Solutions of exercises: Lecture 2
Marrakesh team

Exercise 1

Let v be a Gaussian measure (but not Dirac) on a Banach space X and let us fix x € X
and 7 > 0. Since v is not Dirac, there is a functional f ( 0 # f € X* ) such that yo f~!is
nondegenerate, then there exists M > 0 such that

§($7T) C f_l([_M7 M])

which implies that o
V(B(z,r)) < yo fH([-M, M)).

Since
vo [TH[=M, M]) <1

we have
Y(B(z,7)) <1

which prove the result.
Exercise 2

Let X be an infinite dimensional Banach space. As suggested in the hint, we will construct
a sequence of elements in the unit sphere such that, for every m,n > 1

m#n implies llem — en|| >

N | —

For that we use Riesz’s lemma, see [Br, lemma 6.1].

Let e € X \ {0} with ||e;]] = 1 and Y7 := span(e;). The subspace Y] is closed and
proper in X. We have, by Riesz’s lemma, there exists es € X such that |es|| = 1 and
|er — e2]| > d(es, Y1) > 5. We use the same argument to construct a sequence (e,),>1 such
that

Vn>1,lle,] =1
and
1

Vn,m > 1, n # m implies ||e,, — €| > 5

For every n > 1 we consider the balls B,, with centre 4re, and radius » > 0. The balls B,
are pairwise disjoint and by assumption they have the same measure say pu(B,) = « > 0 for
every n > 1. Thus, we have

+o00 +o00o
Un>1B, C B(0,5r) = u(B(0,5r)) > Zu(Bn) = Zoz = 00,
n=1 n=1

finally, we have pu(A) = +oco for every open set A. This proves Proposition 2.2.1 in the case
of a Banach space.

Exercise 3



Let v be a centred Gaussian measure on a separable Banach space X, we prove that
(i) v is degenerate if and only if there exists 0 # f € X* such that 4(f) = 1.

We assume that v is degenerate, then there exists 0 # f € X* such that yo f=1 = d.
Indeed

i = [ e
= [eerian

= /]R e 5o (dt)

= 1

Reciprocally, if there exists 0 # f € X* such that 4(f) = 1, then by Proposition 2.1.2 we
have

L=4(f) = "D
which implies that

o*=B(f,f)=0
which means that ~ is a degenerate Gaussian measure on X.
(ii) There exists 0 # f € X* such that 4(f) = 1 if and only if there exists a proper closed
subspace V' C X with v(V) = 1.
If there exists 0 # f € X* such that 4(f) = 1, then the subspace V = f~1({0}) is proper
in X (if it is not proper, then necessarily f = 0 which contradicts our hypothesis) and we
have that

(V) = (7 {o})
= yo ({0}
= d({0})
= 1.
Reciprocally, if there exists a proper closed subspace V' C X with v(V) = 1, then by

Hahn—Banach theorem (geometrical form) it follows that, for fixed x ¢ V there exists
0 # f € X* such that V' C ker(f) and f(x) = 1. Then yo f~1 = §,. This proves the result.

Exercise 4
Let v be a centred Gaussian measure on a Banach space X. For any choice fi, ..., fg in X*,
we set

P:X —RY 2 P(2) = (fi(z), ..., fa(x)).
(i) For every £ € R, we have

Yo P71(¢) = Yy 0 P~ (dy)

n

eig-P(x),y(dx)

I
—

(P*¢)

I
2>
>



where d
PR — X* 6 PHE) = Y &fa
On the other hand
4(P(€)) = cia(P* (€)= 5 B(P*(£).P*(€))

since v is centred, we have a(P*(§)) = /X P*(&) - v(dx) = Z@/ filz)y(dx) =0

and B(P* (), P*(€)) =< P*(€), P*(§) >r2(x)= ZZ% < fifi e = Q€ €
i=1 j=1
where Q;; =< fi, f; >12(x,), then v o P~ is the Gaussian probability measure on R4

N(0,Q).

(ii) Let L : R? — R"™ be a linear map. For every £ € R? we have

—

YolLoP)O) = [ oL Py (ay)

_ / i&-(LoP)(z dl’)

i(P*oL*) dl’)
"o L7)(€))

where L* : R" — RY, € = (&,...,&,) — (y1,..,¥a) = y, and then P* o L* : R" — X*
d

I
> \

defined by P* o L*(&) = Z Yi fi.

Since 1 is centred, we have a((P*o L*)§) = / (P*oL*)&(x)y(dx) Zyz/ fi(z =0
X

and

B((P*o L), (P*o L)) = < (P*oL")&,(P* o L)E >1axs)

d d
= >y < fi fi >racx

i=1 j=1
= LQL¢-¢,
then v o (Lo P)~! is the Gaussian probability measure on R™ N(0, LQL*).
Exercise 5
Let v ~ N(0,Q) be a nondegenerate centred Gaussian probability measure on R%. As sug-

gested in the hint, let us consider the function F(eg) = / ¢l y(dz). Note that, by the
d

R
Fernique Thoerem it follows that, there exists a > 0 (it will be specified later) such that
the integral defined by F is finite for every 0 < ¢ < a and by the theorem of differentiation



under the integral sign we prove that F' is of classe C2. Since 7 is nondegenerate it follows
by Proposition 1.2.4 that

F(e)

1
~/(2m)7det(Q)

/ exp{e |z |? —E(Q_lx - x) b
e 2

Moreover, there exists an orthogonal matrix P such that P*QP = D and P*P = PP* =1,

d
where D := diag(\y, ..., A\,). Note that Tr(Q) = Z A; and det
i=1

0<e<a<imax{),.., A}

F(e)

since

then

SO

and

thus

exp{e(Py - Py) — %(Q‘le - Py)}dy

1
V2m)Tdet(Q) /

1 |
g S )~ (0 )y

1 d 1<K 2
exp{e » yi—=) Stldy
V@m)7det(Q) /R Zl 2 Zl A

\/(%);T@)/Rd eXp{g {6 - 21] yi by
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F'(0) = QiAfF(O) +i)\iF'(O)

d d d
i=1 =1 =1
= 2Tr(Q%) + (Tr(Q))*.

4

\/(12—7)46Xp{ [5 - 2” vi by = (1 —Azim)é !

d
Q) = H Ai, then, for every

=1

by change of variable z = Py




It follows,
F'(0) = / 2 [y (da).
Rd

This proves the result.
Remark: In the case of v is not centred, we can’t find this result ( it suffices to verify in
the case when d = 1).

Exercise 6

Let v be a centred Gaussian measure on a separable Banach space X and let f € X*. We
denote by o = B,(f, f)

@) 1= [ i)

e ntan) = [ o ian

then

(ii) I = /X(f(;c))’w(dx) for k € N

@) = [ tqor

)
_ ! /tkezc:?dt
2mo Jr
_¢2

the function ¢ — e2.? is even and t — t* is odd if k is odd, in this case I, = 0. Now let

k = 2p where p € N, then
1 .2
I, = / 2P e 207 dt
2o Jr
D 2D +o0
= 2o / sP2e7%ds
VT Jo
2P 2P 1
= I'p+ =
20%P (2p)\\/T
/2%

where I'(+) is the Gamma function, then we have finally
o"k!
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