
Solutions of exercises: Lecture 2
Marrakesh team

Exercise 1
Let γ be a Gaussian measure (but not Dirac) on a Banach space X and let us fix x ∈ X
and r > 0. Since γ is not Dirac, there is a functional f ( 0 6= f ∈ X∗ ) such that γ ◦ f−1 is
nondegenerate, then there exists M > 0 such that

B(x, r) ⊂ f−1([−M,M ])

which implies that
γ(B(x, r)) ≤ γ ◦ f−1([−M,M ]).

Since
γ ◦ f−1([−M,M ]) < 1

we have
γ(B(x, r)) < 1

which prove the result.

Exercise 2
Let X be an infinite dimensional Banach space. As suggested in the hint, we will construct
a sequence of elements in the unit sphere such that, for every m,n ≥ 1

m 6= n implies ‖em − en‖ ≥
1

2
.

For that we use Riesz’s lemma, see [Br, lemma 6.1].
Let e1 ∈ X \ {0} with ‖e1‖ = 1 and Y1 := span(e1). The subspace Y1 is closed and
proper in X. We have, by Riesz’s lemma, there exists e2 ∈ X such that ‖e2‖ = 1 and
‖e1 − e2‖ ≥ d(e2, Y1) ≥ 1

2
. We use the same argument to construct a sequence (en)n≥1 such

that 
∀n ≥ 1, ‖en‖ = 1

and

∀n,m ≥ 1, n 6= m implies ‖en − em‖ ≥
1

2
.

For every n ≥ 1 we consider the balls Bn with centre 4ren and radius r > 0. The balls Bn

are pairwise disjoint and by assumption they have the same measure say µ(Bn) = α > 0 for
every n ≥ 1. Thus, we have

∪n≥1Bn ⊂ B(0, 5r) =⇒ µ(B(0, 5r)) ≥
+∞∑
n=1

µ(Bn) =
+∞∑
n=1

α = +∞,

finally, we have µ(A) = +∞ for every open set A. This proves Proposition 2.2.1 in the case
of a Banach space.

Exercise 3
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Let γ be a centred Gaussian measure on a separable Banach space X, we prove that
(i) γ is degenerate if and only if there exists 0 6= f ∈ X∗ such that γ̂(f) = 1.
We assume that γ is degenerate, then there exists 0 6= f ∈ X∗ such that γ ◦ f−1 = δ0.
Indeed

γ̂(f) =

∫
X

eif(x)γ(dx)

=

∫
R
eitγ ◦ f−1(dt)

=

∫
R
eitδ0(dt)

= 1.

Reciprocally, if there exists 0 6= f ∈ X∗ such that γ̂(f) = 1, then by Proposition 2.1.2 we
have

1 = γ̂(f) = eB(f,f)

which implies that
σ2 = B(f, f) = 0

which means that γ is a degenerate Gaussian measure on X.
(ii) There exists 0 6= f ∈ X∗ such that γ̂(f) = 1 if and only if there exists a proper closed
subspace V ⊂ X with γ(V ) = 1.
If there exists 0 6= f ∈ X∗ such that γ̂(f) = 1, then the subspace V = f−1({0}) is proper
in X (if it is not proper, then necessarily f = 0 which contradicts our hypothesis) and we
have that

γ(V ) = γ(f−1({0}))
= γ ◦ f−1({0})
= δ0({0})
= 1.

Reciprocally, if there exists a proper closed subspace V ⊂ X with γ(V ) = 1, then by
Hahn−Banach theorem (geometrical form) it follows that, for fixed x /∈ V there exists
0 6= f ∈ X∗ such that V ⊂ ker(f) and f(x) = 1. Then γ ◦ f−1 = δ0. This proves the result.

Exercise 4
Let γ be a centred Gaussian measure on a Banach space X. For any choice f1, ..., fd in X∗,
we set

P : X −→ Rd, x 7−→ P (x) = (f1(x), ..., fd(x)).

(i) For every ξ ∈ Rd, we have

̂γ ◦ P−1(ξ) =

∫
Rn
eiξ·yγ ◦ P−1(dy)

=

∫
X

eiξ·P (x)γ(dx)

=

∫
X

eiP
∗(ξ)·xγ(dx)

= γ̂(P ∗ξ)
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where

P ∗ : Rd −→ X∗, ξ 7−→ P ∗(ξ) =
d∑
i=1

ξifi.

On the other hand

γ̂(P ∗(ξ)) = eia(P
∗(ξ))− 1

2
B(P ∗(ξ),P ∗(ξ))

since γ is centred, we have a(P ∗(ξ)) =

∫
X

P ∗(ξ) · γ(dx) =
d∑
i=1

ξi

∫
X

fi(x)γ(dx) = 0

and B(P ∗(ξ), P ∗(ξ)) =< P ∗(ξ), P ∗(ξ) >L2(X,γ)=
d∑
i=1

d∑
j=1

ξiξj < fi, fj >L2(X,γ)= Qξ · ξ

where Qi,j =< fi, fj >L2(X,γ), then γ ◦ P−1 is the Gaussian probability measure on Rd

N (0, Q).
(ii) Let L : Rd −→ Rn be a linear map. For every ξ ∈ Rd, we have

̂γ ◦ (L ◦ P )−1(ξ) =

∫
Rd
eiξ·yγ ◦ (L ◦ P )−1(dy)

=

∫
X

eiξ·(L◦P )(x)γ(dx)

=

∫
X

ei(P
∗◦L∗)(ξ)·xγ(dx)

= γ̂((P ∗ ◦ L∗)(ξ))

where L∗ : Rn −→ Rd, ξ := (ξ1, ..., ξn) 7−→ (y1, ..., yd) =: y, and thenP ∗ ◦ L∗ : Rn −→ X∗

defined by P ∗ ◦ L∗(ξ) =
d∑
i=1

yifi.

Since γ is centred, we have a((P ∗◦L∗)ξ) =

∫
X

(P ∗◦L∗)ξ(x)γ(dx) =
d∑
i=1

yi

∫
X

fi(x)γ(dx) = 0

and

B((P ∗ ◦ L∗)ξ, (P ∗ ◦ L∗)ξ) = < (P ∗ ◦ L∗)ξ, (P ∗ ◦ L∗)ξ >L2(X,γ)

=
d∑
i=1

d∑
j=1

yiyj < fi, fj >L2(X,γ)

= LQL∗ξ · ξ,

then γ ◦ (L ◦ P )−1 is the Gaussian probability measure on Rn N (0, LQL∗).

Exercise 5
Let γ ∼ N (0, Q) be a nondegenerate centred Gaussian probability measure on Rd. As sug-

gested in the hint, let us consider the function F (ε) =

∫
Rd
eε|x|

2

γ(dx). Note that, by the

Fernique Thoerem it follows that, there exists α > 0 (it will be specified later) such that
the integral defined by F is finite for every 0 ≤ ε < α and by the theorem of differentiation
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under the integral sign we prove that F is of classe C2. Since γ is nondegenerate it follows
by Proposition 1.2.4 that

F (ε) =
1√

(2π)d det(Q)

∫
Rd

exp{ε | x |2 −1

2
(Q−1x · x)}dx.

Moreover, there exists an orthogonal matrix P such that P ∗QP = D and P ∗P = PP ∗ = I,

where D := diag(λ1, ..., λn). Note that Tr(Q) =
d∑
i=1

λi and det(Q) =
d∏
i=1

λi, then, for every

0 ≤ ε < α < 1
2

max{λ1, ..., λn}

F (ε) =
1√

(2π)d det(Q)

∫
Rd

exp{ε(Py · Py)− 1

2
(Q−1Py · Py)}dy by change of variable x = Py

=
1√

(2π)d det(Q)

∫
Rd

exp{ε(y · y)− 1

2
(D−1y · y)}dy

=
1√

(2π)d det(Q)

∫
Rd

exp{ε
d∑
i=1

y2i −
1

2

d∑
i=1

y2i
λi
}dy

=
1√

(2π)d det(Q)

∫
Rd

exp{
d∑
i=1

[
ε− 1

2λi

]
y2i }dy

=
1√

det(Q)

d∏
i=1

1√
(2π)

∫
R

exp{
[
ε− 1

2λi

]
y2i }dyi,

since
1√
(2π)

∫
R

exp{
[
ε− 1

2λi

]
y2i }dyi =

(
λi

1− 2λiε

) 1
2

,

then

F (ε) =
d∏
i=1

(
1

1− 2λiε

) 1
2

,

so

F
′
(ε) =

d∑
i=1

λi

(1− 2λiε)
3
2

d∏
j=1,j 6=i

(
1

1− 2λjε

) 1
2

=
d∑
i=1

λi
1− 2λiε

F (ε),

and

F
′′
(ε) = 2

d∑
i=1

λ2i
(1− 2λiε)2

F (ε) +
d∑
i=1

λi
(1− 2λiε)

F
′
(ε),

thus

F
′′
(0) = 2

d∑
i=1

λ2iF (0) +
d∑
i=1

λiF
′
(0)

= 2
d∑
i=1

λ2i +
d∑
i=1

λi

d∑
j=1

λj

= 2Tr(Q2) + (Tr(Q))2.
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It follows,

F
′′
(0) =

∫
Rd
| x |4 γ(dx).

This proves the result.
Remark: In the case of γ is not centred, we can’t find this result ( it suffices to verify in
the case when d = 1 ).

Exercise 6
Let γ be a centred Gaussian measure on a separable Banach space X and let f ∈ X∗. We
denote by σ2 = Bγ(f, f)

(i) I =

∫
X

ef(x)γ(dx) ∫
X

ef(x)γ(dx) =

∫
R
etγ ◦ f−1(dt)

=
1√
2πσ

∫
R
e
−1

2σ2
(t2−2σ2t)dt

=
e
σ2

2

√
2πσ

∫
R
e
−
(
t−σ2√

2σ

)2

dt

= e
σ2

2

then

I = e
σ2

2 .

(ii) Ik =

∫
X

(f(x))kγ(dx) for k ∈ N∫
X

(f(x))kγ(dx) =

∫
R
tkγ ◦ f−1(dt)

=
1√
2πσ

∫
R
tke

−t2
2σ2 dt

the function t 7−→ e
−t2
2σ2 is even and t 7−→ tk is odd if k is odd, in this case Ik = 0. Now let

k = 2p where p ∈ N, then

Ik =
1√
2πσ

∫
R
t2pe

−t2
2σ2 dt

=
2pσ2p

√
π

∫ +∞

0

sp−
1
2 e−sds

=
2pσ2p

√
π

Γ(p+
1

2
)

=
2pσ2p(2p)!

√
π√

π22pp!

where Γ(·) is the Gamma function, then we have finally

Ik =
σkk!

2
k
2 (k

2
)!
.

5


