Exercise 3.1

We will prove that

= 1
V= {3: € X : the series Z —J(fa)(z) is convergent}
n

n=1

- {x € X : the sequence (i%j(fn)(ﬁ))

is a Cauchy sequence}
meN

is a Borel set. Here, X denotes a separable Banach space, j : X* —
L*(X,~) the mapping j(f) := f — a,(f), and (fn)nen C X* a sequence
with ||7(fn)llL2(x) = 1 and f,(h) > n.

Writing the Cauchy sequence property using quantors reveals that x € V'
if and only if
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Thus, V can be written as

v=NU N N frex: X mom] <3}

j=1no=1 k=ng m=k n=k

Consequently, it remains to show that

Vi = {ze X :| Zm:%j(fn)(:c)‘ < %}
n=~k

is a Borel set. As f, € X* is continuous and a.(f,) is simply a number, the
function x +— j(f,,)(z) is continuous from X to R and hence Vj ,, is open.

Exercise 3.2

In this exercise, v = N (a,0?) denotes a nondegenerate Gaussian measure
on R and for h # 0 the measure 7, denotes the translation of v given by
Y (B) := (B — h) for any Borel set B. By virtue of
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it follows that vp, 1s absolutely continuous with respect to v with %(z) =
2 (z—a
exp{—g5z + "5},
2 . .
Next, we prove that H(vy,v) = exp{—25} holds true. Using the defini-

tion of H(~y,vs) (see Hellinger’s Theorem in Lecture 1), we derive by a direct
computation

th,
Hiy,m) = / () 7(dz)
2 | h(z—a) (z—a)?
= eferi* 2.2 dx
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the last equality following by the change of variables * = ¢t — a. Adding
h?/4 — h*/4 in order to complete the square inside the exponential function
yields

n2 1 (=41
= ¢ 82 e 202 dt
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the latter equality following due to the fact that the integrand is the density
of a Gaussian measure.

Exercise 3.3
In this exercise, ~ is the measure on R? given by

v(B) :=v({z €R: (z,0) € B}), B € B(R?),

2
where v, := \/%e’%)\l is the standard Gaussian measure. To compute the
Cameron-Martin space we rely on the fact that if v = N(a,Q), for some
a € R? and a non-negative, symmetric matrix @, the Cameron-Martin space
is given as the range of (), see the paragraph at the top of page 29. In order
to calculate @) we compute the characteristic function of v. By definition of
the characteristic function

€ = [ e*r(an)



Since R x [R\ {0}] has measure zero

= / e 18y (dx)
Rx{0}
and by definition of v
= / ei$1§171 (dl’l)
R
Finally, Remark 1.2.2 yields
¢t

We conclude that @) is given by

o-(33)

This proves H = Q(R?) =R x {0}.

Exercise 3.3 (alternative approach)

We consider the measure v on R? defined by
Y(B) =n({z €R: (2,0) € BY), B e BRY).

In oder to show that the Cameron-Martin space H is given by R x {0},
we will use Theorem 3.1.8(ii), which tells us that H is the intersection of all
the Borel full measure subspaces of R2.

At first, we remark that

TR x{0}) =n(R) =1

because v, is a probability measure on R. Therefore, we have H C R x {0}
by Theorem 3.1.8(ii).

Now let B € B(R?) be a full measure subspace of R?. We want to show
that R x {0} € B. We assume that this is not the case. But then the
vector space (R x {0}) N B has to be a proper subspace of R x {0}. Hence
(R x {0})N B = {(0,0)}.

Because v({(0,0)}) = 0, we obtain

1= (B > (R x {0}) UB)
— (R x {0}) +7(B) = 1({(0,0)}) = 1 +1-0 =2,



which is a contradiction. Hence, we have R x {0} C B. Because H is the
intersection of all the full measure subspaces and we have just seen that these
all contain R x {0}, we conclude R x {0} C H.

In total, we have H = R x {0}.

Exercise 3.4

Let 7, 1 be equivalent Gaussian measures on a Banach space X. We want to
show that the Cameron-Martin spaces H, and H, with respect to v and p
respectively coincide. We start by noting that v ~ p implies v, =~ u, for any
x € X and that the relation ~ for measures is an equivalence relation. Let
now h € H,. By Theorem 3.1.5 this means 7, ~ 7. Together with v ~ ;1 and
Yh A i, this implies p ~ py. Hence h € H,. Using the same argumentation
for a given h € H,, we get h € H, and hence H, = H,.

Let v, p be equivalent centered Gaussian measures on a separable Banach
space X. We want to show that X7 = X . Choose an arbitrary f € X7. By
the definiton of X there is a sequence (f,)nen in X* such that (j,(fn))nen
converges to f in L?(X,~). Here,

g X* = LA(X,v), e f—al(f)

for any Gaussian measure v. As v and p are centered, the functions j,(f,)
and f, (and j,(f,)) coincide as functions from X to R. Hence, we will
simply write f, instead of j,(f,) (or j.(f.)). Due to the convergence of
(fo)nen in L%(X,7), there is a subsequence of (f,)nen that converges -
almost everywhere to f. Without loss of generality, that subsequence is
(fn)nen itself. By the equivalence of v and p, the sequence (f,,)nen converges
p-almost everywhere to f. This already implies the convergence of f, to
f in measure with respect to p. In order to prove this, let € > 0 and set
M :={zx e X :|fu(z) — f(z)] > €}. Due to

Lte |fule) = f(a)
e T+ [ful@) - ()]

for each x € My and the theorem of dominated convergence, we get the
assertion by

>1
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for n — oo. As we now have the convergence in measure of f, to f with
respect to p, it follows from Theorem 8.3.8 that f € X, i.e. X7 C X . By
the same argumentation we get the reverse inclusion and hence X7 = X.

Let X be a separable Banach space and ~, i be centered Gaussian mea-
sures on X with v L p. We show that then ~, L p, for any z,y € X. Let
us first notice that in our case

Vo Lty for any z,y € X <=, L p for any z € X.

The implication from the left to right hand side is easy. In order to prove
the other implication let z,y € X be arbitrary and set z := x — y. By our
assumption, there is a set £ C X such that v,(E) = 0 and u(E) = 0. Set
F:=FE+y. Then 7,(F) = 7.(F) =0 and

1y (FO) = p(FC —y) = p((F — y)°) = p(EY) =0,

i.e. v, L p,. Hence, we only have to show the right hand side of the equiva-
lence above. Let x € X. If x € H,, then v, ~ v L p and therefore v, L p. If
x ¢ H.,, then by Proposition 3.1.8 (ii) there is a linear subspace S C X such
that v(S) =1 and = ¢ S. We will see that S + z is a set we can use to show
the mutual singularity of 7, and u. At first we have v,(S 4+ z) = v(5) = 1.
Secondly, pu(S+x) = u(S—z) due to the symmetry of pu. As S+x and S —=x
are disjoint, this implies (S + x) < 1/2. This already means u(S + z) = 0
by Theorem 8.2.2 and therefore u((S + z)¢) = 1. Hence 7, L p.

Exercise 3.5

We consider a Gaussian measure v on the space X. For x € X the measure
v, is given by
%(B) =1(B—z), BeBX).

For the proof that v and =, have the same Cameron-Martin space, we will
use the characterization given by the Cameron-Martin Theorem (Theorem
3.1.5).

Let H and H, be the Cameron-Martin spaces of v and ~,, respectively.
For h € X the Cameron-Martin Theorem yields that h € H if and only if
v, = . But by definition of the equivalence of two measures, this means
that

W(B) =0« ~(B) =0 for all B € B(X),

which can also be formulated as

Y(B—-h—2)=0& (B —x)=0forall Be B(X)

b}



or, expressed differently,
(V2)n(B) =0 < v,(B) =0 for all B € B(X).

But the last assertion is actually the definition of (7, ), & 7., which is equiv-
alent to h € H, by the Cameron-Martin Theorem.

All in all, we obtain that the sets H and H, coincide, i.e. 7, has the same
Cameron-Martin space as 7.



