
Exercise 3.1

We will prove that

V :=
{
x ∈ X : the series

∞∑
n=1

1

n2
j(fn)(x) is convergent

}
=
{
x ∈ X : the sequence

( m∑
n=1

1

n2
j(fn)(x)

)
m∈N

is a Cauchy sequence
}

is a Borel set. Here, X denotes a separable Banach space, j : X∗ →
L2(X, γ) the mapping j(f) := f − aγ(f), and (fn)n∈N ⊂ X∗ a sequence
with ‖j(fn)‖L2(X,γ) = 1 and fn(h) ≥ n.

Writing the Cauchy sequence property using quantors reveals that x ∈ V
if and only if

∀j ∈ N ∃n0 ∈ N ∀k ∈ N ∀m ∈ N with m ≥ k ≥ nj :
∣∣∣ m∑
n=k

1

n2
j(fn)(x)

∣∣∣ < 1

j
.

Thus, V can be written as

V =
∞⋂
j=1

∞⋃
n0=1

∞⋂
k=n0

∞⋂
m=k

{
x ∈ X :

∣∣∣ m∑
n=k

1

n2
j(fn)(x)

∣∣∣ < 1

j

}
.

Consequently, it remains to show that

Vj,k,m :=
{
x ∈ X :

∣∣∣ m∑
n=k

1

n2
j(fn)(x)

∣∣∣ < 1

j

}
is a Borel set. As fn ∈ X∗ is continuous and aγ(fn) is simply a number, the
function x 7→ j(fn)(x) is continuous from X to R and hence Vj,k,m is open.

Exercise 3.2

In this exercise, γ = N (a, σ2) denotes a nondegenerate Gaussian measure
on R and for h 6= 0 the measure γh denotes the translation of γ given by
γh(B) := γ(B − h) for any Borel set B. By virtue of

γh(B) =
1

σ
√

2π

∫
B−h

e−
(t−a)2

2σ2 dt

t=x−h
=

1

σ
√

2π

∫
B

e−
(x−a−h)2

2σ2 dx

=
1

σ
√

2π

∫
B

e−
h2−2h(x−a)

2σ2 · e−
(x−a)2

2σ2 dx
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it follows that γh is absolutely continuous with respect to γ with dγh
dγ

(x) =

exp{− h2

2σ2 + h(x−a)
σ2 }.

Next, we prove that H(γ, γh) = exp{− h2

8σ2} holds true. Using the defini-
tion of H(γ, γh) (see Hellinger’s Theorem in Lecture 1), we derive by a direct
computation

H(γ, γh) =

∫
R

√
dγ

dγ
(x)

dγh
dγ

(x) γ(dx)

=
1

σ
√

2π

∫
R

e−
h2

4σ2
+
h(x−a)
2σ2

− (x−a)2

2σ2 dx

=
1

σ
√

2π
e−

h2

4σ2

∫
R

e
1

2σ2
[ht−t2] dt,

the last equality following by the change of variables x = t − a. Adding
h2/4− h2/4 in order to complete the square inside the exponential function
yields

= e−
h2

8σ2

∫
R

1

σ
√

2π
e−

[t−h2 ]2

2σ2 dt

= e−
h2

8σ2 ,

the latter equality following due to the fact that the integrand is the density
of a Gaussian measure.

Exercise 3.3

In this exercise, γ is the measure on R2 given by

γ(B) := γ1({x ∈ R : (x, 0) ∈ B}), B ∈ B(R2),

where γ1 := 1√
2π

e−
|x|2
2 λ1 is the standard Gaussian measure. To compute the

Cameron-Martin space we rely on the fact that if γ = N (a,Q), for some
a ∈ R2 and a non-negative, symmetric matrix Q, the Cameron-Martin space
is given as the range of Q, see the paragraph at the top of page 29. In order
to calculate Q we compute the characteristic function of γ. By definition of
the characteristic function

γ̂(ξ) =

∫
R2

eix·ξγ(dx).
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Since R× [R \ {0}] has measure zero

=

∫
R×{0}

eix1ξ1γ(dx)

and by definition of γ

=

∫
R

eix1ξ1γ1(dx1).

Finally, Remark 1.2.2 yields

= e−
ξ21
2 .

We conclude that Q is given by

Q =

(
1 0
0 0

)
.

This proves H = Q(R2) = R× {0}.

Exercise 3.3 (alternative approach)

We consider the measure γ on R2 defined by

γ(B) = γ1({x ∈ R : (x, 0) ∈ B}), B ∈ B(R2).

In oder to show that the Cameron-Martin space H is given by R × {0},
we will use Theorem 3.1.8(ii), which tells us that H is the intersection of all
the Borel full measure subspaces of R2.

At first, we remark that

γ(R× {0}) = γ1(R) = 1

because γ1 is a probability measure on R. Therefore, we have H ⊆ R× {0}
by Theorem 3.1.8(ii).

Now let B ∈ B(R2) be a full measure subspace of R2. We want to show
that R × {0} ⊆ B. We assume that this is not the case. But then the
vector space (R × {0}) ∩ B has to be a proper subspace of R × {0}. Hence
(R× {0}) ∩B = {(0, 0)}.

Because γ({(0, 0)}) = 0, we obtain

1 = γ(R2) ≥ γ((R× {0}) ∪B)

= γ(R× {0}) + γ(B)− γ({(0, 0)}) = 1 + 1− 0 = 2,
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which is a contradiction. Hence, we have R × {0} ⊆ B. Because H is the
intersection of all the full measure subspaces and we have just seen that these
all contain R× {0}, we conclude R× {0} ⊆ H.

In total, we have H = R× {0}.

Exercise 3.4

Let γ, µ be equivalent Gaussian measures on a Banach space X. We want to
show that the Cameron-Martin spaces Hγ and Hµ with respect to γ and µ
respectively coincide. We start by noting that γ ≈ µ implies γx ≈ µx for any
x ∈ X and that the relation ≈ for measures is an equivalence relation. Let
now h ∈ Hγ. By Theorem 3.1.5 this means γh ≈ γ. Together with γ ≈ µ and
γh ≈ µh this implies µ ≈ µh. Hence h ∈ Hµ. Using the same argumentation
for a given h ∈ Hµ, we get h ∈ Hγ and hence Hγ = Hµ.

Let γ, µ be equivalent centered Gaussian measures on a separable Banach
space X. We want to show that X∗γ = X∗µ. Choose an arbitrary f ∈ X∗γ . By
the definiton of X∗γ there is a sequence (fn)n∈N in X∗ such that (jγ(fn))n∈N
converges to f in L2(X, γ). Here,

jν : X∗ → L2(X, ν), f 7→ f − aν(f)

for any Gaussian measure ν. As γ and µ are centered, the functions jγ(fn)
and fn (and jµ(fn)) coincide as functions from X to R. Hence, we will
simply write fn instead of jγ(fn) (or jµ(fn)). Due to the convergence of
(fn)n∈N in L2(X, γ), there is a subsequence of (fn)n∈N that converges γ-
almost everywhere to f . Without loss of generality, that subsequence is
(fn)n∈N itself. By the equivalence of γ and µ, the sequence (fn)n∈N converges
µ-almost everywhere to f . This already implies the convergence of fn to
f in measure with respect to µ. In order to prove this, let ε > 0 and set
M ε

k := {x ∈ X : |fn(x)− f(x)| > ε}. Due to

1 + ε

ε
· |fn(x)− f(x)|

1 + |fn(x)− f(x)|
> 1

for each x ∈ M ε
k and the theorem of dominated convergence, we get the

assertion by

µ(M ε
k) =

∫
Mε
k

µ(dx) ≤
∫
Mε
k

1 + ε

ε
· |fn(x)− f(x)|

1 + |fn(x)− f(x)|
µ(dx)

≤ 1 + ε

ε

∫
X

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

µ(dx)→ 0
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for n → ∞. As we now have the convergence in measure of fn to f with
respect to µ, it follows from Theorem 8.3.8 that f ∈ X∗µ, i.e. X∗γ ⊆ X∗µ. By
the same argumentation we get the reverse inclusion and hence X∗γ = X∗µ.

Let X be a separable Banach space and γ, µ be centered Gaussian mea-
sures on X with γ ⊥ µ. We show that then γx ⊥ µy for any x, y ∈ X. Let
us first notice that in our case

γx ⊥ µy for any x, y ∈ X ⇐⇒ γx ⊥ µ for any x ∈ X.

The implication from the left to right hand side is easy. In order to prove
the other implication let x, y ∈ X be arbitrary and set z := x − y. By our
assumption, there is a set E ⊂ X such that γz(E) = 0 and µ(EC) = 0. Set
F := E + y. Then γx(F ) = γz(E) = 0 and

µy(F
C) = µ(FC − y) = µ((F − y)C) = µ(EC) = 0,

i.e. γx ⊥ µy. Hence, we only have to show the right hand side of the equiva-
lence above. Let x ∈ X. If x ∈ Hγ, then γx ≈ γ ⊥ µ and therefore γx ⊥ µ. If
x /∈ Hγ, then by Proposition 3.1.8 (ii) there is a linear subspace S ⊆ X such
that γ(S) = 1 and x /∈ S. We will see that S + x is a set we can use to show
the mutual singularity of γx and µ. At first we have γx(S + x) = γ(S) = 1.
Secondly, µ(S+x) = µ(S−x) due to the symmetry of µ. As S+x and S−x
are disjoint, this implies µ(S + x) ≤ 1/2. This already means µ(S + x) = 0
by Theorem 8.2.2 and therefore µ((S + x)C) = 1. Hence γx ⊥ µ.

Exercise 3.5

We consider a Gaussian measure γ on the space X. For x ∈ X the measure
γx is given by

γx(B) = γ(B − x), B ∈ B(X).

For the proof that γ and γx have the same Cameron-Martin space, we will
use the characterization given by the Cameron-Martin Theorem (Theorem
3.1.5).

Let H and Hx be the Cameron-Martin spaces of γ and γx, respectively.
For h ∈ X the Cameron-Martin Theorem yields that h ∈ H if and only if
γh ≈ γ. But by definition of the equivalence of two measures, this means
that

γh(B) = 0⇔ γ(B) = 0 for all B ∈ B(X),

which can also be formulated as

γ(B − h− x) = 0⇔ γ(B − x) = 0 for all B ∈ B(X)
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or, expressed differently,

(γx)h(B) = 0⇔ γx(B) = 0 for all B ∈ B(X).

But the last assertion is actually the definition of (γx)h ≈ γx, which is equiv-
alent to h ∈ Hx by the Cameron-Martin Theorem.

All in all, we obtain that the sets H and Hx coincide, i.e. γx has the same
Cameron-Martin space as γ.
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