g)‖2L2(X,γ) = ξ21‖j(f)‖2L2(X,γ) + ξ22‖j(g)‖2L2(X,γ)

if and only if 〈f, g〉L2(X,γ) = 0.

In the proof of the following result we deal with a nonmetrisable topology, and this
requires the use of nets. Let us recall that a directed set is an ordered set (we denote by ≥
the order relation) in which any couple of elements possess a common majorant. A net is
a function whose domain is a directed set. If S is a topological space, a net (xα)α∈A ⊂ S
is said to converge to x ∈ S iff for any neighbourhood U of x there is α0 ∈ A such that
xα ∈ U for all α ≥ α0. A point x belongs to the closure of a set E ⊂ S iff there is a net
(xα)α∈A ⊂ A converging to x.

Theorem 3.1.8. Let γ be a Gaussian measure in a separable Banach space X, and let H
be its Cameron–Martin space. The following statements hold.

(i) The unit ball BH(0, 1) of H is relatively compact in X and hence the embedding
H ↪→ X is compact.

(ii) H is the intersection of all the Borel full measure subspaces of X.

(iii) If X∗γ is infinite dimensional then γ(H) = 0.

Proof. (i) By inequality (3.1.3), the ball B
H

(0, 1) is bounded in X. Let us prove that

it is weakly closed. To this aim, consider a net (hα) ⊂ B
H

(0, 1) weakly converging to
h ∈ X. For every f ∈ X∗ with ‖j(f)‖L2(X,γ) ≤ 1 the inequality |f(h)| ≤ 1 holds because

f(h) = limα f(hα) and ‖f‖X∗ ≤ ‖j(f)‖L2(X,γ). Hence B
H

(0, 1) is weakly closed, then it is
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closed in X since it is convex, see e.g. [Br, Theorem 3.7]. To prove that the embedding of

H in X is compact, it is sufficient to prove that B
H

(0, r) is compact in X for some r > 0.
Fix any compact set K ⊂ X with γ(K) > 0; by Lemma 3.1.6 there is r > 0 such that

the ball BH(0, r) is contained in the compact set K −K, which implies that B
H

(0, r) is
contained in K −K and the proof is complete.
(ii) Let V be a subspace of X with γ(V ) = 1 and fix h ∈ H; by Theorem 3.1.5,

γ(V − h) =γh(V ) =

∫
V

exp
{
ĥ(x)− 1

2
|h|2H

}
γ(dx)

=

∫
X

exp
{
ĥ(x)− 1

2
|h|2H

}
γ(dx) = 1.

This implies that h ∈ V , since otherwise V ∩ (V − h) = ∅ and we would have

1 = γ(X) ≥ γ(V ) + γ(V − h) = 2,

a contradiction. Therefore, H ⊂ V for all subspaces V of full measure.

To prove that the intersection of all subspaces of X with full measure is contained
in H, fixed any h /∈ H, we construct a full measure subspace V such that h /∈ V . If
h /∈ H, then |h|H = +∞ and there is a sequence (fn) ⊂ X∗ with ‖j(fn)‖L2(X,γ) = 1 and
fn(h) ≥ n. Since

∞∑
n=1

1

n2

∫
X
|j(fn)(x)| γ(dx) ≤

∞∑
n=1

1

n2
‖j(fn)‖L2(X,γ) <∞

the space (which is a Borel set, see Exercise 3.1)

V :=
{
x ∈ X : the series

∞∑
n=1

1

n2
j(fn)(x) is convergent

}
(3.1.12)

has full measure, and h /∈ V .
(iii) Let us assume that X∗γ is infinite dimensional. Then, there exists an orthonormal
basis {fn : n ∈ N} of X∗γ ; in particular for any n ∈ N, γ ◦ f−1n = N (0, 1). For every
M > 0 and n ∈ N we have

γ({x ∈ X : |fn(x)| ≤M}) = N (0, 1)(−M,M) =: aM < 1;

as a consequence, since the functions fn mutually are orthogonal, by Lemma 3.1.7 we have

γ({x ∈ X : |fk(x)| ≤M for k = 1, . . . , n}) = anM → 0 as n→∞

and then

γ
({
x ∈ X : sup

n∈N
|fn(x)| ≤M

})
= γ

(⋂
n∈N
{x ∈ X : |fk(x)| ≤M,k = 1, . . . , n}

)
= 0.
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Since {fn : n ∈ N} is a basis of X∗γ , for any h ∈ H we have

|h|2H = ‖ĥ‖2L2(X,γ) =
∞∑
n=1

〈fn, ĥ〉2L2(X,γ) =
∞∑
n=1

fn(h)2.

Therefore

H =
{
x ∈ X :

∞∑
n=1

fn(x)2 <∞
}
⊂
⋃
M>0

{
x ∈ X : sup

n∈N
|fn(x)| ≤M

}
and it has measure 0.

We close this lecture with a couple of properties of the reproducing kernel and of the
Cameron–Martin space. First we show that it is always possible to consider orthonormal
basis in X∗γ made by elements of j(X∗); this fact can be very useful in some proofs. Then
we see that the norm of the space X is somehow irrelevant in the theory, in the sense that
the Cameron–Martin space remains unchanged if we replace the norm of X by a weaker
norm.

Lemma 3.1.9. There exists an orthonormal basis of X∗γ contained in j(X∗).

Proof. Let {fk : k ∈ N} be an orthonormal basis of X∗γ . In its turn, every fk is the

L2(X, γ)-limit of a sequence of elements j(g
(k)
n ) with g

(k)
n ∈ X∗. Let us enumerate the set

{j(g(k)n ) : k, n ∈ N}, for instance by the diagonal procedure. On span {j(g(k)n ) : k, n ∈
N} we construct an orthonormal basis V, by the Gram–Schmidt procedure (see e.g. [L,
Theorem V.2.1]). The linear combinations of the elements of such a basis approach every

j(g
(k)
n ) and hence every fk in L2(X, γ). Therefore, the linear space spanned by V is dense

in X∗γ .

Proposition 3.1.10. Let γ be a Gaussian measure on a Banach space X. Let us assume
that X is continuously embedded in another Banach space Y , i.e., there exists a continuous
injection i : X → Y . Then the Cameron–Martin space H associated with the measure
γ is isomorphic to the Cameron–Martin space HY associated with the image measure
γY := γ ◦ i−1 in Y .

Proof. Let f ∈ Y ∗; then f ◦ i ∈ X∗ by the continuity of the injection i. Moreover

aγ(f ◦ i) =

∫
X
f(i(x)) γ(dx) =

∫
Y
f(y) γY (dy) = aγY (f).

Denoting by jY : Y ∗ → Y ∗γY the embedding of Y ∗ into L2(Y, γY ), we have j(f ◦i) = jY (f)◦i
and

‖j(f ◦ i)‖2L2(X,γ) =

∫
X
j(f ◦ i)(x)2 γ(dx) =

∫
Y
jY (f)(y)2 γY (dy) = ‖jY (f)‖2L2(Y,γY ).

We prove now that i : H → HY is an isometry. First of all, i(h) ∈ HY for any h ∈ H since
for any f ∈ Y ∗

|f(i(h))| = |(f ◦ i)(h)| ≤ ‖j(f ◦ i)‖L2(X,γ)|h|H
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and then

|i(h)|HY
= sup{f(i(h)) : f ∈ Y ∗, ‖jY (f)‖L2(Y,γY ) ≤ 1} ≤ |h|H < +∞.

Hence i(H) ⊂ HY and

|i(h)|HY
≤ |h|H . (3.1.13)

We prove now the inclusion HY ⊂ i(H); since i(X) has full measure in Y , we have
HY ⊂ i(X) by statement (ii) of Theorem 3.1.8. Then, for any hY ∈ HY , there exists a
unique h ∈ X with i(h) = hY ; since

γY (B − hY ) = γ(i−1(B)− h),

then hY ∈ HY if and only if h ∈ H. In this case

γY (B − hY ) =

∫
B

exp
{
ĥY (y)− 1

2
|hY |2HY

}
γY (dy)

=

∫
i−1(B)

exp
{
ĥY (i(x))− 1

2
|hY |2HY

}
γ(dx)

is equal to

γ(i−1(B)− h) =

∫
i−1(B)

exp
{
ĥ(x)− 1

2
|h|2H

}
γ(dx).

This implies

ĥY (i(x))− 1

2
|hY |2HY

= ĥ(x)− 1

2
|h|2H (3.1.14)

for γ–a.e. x ∈ X. By (3.1.13) we obtain ĥY (i(x))− ĥ(x) ≤ 0 for γ–a.e. x ∈ X, and then,
since ∫

X
(ĥY (i(x))− ĥ(x)) γ(dx) =

∫
Y
ĥY (y) γY (dy)−

∫
X
ĥ(x) γ(dx) = 0,

we conclude that ĥY (i(x)) = ĥ(x) for γ–a.e. x ∈ X and then by (3.1.14) |hY |HY
=

|i(h)|HY
= |h|H .

3.2 Exercises 3

Exercise 3.1. Prove that the space V in (3.1.12) is a Borel set.

Exercise 3.2. Show that (3.1.9) holds.

Exercise 3.3. Let γ be the measure on R2 defined by

γ(B) = γ1({x ∈ R : (x, 0) ∈ B}), B ∈ B(R2).

Prove that the Cameron–Martin space H is given by R× {0}.
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Exercise 3.4. Let γ, µ be equivalent Gaussian measures in X, and denote by Hγ , Hµ the
associated Cameron–Martin spaces. Prove that for every x ∈ X, x ∈ Hγ iff x ∈ Hµ, and if
in addition γ and µ are centered, then X∗γ = X∗µ. Prove that if γ, µ are centred Gaussian
measures in X such that γ ⊥ µ, then γx ⊥ µy, for all x, y ∈ X.

Exercise 3.5. Prove that the Cameron–Martin space is invariant by translation, i.e. for
any x ∈ X, the measure

γx(B) = γ(B − x), ∀B ∈ B(X)

has the same Cameron–Martin space as γ even when γx ⊥ γ.
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