
Solutions of the Exercises of Lecture 14

Team of the TU Dresden

Exercise 14.1

We show in a more general context: If (T (t))t≥0 is a C0-semigroup on a Banach space X,
with generator L, and λ ∈ R is an eigenvalue of L with eigenvector x ∈ X, then

T (t)x = eλtx (t ≥ 0). (1)

Indeed, the function u(t) := eλtx satisfies u′(t) = λeλtx = Lu(t) (t ≥ 0), u(0) = x, and
therefore Lemma 11.1.7 implies (1).
The application of this result yields (14.1.4): T2(t)Hα = e−|α|tHα (t ≥ 0). This holds
because L2Hα = −|α|Hα (α ∈ Λ).

1



Exercise 14.2.

Show that W 1,p(R, γ1) is not contained in Lp+ε(R, γ1) for every p ∈ [1,∞) and ε > 0.

Proposition 1. Let 1 ≤ p, q <∞, and fq : R→ R, x 7→ ex
2/(2q). Then fq ∈ Lp(R, γ1) if

and only if p < q, and fq ∈ W 1,p(R, γ1) if and only if p < q.

Proof. From

|fq(x)|pe−x2

2 = e−
q−p
q

x2

2 (x ∈ R)

we obtain fq ∈ Lp(R, γ1) if and only if p < q. Further

|f ′q(x)|pe−x2

2 = (|x|/q)pe−
q−p
q

x2

2 (x ∈ R)

holds yielding f ′q ∈ Lp(R, γ1) if and only if p < q. Together with the previous observation
we conclude fq ∈ W 1,p(R, γ1) if and only if p < q.

Taking 1 < q < ∞, we get finally that fq belongs to W 1,p(R, γ1) for all 1 ≤ p < q
but not to Lq(R, γ1), which already yields a solution of the exercise. We now show
additionally that, for 1 ≤ p < ∞ we can also find a function in W 1,p(R, γ1) which does
not belong to Lq(R, γ1) for any q > p.

Proposition 2. Let 1 ≤ p, q < ∞, and gp : R → R, x 7→ ex
2/(2p)/(1 + x4). Then

gp ∈ Lq(R, γ1) if and only if q ≤ p, and gp ∈ W 1,q(R, γ1) if and only if q ≤ p.

Proof. As in the previous proof, we get gp ∈ Lq(R, γ1) if and only if q ≤ p. Since

g′p(x) = e
x2

2p

( x

p(1 + x4)
− 4x3

(1 + x4)2

)
=
x5 − 4px3 + x

p(1 + x4)2
e

x2

2p (x ∈ R)

and the mapping R 3 x 7→ (x5 − 4px3 + x)/(1 + x4)2 ∈ R is Lr(R)-integrable for
every r ≥ 1, we obtain g′p ∈ Lq(R, γ1) and consequently gp ∈ W 1,q(R, γ1) if and only if
q ≤ p.

Incidentally, the function hp : R→ R, x 7→ ex
2/2p/(1 + x2) also gives a positive answer

in the case 1 < p < ∞. Unfortunately, h1 does not belong to W 1,1(R, γ1) because
R 3 x 7→ x/(1 + x2) ∈ R is not integrable.
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Exercise 14.3
Theorem. Let X be a separable Banach space equipped with a nondegenerate centred
Gaussian measure γ and let p ∈ [1,∞). Let f ∈ W 1,p(X, γ). For k ∈ N define
ϕk(r) :=

√
r2 + 1/k (r ∈ R). Then (ϕk ◦ f)k∈N converges to |f | in W 1,p(X, γ).

Proof. At first we show Lp-convergence of the sequence (ϕk ◦ f)k∈N and then the
convergence of the H-gradients.

Note that ϕk is in C1(R) for every k ∈ N. For every x ∈ X we have

lim
k→∞

∣∣|f(x)| − (ϕk ◦ f)(x)
∣∣ = lim

k→∞

∣∣∣|f(x)| −
√
f(x)2 + 1/k

∣∣∣ = 0

From
0 ≤ ϕk ◦ f =

√
f 2 + 1/k ≤ |f |+ 1 ∈ Lp(X, γ)

it follows that ϕk ◦ f ∈ Lp(X, γ) for all k ∈ N, and the dominated convergence
theorem implies ϕk ◦ f → |f | in Lp(X, γ) (k →∞).

By Definition 9.3.9 there exists a sequence (fn)n∈N in FC1
b (X) such that fn

n−→ f

in Lp and ∇Hfn
n−→ ∇Hf in Lp(X, γ;H). There exists a subsequence of (fn) (again

denoted by (fn)) which converges to f almost everywhere and whose gradients∇Hfn
converge to ∇Hf almost everywhere. Additionally the subsequence (fn) can be
chosen to satisfy |∇Hfn|H ≤ F with F ∈ Lp(X, γ).

For these fn we can write the H-Gradient of ϕk ◦ fn as

∇H(ϕk ◦ fn) = (ϕ′
k ◦ fn)∇fn.

Since (fn) and (∇Hfn) converge to f and ∇Hf , respectively, almost everywhere,
and since ϕ′

k is continuous and bounded it follows that

(ϕ′
k ◦ fn)∇Hfn

n−→ (ϕ′
k ◦ f)∇Hf

almost everywhere and by dominated convergence also in Lp(X, γ; H).
Thus we have ∇H(ϕk ◦ f) = (ϕ′

k ◦ f)∇Hf for all f ∈ W 1,p(X, γ) and

∇H(ϕk ◦ f) = ∇H(
√
f 2 + 1/k)

k→∞−−−→ sgn(f)∇Hf.

Summarising, we have shown that ϕk ◦ f → |f | in W 1,p(X, γ) as k → ∞ (and
that ∇H |f | = sgn(f)∇Hf).
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Exercise 14.4

Let p > 1. We first take f ∈ Σ (recall Σ from the second paragraph in section 13.2)
and for ε > 0 define gε := f(f2 + ε)

p
2−1. Then gε ∈ C1

b (X) by the definition of Σ and
formula (13.2.1). Hence, we can apply formula (13.2.5) to f and gε and get

−
∫

X
gεLpf dγ = −

∫

X
gεL2f dγ =

∫

X

[
∇Hf,∇Hgε

]
H

dγ,

since Lpf(x) = divγ ∇Hf(x) = L2f(x) for γ-a. e. x ∈ X by Proposition 13.2.1. Inserting
the definition of gε yields

−
∫

X
f(f2 + ε)

p
2−1Lpf dγ =

∫

X

(
(f2 + ε)

p
2−1 + (p− 2)f2(f2 + ε)

p
2−2
)
|∇Hf |2H dγ. (∗)

Now, let f ∈ D(Lp). Since, by Theorem 13.2.2, Σ is a core of Lp, there is a sequence
(fn) in Lp(X, γ), such that fn → f and Lpfn → Lpf in Lp(X, γ). Without a proof we
use, that we have ∇Hfn → ∇Hf in Lp(X, γ), too. (Indeed, it was mentioned at the end
of Lecture 13 that, for 1 < p < ∞, one has D(Lp) = W 2,p(X, γ), and this implies the
previous statement.) Then (after extracting a subsequence) we can find F ∈ Lp(X, γ),
such that

|fn|+ 1 ≤ F, |Lpfn| ≤ F and |∇Hfn| ≤ F.
Because formula (∗) holds for every fn, by the Dominated Convergence Theorem it holds
for f (and ε < 1), too. For the right hand side of (∗), however, this reasoning only works
for p ≥ 2! If 1 < p < 2 (since by the calculation below all the integrands are positive),
Fatou’s Lemma yields the inequality

−
∫

X
f(f2 + ε)

p
2−1Lpf dγ ≥

∫

X

(
(f2 + ε)

p
2−1 + (p− 2)f2(f2 + ε)

p
2−2
)
|∇Hf |2H dγ. (∗∗)

On the left hand side of formula (∗) (or (∗∗)) the Dominated Convergence Theorem
yields ∫

X
f(f2 + ε)

p
2−1Lpf dγ

ε→0−−−→
∫

X
f |f |p−2Lpf dγ. (∗∗∗)

Looking at the right hand side of formula (∗) (or (∗∗)) we see
∫

X

(
(f2 + ε)

p
2−1 + (p− 2)f2(f2 + ε)

p
2−2
)
|∇Hf |2H dγ

=

∫

X

(
(f2 + ε)

p
2−1 + (p− 2)f2(f2 + ε)

p
2−2
)
|∇Hf |2H1{f 6=0} dγ

+ ε
p
2−1

∫

X
|∇Hf |2H1{f=0} dγ.
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But
∫
X |∇Hf |2H1{f=0} dγ = 0, for ∇Hf(x) = 0 γ-a. e. on {f = 0} by Exercise 10.3. Thus

we have ∫

X

(
(f2 + ε)

p
2−1 + (p− 2)f2(f2 + ε)

p
2−2
)
|∇Hf |2H dγ

=

∫

X

(
(f2 + ε)

p
2−1 + (p− 2)f2(f2 + ε)

p
2−2
)
|∇Hf |2H1{f 6=0} dγ

=

∫

X

(
1 + (p− 2)

f2

f2 + ε

)
(f2 + ε)

p
2−1|∇Hf |2H1{f 6=0} dγ.

To see that this expression converges in the right way, we use the following consequence
of the Monotone Convergence Theorem and the Dominated Convergence Theorem.

Lemma. Let (fn), (ϕn) sequences of positive, measurable fuctions such that

• (fn) is monotone,

• there are constants 0 < α < β <∞, such that α ≤ ϕn ≤ β for all n ∈ N,

• (ϕn) converges pointwise to a measurable function ϕ,

• there is a constant c > 0, such that
∫
X ϕnfn dγ ≤ c for all n ∈ N.

Let f be the pointwise limit of (fn). Then ϕf is integrable and
∫
X ϕnfn dγ →

∫
X ϕf dγ.

In our case ε 7→ (f2 + ε)
p
2−1|∇Hf |2H1{f 6=0} is monotone and

0 <

{
1

p− 1
≤ 1 + (p− 2)

f2

f2 + ε
≤
{
p− 1, p ≥ 2,

1, p < 2.

Since the left hand side of formula (∗) converges as ε tends to 0, the right hand side stays
bounded and the Lemma above gives

∫

X

(
(f2 + ε)

p
2−1 + (p− 2)f2(f2 + ε)

p
2−2
)
|∇Hf |2H dγ

=

∫

X

(
1 + (p− 2)

f2

f2 + ε

)
(f2 + ε)

p
2−1|∇Hf |2H1{f 6=0} dγ

ε↓0−−→ (p− 1)

∫

X
|f |p−2|∇Hf |2H1{f 6=0} dγ.

Together with formula (∗) (or (∗∗)) and formula (∗∗∗) we conclude

−
∫

X
f |f |p−2Lpf dγ = (p− 1)

∫

X
|f |p−2|∇Hf |2H1{f 6=0} dγ

for p ≥ 2 and

−
∫

X
f |f |p−2Lpf dγ ≥ (p− 1)

∫

X
|f |p−2|∇Hf |2H1{f 6=0} dγ

for 1 < p < 2.
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Comments.

1. We are able to show equality in formula (14.2.8) only in case p ≥ 2. In case
1 < p < 2 we get an inequality.

2. To proof formula (14.2.9), which is the aim of formula (14.2.8), this inequality
suffices (see page 177, Lecture 14).

Note after completion of the solution. Diego Pallara communicated upon our
request in the internet forum:
Equality (14.2.8) has a nice story. Even in the case of the Laplacean, it SEEMS

obvious, but it is not, in the 1<p<2 case... In all the cases I know, as you say, the
"≥" inequality is sufficient and therefore the "=" did not receive great interest. Indeed,
it is true, and this has been proved by Giorgio Metafune and Chiara Spina in finite
dimensions. (“An integration by parts formula in Sobolev spaces", Mediterr. j. math. 5,
357–369 (2008)). Their proof works equally well in the Wiener case passing through
cylindrical approximation, we shall quote the M-S paper in our revision.
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Exercise 14.5

Let f ∈ C1
b (X) with

∫
X f dγ = 0. We choose ε0 > 0 such that −1/2 ≤ ε0f ≤ 1/2,

and in the following considerations we let 0 < ε ≤ ε0, fε := 1 + εf . Applying the
Log-Sobolev-Inequality (14.2.7) to fε, we get

∫

X

(1 + εf)2 log(1 + εf) dγ ≤ ‖1 + εf‖22 log ‖1 + εf‖2 +
∫

X

|∇H(1 + εf)|2H dγ.

Since |∇H(1 + εf)|2H = ε2|∇Hf |2H , we obtain the estimate

1

ε2

∫

X

(1 + εf)2 log(1 + εf) dγ ≤ 1

ε2
‖1 + εf‖22 log ‖1 + εf‖2 +

∫

X

|∇Hf |2H dγ. (∗)

Concerning the first summand on the right hand side, we compute, using that 〈f, 1〉 = 0,

1

ε2
‖1 + εf‖22 log ‖1 + εf‖2 =

1

2
‖1 + εf‖22

1

ε2
log(1 + ε2‖f‖22)→

1

2
‖f‖22 (ε→ 0).

For the left hand side of (∗) we have

1

ε2

∫

X

(1 + εf)2 log(1 + εf) dγ

=
1

ε2

∫

X

log(1 + εf) dγ +
2

ε

∫

X

f log(1 + εf) dγ +

∫

X

f2 log(1 + εf) dγ.

By dominated convergence, the last term converges to 0 and the next to last term con-
verges to 2‖f‖22, as ε→ 0. For the first term, we use the Taylor formula for the logarithm,

log(1 + r) = r − r2

2
+ ϕ(r) (−1/2 ≤ r ≤ 1/2),

with |ϕ(r)| ≤ c|r|3, for all r ∈ (−1/2, 1/2) and some c > 0. This implies that

1

ε2

∫

X

log(1 + εf) dγ =
1

ε

∫

X

f dγ − 1

2

∫

X

f2 dγ +
1

ε2

∫

X

ϕ(εf) dγ → −1

2
‖f‖22,

because
∫
X f dγ = 0 and

∣∣ε−2
∫
X ϕ(εf) dγ

∣∣ ≤ cε
∫
X |f |3 dγ → 0, as ε→ 0.

Summarising, we end up with

−1

2
‖f‖22 + 2‖f‖22 ≤

1

2
‖f‖2 +

∫

X

|∇Hf |2H dγ,

which implies the Poincaré inequality (14.2.11),
∫

X

(f − f )2 dγ ≤
∫

X

|∇Hf |2H dγ.
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Exercise 14.6
We prove the following Proposition.

Proposition. Let k ∈ N>0 and c > 0 such that for each f ∈W 1,2k(X, γ)
∫

X

|f − f |2k dγ ≤ c
∫

X

|∇Hf |2
k
dγ.

Then, for each p ∈ [2k, 2k+1] there exists cp > 0 such that for every f ∈W 1,p(X, γ)
∫

X

|f − f |p dγ ≤ cp
∫

X

|∇Hf |p dγ.

We remark that this proposition implies the Poincaré inequality for each p > 2 by
induction and the fact, that it was already shown for p = 2 in Theorem 14.2.5. Now we
come to the proof.

Proof. Let p ∈ [2k, 2k+1] and f ∈ W 1,p(X, γ). We have ∇H |f |
p
2 = p

2 |f |
p
2
−1∇Hf and

thus, |f | p2 ∈ W 1,2(X, γ), since ∇Hf ∈ Lp(X, γ) and |f | p2−1 ∈ L
2p
p−2 (X, γ) and thus,

∇H |f |
p
2 ∈ L2(X, γ) follows by Hölders inequality. We apply Theorem 14.2.5 to |f | p2 and

obtain
∫

X


|f | p2 −

∫

X

|f | p2 dγ




2

dγ ≤
∫

X

∣∣∣∇H |f |
p
2

∣∣∣
2
dγ.

Hence,

‖f‖pp =
∫

X

|f |p dγ ≤



∫

X

|f | p2 dγ




2

+

∫

X

∣∣∣∇H |f |
p
2

∣∣∣
2
dγ, (1)

where we have used
∫

X


|f | p2 −

∫

X

|f | p2 dγ




2

dγ =

∫

X

|f |p dγ −



∫

X

|f | p2 dγ




2

.

Since p
2 ≤ 2k and thus, L2k(X, γ) ↪→ L

p
2 (X, γ) contractive, we can estimate the first term

on the right hand side of (1) by


∫

X

|f | p2 dγ




2

= ‖f‖pp
2
≤ ‖f‖p

2k
.

Moreover, we estimate the second term on the right hand side of (1) by using Hölders
inequality as follows:

∫

X

∣∣∣∇H |f |
p
2

∣∣∣
2
dγ =

p2

4

∫

X

|f |p−2|∇Hf |2 dγ

≤ p2

4
‖f‖p−2

p ‖∇Hf‖2p.

1



Using now the inequality ap−2b2 ≤ ap + bp for each a, b > 0 (note that p ≥ 2), we can
estimate the latter product by

p2

4
‖f‖p−2

p ‖∇Hf‖2p =
p2

4
‖ε

1
p f‖p−2

p ‖ε
2−p
2p ∇Hf‖2p

≤ p2

4

(
ε‖f‖pp + ε1−

p
2 ‖∇Hf‖pp

)

for each ε > 0. Summarizing, by choosing ε = 2
p2
, we end up with the estimate

∫

X

|f |p dγ ≤ ‖f‖p
2k

+
1

2
‖f‖pp +Kp‖∇Hf‖pp,

where Kp :=
1
2

(
2
p2

)− p
2
. Thus, we infer

‖f‖pp ≤ Cp

(
‖f‖p

2k
+ ‖∇Hf‖pp

)

with Cp := 2max{1,Kp} = 2Kp. Applying the latter inequality to the function f − f
and using the assumption of the proposition, we derive

‖f − f‖pp ≤ Cp

(
‖f − f‖p

2k
+ ‖∇Hf‖pp

)

≤ Cp

(
c

p

2k ‖∇Hf‖p2k + ‖∇Hf‖pp
)

≤ Cp(1 + c
p

2k )‖∇Hf‖pp,

where we have used Lp(X, γ) ↪→ L2k(X, γ) contractive, since 2k ≤ p.
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