Solutions of exercises: Lecture 2 Marrakesh team

Exercise 1

Let γ be a Gaussian measure (but not Dirac) on a Banach space X and let us fix $x \in X$ and r > 0. Since γ is not Dirac, there is a functional f ($0 \neq f \in X^*$) such that $\gamma \circ f^{-1}$ is nondegenerate, then there exists M > 0 such that

$$\overline{B}(x,r) \subset f^{-1}([-M,M])$$

which implies that

$$\gamma(\overline{B}(x,r)) \le \gamma \circ f^{-1}([-M,M]).$$

Since

$$\gamma \circ f^{-1}([-M,M]) < 1$$

we have

$$\gamma(B(x,r)) < 1$$

which prove the result.

Exercise 2

Let X be an infinite dimensional Banach space. As suggested in the hint, we will construct a sequence of elements in the unit sphere such that, for every $m, n \ge 1$

$$m \neq n$$
 implies $||e_m - e_n|| \ge \frac{1}{2}$.

For that we use Riesz's lemma, see [Br, lemma 6.1].

Let $e_1 \in X \setminus \{0\}$ with $||e_1|| = 1$ and $Y_1 := \operatorname{span}(e_1)$. The subspace Y_1 is closed and proper in X. We have, by Riesz's lemma, there exists $e_2 \in X$ such that $||e_2|| = 1$ and $||e_1 - e_2|| \ge d(e_2, Y_1) \ge \frac{1}{2}$. We use the same argument to construct a sequence $(e_n)_{n\ge 1}$ such that

$$\begin{cases} \forall n \ge 1, \|e_n\| = 1\\ \text{and}\\ \forall n, m \ge 1, n \ne m \text{ implies } \|e_n - e_m\| \ge \frac{1}{2}. \end{cases}$$

For every $n \ge 1$ we consider the balls B_n with centre $4re_n$ and radius r > 0. The balls B_n are pairwise disjoint and by assumption they have the same measure say $\mu(B_n) = \alpha > 0$ for every $n \ge 1$. Thus, we have

$$\bigcup_{n \ge 1} B_n \subset B(0, 5r) \Longrightarrow \mu(B(0, 5r)) \ge \sum_{n=1}^{+\infty} \mu(B_n) = \sum_{n=1}^{+\infty} \alpha = +\infty,$$

finally, we have $\mu(A) = +\infty$ for every open set A. This proves Proposition 2.2.1 in the case of a Banach space.

Exercise 3

Let γ be a centred Gaussian measure on a separable Banach space X, we prove that (i) γ is degenerate if and only if there exists $0 \neq f \in X^*$ such that $\hat{\gamma}(f) = 1$. We assume that γ is degenerate, then there exists $0 \neq f \in X^*$ such that $\gamma \circ f^{-1} = \delta_0$. Indeed

$$\hat{\gamma}(f) = \int_X e^{if(x)} \gamma(dx)$$
$$= \int_{\mathbb{R}} e^{it} \gamma \circ f^{-1}(dt)$$
$$= \int_{\mathbb{R}} e^{it} \delta_0(dt)$$
$$= 1.$$

Reciprocally, if there exists $0 \neq f \in X^*$ such that $\hat{\gamma}(f) = 1$, then by Proposition 2.1.2 we have

$$1 = \hat{\gamma}(f) = e^{B(f,f)}$$

which implies that

 $\sigma^2 = B(f, f) = 0$

which means that γ is a degenerate Gaussian measure on X.

(ii) There exists $0 \neq f \in X^*$ such that $\hat{\gamma}(f) = 1$ if and only if there exists a proper closed subspace $V \subset X$ with $\gamma(V) = 1$.

If there exists $0 \neq f \in X^*$ such that $\hat{\gamma}(f) = 1$, then the subspace $V = f^{-1}(\{0\})$ is proper in X (if it is not proper, then necessarily f = 0 which contradicts our hypothesis) and we have that

$$\begin{aligned}
\gamma(V) &= \gamma(f^{-1}(\{0\})) \\
&= \gamma \circ f^{-1}(\{0\}) \\
&= \delta_0(\{0\}) \\
&= 1
\end{aligned}$$

Reciprocally, if there exists a proper closed subspace $V \subset X$ with $\gamma(V) = 1$, then by Hahn-Banach theorem (geometrical form) it follows that, for fixed $x \notin V$ there exists $0 \neq f \in X^*$ such that $V \subset \ker(f)$ and f(x) = 1. Then $\gamma \circ f^{-1} = \delta_0$. This proves the result.

Exercise 4

Let γ be a centred Gaussian measure on a Banach space X. For any choice $f_1, ..., f_d$ in X^* , we set

$$P: X \longrightarrow \mathbb{R}^d, \ x \longmapsto P(x) = (f_1(x), ..., f_d(x)).$$

(i) For every $\xi \in \mathbb{R}^d$, we have

$$\widehat{\gamma \circ P^{-1}}(\xi) = \int_{\mathbb{R}^n} e^{i\xi \cdot y} \gamma \circ P^{-1}(dy)$$
$$= \int_X e^{i\xi \cdot P(x)} \gamma(dx)$$
$$= \int_X e^{iP^*(\xi) \cdot x} \gamma(dx)$$
$$= \widehat{\gamma}(P^*\xi)$$

where

$$P^* : \mathbb{R}^d \longrightarrow X^*, \xi \longmapsto P^*(\xi) = \sum_{i=1}^d \xi_i f_i.$$

On the other hand

$$\hat{\gamma}(P^*(\xi)) = e^{ia(P^*(\xi)) - \frac{1}{2}B(P^*(\xi),P^*(\xi))}$$

since γ is centred, we have $a(P^*(\xi)) = \int_X P^*(\xi) \cdot \gamma(dx) = \sum_{i=1}^d \xi_i \int_X f_i(x)\gamma(dx) = 0$ and $B(P^*(\xi), P^*(\xi)) = \langle P^*(\xi), P^*(\xi) \rangle_{L^2(X,\gamma)} = \sum_{i=1}^d \sum_{j=1}^d \xi_i \xi_j \langle f_i, f_j \rangle_{L^2(X,\gamma)} = Q\xi \cdot \xi$ where $Q_{i,j} = \langle f_i, f_j \rangle_{L^2(X,\gamma)}$, then $\gamma \circ P^{-1}$ is the Gaussian probability measure on \mathbb{R}^d

 $\mathcal{N}(0,Q).$

(ii) Let $L : \mathbb{R}^d \longrightarrow \mathbb{R}^n$ be a linear map. For every $\xi \in \mathbb{R}^d$, we have

$$\widehat{(L \circ P)^{-1}}(\xi) = \int_{\mathbb{R}^d} e^{i\xi \cdot y} \gamma \circ (L \circ P)^{-1}(dy)$$
$$= \int_X e^{i\xi \cdot (L \circ P)(x)} \gamma(dx)$$
$$= \int_X e^{i(P^* \circ L^*)(\xi) \cdot x} \gamma(dx)$$
$$= \widehat{\gamma}((P^* \circ L^*)(\xi))$$

where $L^* : \mathbb{R}^n \longrightarrow \mathbb{R}^d$, $\xi := (\xi_1, ..., \xi_n) \longmapsto (y_1, ..., y_d) =: y$, and then $P^* \circ L^* : \mathbb{R}^n \longrightarrow X^*$ defined by $P^* \circ L^*(\xi) = \sum_{i=1}^n y_i f_i.$

Since γ is centred, we have $a((P^* \circ L^*)\xi) = \int_X (P^* \circ L^*)\xi(x)\gamma(dx) = \sum_{i=1}^a y_i \int_X f_i(x)\gamma(dx) = 0$ and

$$B((P^* \circ L^*)\xi, (P^* \circ L^*)\xi) = \langle (P^* \circ L^*)\xi, (P^* \circ L^*)\xi \rangle_{L^2(X,\gamma)}$$
$$= \sum_{i=1}^d \sum_{j=1}^d y_i y_j \langle f_i, f_j \rangle_{L^2(X,\gamma)}$$
$$= LQL^*\xi \cdot \xi,$$

then $\gamma \circ (L \circ P)^{-1}$ is the Gaussian probability measure on $\mathbb{R}^n \mathcal{N}(0, LQL^*)$.

Exercise 5

Let $\gamma \sim \mathcal{N}(0, Q)$ be a nondegenerate centred Gaussian probability measure on \mathbb{R}^d . As suggested in the hint, let us consider the function $F(\varepsilon) = \int_{\mathbb{R}^d} e^{\varepsilon |x|^2} \gamma(dx)$. Note that, by the Fernique Theorem it follows that, there exists $\alpha > 0$ (it will be specified later) such that the integral defined by F is finite for every $0 \leq \varepsilon < \alpha$ and by the theorem of differentiation

under the integral sign we prove that F is of classe C^2 . Since γ is nondegenerate it follows by Proposition 1.2.4 that

$$F(\varepsilon) = \frac{1}{\sqrt{(2\pi)^d \det(Q)}} \int_{\mathbb{R}^d} \exp\{\varepsilon \mid x \mid^2 -\frac{1}{2}(Q^{-1}x \cdot x)\} dx.$$

Moreover, there exists an orthogonal matrix P such that $P^*QP = D$ and $P^*P = PP^* = I$, where $D := \operatorname{diag}(\lambda_1, ..., \lambda_n)$. Note that $\operatorname{Tr}(Q) = \sum_{i=1}^d \lambda_i$ and $\operatorname{det}(Q) = \prod_{i=1}^d \lambda_i$, then, for every $0 \le \varepsilon < \alpha < \frac{1}{2} \max\{\lambda_1, ..., \lambda_n\}$

$$\begin{split} F(\varepsilon) &= \frac{1}{\sqrt{(2\pi)^d \det(Q)}} \int_{\mathbb{R}^d} \exp\{\varepsilon(Py \cdot Py) - \frac{1}{2}(Q^{-1}Py \cdot Py)\}dy \quad \text{by change of variable } x = Py \\ &= \frac{1}{\sqrt{(2\pi)^d \det(Q)}} \int_{\mathbb{R}^d} \exp\{\varepsilon(y \cdot y) - \frac{1}{2}(D^{-1}y \cdot y)\}dy \\ &= \frac{1}{\sqrt{(2\pi)^d \det(Q)}} \int_{\mathbb{R}^d} \exp\{\varepsilon\sum_{i=1}^d y_i^2 - \frac{1}{2}\sum_{i=1}^d \frac{y_i^2}{\lambda_i}\}dy \\ &= \frac{1}{\sqrt{(2\pi)^d \det(Q)}} \int_{\mathbb{R}^d} \exp\{\sum_{i=1}^d \left[\varepsilon - \frac{1}{2\lambda_i}\right]y_i^2\}dy \\ &= \frac{1}{\sqrt{\det(Q)}} \prod_{i=1}^d \frac{1}{\sqrt{(2\pi)}} \int_{\mathbb{R}} \exp\{\left[\varepsilon - \frac{1}{2\lambda_i}\right]y_i^2\}dy, \end{split}$$

since

$$\frac{1}{\sqrt{(2\pi)}} \int_{\mathbb{R}} \exp\{\left[\varepsilon - \frac{1}{2\lambda_i}\right] y_i^2\} dy_i = \left(\frac{\lambda_i}{1 - 2\lambda_i\varepsilon}\right)^{\frac{1}{2}},$$

then

$$F(\varepsilon) = \prod_{i=1}^{d} \left(\frac{1}{1 - 2\lambda_i \varepsilon} \right)^{\frac{1}{2}},$$

 \mathbf{SO}

$$F'(\varepsilon) = \sum_{i=1}^{d} \frac{\lambda_i}{\left(1 - 2\lambda_i \varepsilon\right)^{\frac{3}{2}}} \prod_{j=1, j \neq i}^{d} \left(\frac{1}{1 - 2\lambda_j \varepsilon}\right)^{\frac{1}{2}} = \sum_{i=1}^{d} \frac{\lambda_i}{1 - 2\lambda_i \varepsilon} F(\varepsilon),$$

and

$$F''(\varepsilon) = 2\sum_{i=1}^{d} \frac{\lambda_i^2}{(1-2\lambda_i\varepsilon)^2} F(\varepsilon) + \sum_{i=1}^{d} \frac{\lambda_i}{(1-2\lambda_i\varepsilon)} F'(\varepsilon),$$

thus

$$F''(0) = 2\sum_{i=1}^{d} \lambda_i^2 F(0) + \sum_{i=1}^{d} \lambda_i F'(0)$$

= $2\sum_{i=1}^{d} \lambda_i^2 + \sum_{i=1}^{d} \lambda_i \sum_{j=1}^{d} \lambda_j$
= $2\text{Tr}(Q^2) + (\text{Tr}(Q))^2.$

It follows,

$$F''(0) = \int_{\mathbb{R}^d} |x|^4 \gamma(dx).$$

This proves the result.

Remark: In the case of γ is not centred, we can't find this result (it suffices to verify in the case when d = 1).

Exercise 6

Let γ be a centred Gaussian measure on a separable Banach space X and let $f \in X^*$. We denote by $\sigma^2 = B_{\gamma}(f, f)$

(i)
$$I = \int_X e^{f(x)} \gamma(dx)$$

$$\int_X e^{f(x)} \gamma(dx) = \int_{\mathbb{R}} e^t \gamma \circ f^{-1}(dt)$$

$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{\mathbb{R}} e^{\frac{-1}{2\sigma^2}(t^2 - 2\sigma^2 t)} dt$$

$$= \frac{e^{\frac{\sigma^2}{2}}}{\sqrt{2\pi\sigma}} \int_{\mathbb{R}} e^{-\left(\frac{t-\sigma^2}{\sqrt{2\sigma}}\right)^2} dt$$

$$= e^{\frac{\sigma^2}{2}}$$

then

(ii)
$$I_k = \int_X (f(x))^k \gamma(dx)$$
 for $k \in \mathbb{N}$

$$\int_{X} (f(x))^{k} \gamma(dx) = \int_{\mathbb{R}} t^{k} \gamma \circ f^{-1}(dt)$$
$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{\mathbb{R}} t^{k} e^{\frac{-t^{2}}{2\sigma^{2}}} dt$$

 σ^2

the function $t \mapsto e^{\frac{-t^2}{2\sigma^2}}$ is even and $t \mapsto t^k$ is odd if k is odd, in this case $I_k = 0$. Now let k = 2p where $p \in \mathbb{N}$, then

$$I_k = \frac{1}{\sqrt{2\pi\sigma}} \int_{\mathbb{R}} t^{2p} e^{\frac{-t^2}{2\sigma^2}} dt$$
$$= \frac{2^p \sigma^{2p}}{\sqrt{\pi}} \int_0^{+\infty} s^{p-\frac{1}{2}} e^{-s} ds$$
$$= \frac{2^p \sigma^{2p}}{\sqrt{\pi}} \Gamma(p + \frac{1}{2})$$
$$= \frac{2^p \sigma^{2p} (2p)! \sqrt{\pi}}{\sqrt{\pi} 2^{2p} p!}$$

where $\Gamma(\cdot)$ is the Gamma function, then we have finally

$$I_k = \frac{\sigma^k k!}{2^{\frac{k}{2}}(\frac{k}{2})!}.$$