Lecture 14

More on Ornstein-Uhlenbeck operator and semigroup

In this lecture we go on in the study of the realisation of the Ornstein-Uhlenbeck operator and of the Ornstein-Uhlenbeck semigroup in L^p spaces. As in the last lectures, X is a separable Banach space endowed with a centred nondegenerate Gaussian measure γ , and H is the Cameron-Martin space. We use the notation of Lectures 12 and 13.

We start with the description of the spectrum of L_2 . Although the domain of L_2 is not compactly embedded in $L^2(X, \gamma)$ if X is infinite dimensional, the spectrum of L_2 consists of a sequence of eigenvalues, and the corresponding eigenfunctions are the Hermite polynomials that we already encountered in Lecture 8. So, $L^2(X, \gamma)$ has an orthonormal basis made by eigenfunctions of L_2 . This is used to obtain another representation formula for $T_2(t)$ and another characterisation of $D(L_2)$ in terms of Hermite polynomials.

In the second part of the lecture we present two important inequalities, the the Logarithmic Sobolev and Poincaré inequalities, that hold for C_b^1 functions and are easily extended to Sobolev functions. They are used to prove summability improving properties and asymptotic behavior results for $T_p(t)$.

14.1 Spectral properties of L_2

Let $\{h_j : j \in \mathbb{N}\}\$ be any orthonormal basis of H contained in $R_\gamma(X^*)$. We recall the definition of the Hermite polynomials, given in Lecture 8.

 Λ is the set of of multi-indices $\alpha \in (\mathbb{N} \cup \{0\})^{\mathbb{N}}$ $Λ$ is the set of of multi-indices $α ∈ (N ∪ {0})^N$, $α = (α_j)$, with finite length $|α| = \sum_{j=1}^{\infty} α_j < ∞$. For every $α ∈ Λ$, $α = (α_j)$, the Hermite polynomial $H_α$ is defined by

$$
H_{\alpha}(x) = \prod_{j=1}^{\infty} H_{\alpha_j}(\hat{h}_j(x)), \quad x \in X.
$$

 \Box

where the polynomial H_{α_j} is defined in (8.1.1). By Lemma 8.1.2, for every $k \in \mathbb{N}$ we have

$$
H_k''(\xi) - xH_k'(\xi) = -kH_k(\xi), \quad \xi \in \mathbb{R},
$$

namely H_k is an eigenfunction of the one-dimensional Ornstein-Uhlenbeck operator, with eigenvalue $-k$. This property is extended to any dimension as follows.

Proposition 14.1.1. For every $\alpha \in \Lambda$, H_{α} belongs to $D(L_2)$ and

$$
L_2H_\alpha = -|\alpha|H_\alpha.
$$

Proof. As a first step, we consider the finite dimensional case $X = \mathbb{R}^d$, $\gamma = \gamma_d$. Then $H = \mathbb{R}^d$ and we take the canonical basis of \mathbb{R}^d as a basis for H, so that $\hat{h}_j(x) = x_j$ for $j=1,\ldots d$.

We fix a Hermite polynomial H_{α} in \mathbb{R}^d , with $\alpha = (\alpha_1, \dots, \alpha_d) \in (\mathbb{N} \cup \{0\})^d$,

$$
H_{\alpha}(x) = \prod_{j=1}^{d} H_{\alpha_j}(x_j), \quad x \in \mathbb{R}^d.
$$

 H_{α} belongs to $W^{2,2}(\mathbb{R}^d, \gamma_d)$ (in fact, it belongs to $W^{2,p}(\mathbb{R}^d, \gamma_d)$ for every $p \in [1, +\infty)$) and therefore by Theorem 13.1.4, it is in $D(L_2^{(d)})$ $_2^{(d)}$). By (8.1.4) we know that $L_2^{(d)}H_{\alpha} =$ $\mathcal{L}^{(d)}H_\alpha = -|\alpha|H_\alpha.$

Now we turn to the infinite dimensional case. Let $\alpha \in \Lambda$ and let $d \in \mathbb{N}$ be such that $\alpha_j = 0$ for each $j > d$. Then $H_\alpha(x) = \varphi(\hat{h}_1(x), \dots, \hat{h}_d(x))$, where φ is a Hermite polynomial in \mathbb{R}^d . Proposition 13.2.1 implies that $H_\alpha \in D(L_2)$, and

$$
L_2H_\alpha=\mathcal{L}^{(d)}\varphi(\hat{h}_1(\cdot),\ldots,\hat{h}_d(\cdot))=-|\alpha|\varphi(\hat{h}_1(\cdot),\ldots,\hat{h}_d(\cdot))=-|\alpha|H_\alpha.
$$

As a consequence of Propositions 14.1.1 and 8.1.9, we characterise the spectrum of L_2 . We recall that, for every $k \in \mathbb{N} \cup \{0\}$, I_k is the orthogonal projection on the subspace $\mathfrak{X}_k = \overline{\text{span}\{H_\alpha: \alpha \in \Lambda, |\alpha| = k\}}$ of $L^2(X, \gamma)$. See Section 8.1.2.

Proposition 14.1.2. The spectrum of L_2 is equal to $-\mathbb{N} \cup \{0\}$. For every $k \in \mathbb{N} \cup \{0\}$, \mathfrak{X}_k is the eigenspace of L_2 with eigenvalue $-k$. Therefore, $I_k(L_2f) = L_2(I_kf) = -kI_k(f)$, for every $f \in D(L_2)$.

Proof. Let us consider the point spectrum. First of all, we prove that \mathcal{X}_k is contained in the eigenspace of L_2 with eigenvalue $-k$.

 \mathfrak{X}_0 consists of constant functions, that belong to the kernel of L_2 . For $k \in \mathbb{N}$, every element $f \in \mathfrak{X}_k$ is equal to $\lim_{n\to\infty} f_n$, where each f_n is a linear combination of Hermite polynomials H_{α} with $|\alpha| = k$. By Proposition 14.1.1, $f_n \in D(L_2)$ and $L_2 f_n = -k f_n$. Since L_2 is a closed operator, $f \in D(L_2)$ and $L_2f = -kf$.

Let now $f \in D(L_2)$ be such that $L_2 f = \lambda f$ for some $\lambda \in \mathbb{R}$. For every $\alpha \in \Lambda$ we have

$$
\lambda \langle f, H_{\alpha} \rangle_{L^2(X, \gamma)} = \langle L_2 f, H_{\alpha} \rangle_{L^2(X, \gamma)} = \langle f, L_2 H_{\alpha} \rangle_{L^2(X, \gamma)} = -|\alpha| \langle f, H_{\alpha} \rangle_{L^2(X, \gamma)}.
$$

 $\emph{More about OU} \hspace{1.5cm} 169$

Therefore, either $\lambda = -|\alpha|$ or $\langle f, H_{\alpha} \rangle_{L^2(X,\gamma)} = 0$. If $\lambda = -k$ with $k \in \mathbb{N} \cup \{0\}$, then f is orthogonal to all Hermite polynomials H_β with $|\beta| \neq k$, hence $f \in \mathcal{X}_k$ is an eigenfunction of L_2 with eigenvalue $-k$. If $\lambda \neq -k$ for every $k \in \mathbb{N} \cup \{0\}$, then f is orthogonal to all Hermite polynomials so that it vanishes. This proves that \mathcal{X}_k is equal to the eigenspace of L_2 with eigenvalue $-k$.

Since L_2 is self-adjoint, for $f \in D(L_2)$ and $|\alpha| = k$ we have

$$
\langle L_2 f, H_\alpha \rangle_{L^2(X, \gamma)} = \langle f, L_2 H_\alpha \rangle_{L^2(X, \gamma)} = -k \langle f, H_\alpha \rangle_{L^2(X, \gamma)}.
$$
(14.1.1)

Let $f_j, j \in \mathbb{N}$, be any enumeration of the Hermite polynomials H_α with $|\alpha| = k$. The sequence $s_n := \sum_{j=0}^n \langle f, f_j \rangle_{L^2(X,\gamma)} f_j$ converges in $D(L_2)$, since $L^2 - \lim_{n \to \infty} s_n = I_k(f)$ and

$$
L_2s_n = \sum_{j=0}^n \langle f, f_j \rangle_{L^2(X,\gamma)} L_2f_j = -k \sum_{j=0}^n \langle f, f_j \rangle_{L^2(X,\gamma)} f_j = \sum_{j=0}^n \langle L_2f, f_j \rangle_{L^2(X,\gamma)} f_j,
$$

where the last equality follows from $(14.1.1)$. The series in the right hand side converges to $-kI_k(f) = I_k(L_2f)$, as $n \to \infty$. Then, $L_2I_k(f) = -kI_k(f) = I_k(L_2f)$, for every $k \in \mathbb{N} \cup \{0\}.$

It remains to show that the spectrum of L_2 is just $-\mathbb{N} \cup \{0\}$. We notice that $D(L_2)$ is not compactly embedded in $L^2(X, \gamma)$ if X is infinite dimensional, because it has infinite dimensional eigenspaces. So, the spectrum does not necessarily consist of eigenvalues.

If $\lambda \neq -h$ for every $h \in \mathbb{N} \cup \{0\}$, and $f \in L^2(X, \gamma)$, the resolvent equation $\lambda u - L_2 u =$ f is equivalent to $\lambda I_k(u) - I_k(L_2u) = I_k(f)$ for every $k \in \mathbb{N} \cup \{0\}$, and therefore to $\lambda I_k(u) + kI_k(u) = I_k(f)$, for every $k \in \mathbb{N} \cup \{0\}$. So, we define

$$
u = \sum_{k=0}^{\infty} \frac{1}{\lambda + k} I_k(f).
$$
 (14.1.2)

The sequence $u_n := \sum_{k=0}^n I_k(f)/(\lambda+k)$ converges in $D(L_2)$, since both sequences $1/(\lambda+k)$ and $k/(\lambda + k)$ are bounded. Therefore, $u \in D(L_2)$, and $\lambda u - L_2 u = f$. \Box

Another consequence is a characterisation of L_2 in terms of Hermite polynomials.

Proposition 14.1.3.

$$
\begin{cases}\n(a) \quad D(L_2) = \left\{ f \in L^2(X, \gamma) : \sum_{k=1}^{\infty} k^2 \| I_k(f) \|_{L^2(X, \gamma)}^2 < \infty \right\}, \\
(b) \quad L_2 f = -\sum_{k=1}^{\infty} k I_k(f), \quad f \in D(L_2).\n\end{cases}
$$
\n(14.1.3)

Proof. Let $f \in D(L_2)$. Then $I_k(L_2f) = -kI_k(f) = L_2(I_k(f))$ for every $k \in \mathbb{N} \cup \{0\}$, by Proposition 14.1.2. Applying $(8.1.9)$ to L_2f we obtain

$$
L_2 f = \sum_{k=0}^{\infty} I_k(L_2 f) = \sum_{k=1}^{\infty} -k I_k(f)
$$

which proves $(14.1.3)(b)$. Moreover,

$$
||L_2f||_{L^2(X,\gamma)}^2 = \sum_{k=1}^{\infty} k^2 ||I_k(f)||_{L^2(X,\gamma)}^2 < \infty.
$$

Conversely, let $f \in L^2(X, \gamma)$ be such that $\sum_{k=1}^{\infty} k^2 ||I_k(f)||^2_{L^2(X, \gamma)} < \infty$. Then the sequence

$$
f_n := \sum_{k=0}^n I_k(f)
$$

converges to f in $L^2(X, \gamma)$, and it converges in $D(L_2)$ too, since for $n > m$

$$
||L_2(f_n - f_m)||_{L^2(X,\gamma)}^2 = \Big\| \sum_{k=m+1}^n -k I_k(f) \Big\|_{L^2(X,\gamma)}^2 = \sum_{k=m+1}^n k^2 ||I_k(f)||_{L^2(X,\gamma)}^2 \to 0 \text{ as } m \to \infty.
$$

Since L_2 is closed, $f \in D(L_2)$.

As every H_{α} is an eigenfunction of L_2 with eigenvalue $-|\alpha|$, we ask to verify that

$$
T_2(t)H_\alpha = e^{|\alpha|t}H_\alpha, \quad t \ge 0, \ \alpha \in \Lambda,
$$
\n(14.1.4)

see Exercise 14.1. As a consequence, we obtain a very handy expression of $T_2(t)$ in terms of Hermite polynomials.

Corollary 14.1.4. For every $t > 0$ we have

$$
T_2(t)f = \sum_{k=0}^{\infty} e^{-kt} I_k(f), \quad f \in L^2(X, \gamma), \tag{14.1.5}
$$

where the series converges in $L^2(X, \gamma)$. Moreover, $T_2(t)f \in D(L_2)$ and

$$
||L_2T_2(t)f||_{L^2(X,\gamma)} \le \frac{1}{te}||f||_{L^2(X,\gamma)}.\tag{14.1.6}
$$

The function $t \mapsto T(t)f$ belongs to $C^1((0, +\infty); L^2(X, \gamma))$, and

$$
\frac{d}{dt}T_2(t)f = L_2T_2(t)f, \quad t > 0.
$$
\n(14.1.7)

Proof. Fix $f \in L^2(X, \gamma)$. By Lemma 14.1.1, for every $k \in \mathbb{N}$, $I_k(f) \in D(L_2)$ and $L_2I_k(f) = -kI_k(f)$, so that by the above considerations, $T_2(t)I_k(f) = e^{-kt}I_k(f)$. Since $f = \lim_{n \to \infty} \sum_{k=0}^{n} I_k(f)$ in $L^2(X, \gamma)$ and $T_2(t)$ is a bounded operator in $L^2(X, \gamma)$, (14.1.5) follows.

The other statements and estimate $||L_2T_2(t)f||_{L^2(X,\gamma)} \leq c||f||_{L^2(X,\gamma)}/t$ follow from the fact that $T_2(t)$ is an analytic semigroup in $L^2(X, \gamma)$, see Theorem 11.4.2. However, we give here a simple independent proof, specifying the constant $c = 1/e$ in (14.1.6).

 \Box

Since $\sup_{\xi>0} \xi^2 e^{-2\xi} = e^{-2}$, using (14.1.5) we obtain

$$
\sum_{k=1}^{\infty} k^2 \|I_k(T_2(t)f)\|_{L^2(X,\gamma)}^2 = \sum_{k=1}^{\infty} k^2 e^{-2kt} \|I_k(f)\|_{L^2(X,\gamma)}^2
$$

$$
\leq \frac{1}{e^2 t^2} \sum_{k=1}^{\infty} \|I_k(f)\|_{L^2(X,\gamma)}^2 \leq \frac{1}{e^2 t^2} \|f\|_{L^2(X,\gamma)}^2
$$

so that $T_2(t)f \in D(L_2)$ by $(14.1.3)(a)$, and estimate $(14.1.6)$ follows from $(14.1.3)(b)$. Moreover, for every $t > 0$ and $0 < |h| \le t/2$ we have

$$
\left\| \frac{1}{h}(T_2(t+h)f - T_2(t)f) - L_2T_2(t)f \right\|_{L^2(X,\gamma)}^2 = \sum_{k=0}^{\infty} \left(\frac{e^{-k(t+h)} - e^{-kt}}{h} + k \right)^2 \left\| I_k(f) \right\|_{L^2(X,\gamma)}^2.
$$

Each addend in the right hand side sum converges to 0, and using the Taylor formula for the exponential function we easily obtain

$$
\left(\frac{e^{-k(t+h)} - e^{-kt}}{h} + k\right)^2 \le \frac{t^2}{4} k^4 e^{-2kt} \le \frac{c}{t^2},
$$

with c independent of t, h, k . By the Dominated Convergence Theorem for series, we obtain

$$
\lim_{h \to 0^+} \left\| \frac{1}{h} (T_2(t+h)f - T_2(t)f) - L_2 T_2(t)f \right\|_{L^2(X,\gamma)} = 0,
$$

namely, the function $T_2(\cdot)f$ is differentiable at t, with derivative $L_2T_2(t)f$. For $t > t_0 > 0$ we have $L_2T_2(t)f = L_2T_2(t-t_0)T(t_0)f = T_2(t-t_0)L_2T(t_0)f$. Then, $t \mapsto L_2T_2(t)f$ is continuous in $[t_0, +\infty)$. Since t_0 is arbitrary, $T(\cdot)f$ belongs to $C^1((0, +\infty); L^2(X, \gamma))$.

We already know that $D(L_2) = W^{2,2}(X,\gamma)$. So, Proposition 14.1.3 gives a characterisation of $W^{2,2}(X,\gamma)$ in terms of Hermite polynomials. A similar characterisation is available for the space $W^{1,2}(X,\gamma)$.

Proposition 14.1.5.

$$
W^{1,2}(X,\gamma) = \Big\{ f \in L^2(X,\gamma) : \sum_{k=1}^{\infty} k ||I_k(f)||^2_{L^2(X,\gamma)} < \infty \Big\}.
$$

Moreover, for every $f \in W^{1,2}(X,\gamma)$,

$$
\int_X |\nabla_H f|_H^2 d\gamma = \sum_{k=1}^{\infty} k \int_X (I_k(f))^2 d\gamma,
$$

and

(i) for every
$$
f \in W^{1,2}(X, \gamma)
$$
 the sequence $\sum_{k=0}^{n} I_k(f)$ converges to f in $W^{1,2}(X, \gamma)$,

172 Lecture 14

(ii) the sequence
$$
\sum_{k=1}^{n} \sqrt{k} I_k
$$
 converges in $\mathcal{L}(W^{1,2}(X,\gamma), L^2(X,\gamma)).$

Proof. Let $f \in L^2(X, \gamma)$. By Proposition 14.1.2, for every $k \in \mathbb{N}$, $I_k(f) \in D(L_2)$ and $L_2I_k(f) = -kI_k(f)$. Therefore,

$$
\int_X |\nabla_H I_k(f)|_H^2 d\gamma = -\int_X I_k(f) L_2 I_k(f) d\gamma = k \int_X (I_k(f))^2 d\gamma, \quad k \in \mathbb{N}.
$$
 (14.1.8)

Assume that $\sum_{k=1}^{\infty} k ||I_k(f)||^2_{L^2(X,\gamma)} < \infty$. The sequence $s_n := \sum_{k=0}^n I_k(f)$ converges to f in $L^2(X,\gamma)$. Moreover, $(\nabla_H s_n)$ is a Cauchy sequence in $L^2(X,\gamma;H)$. Indeed, $\nabla_H I_k(f)$ and $\nabla_H I_l(f)$ are orthogonal in $L^2(X, \gamma; H)$ for $l \neq k$, because

$$
\int_X [\nabla_H I_k(f), \nabla_H I_l(f)]_H d\gamma = -\int_X I_k(f) L_2 I_l(f) d\gamma = l \int_X I_k(f) I_l(f) d\gamma = 0.
$$

Therefore, for $n, p \in \mathbb{N}$,

$$
\Big\|\sum_{k=n}^{n+p} \nabla_H I_k(f)\Big\|_{L^2(X,\gamma;H)}^2 = \sum_{k=n}^{n+p} \int_X |\nabla_H I_k(f)|_H^2 d\gamma = \sum_{k=n}^{n+p} k \|I_k(f)\|_{L^2(X,\gamma)}^2.
$$

So, $f \in W^{1,2}(X,\gamma)$, $s_n \to f$ in $W^{1,2}(X,\gamma)$, and

$$
\int_X |\nabla_H f|_H^2 d\gamma = \sum_{k=1}^{\infty} \int_X |\nabla_H I_k(f)|_H^2 d\gamma = \sum_{k=1}^{\infty} k ||I_k(f)||_{L^2(X,\gamma)}^2.
$$

To prove the converse, first we take $f \in D(L_2)$. Then, by (13.2.5),

$$
\int_X |\nabla_H f|_H^2 d\gamma = -\int_X f L_2 f d\gamma = -\int_X \sum_{l=0}^\infty I_l(f) \sum_{k=0}^\infty I_k(L_2 f) d\gamma
$$

$$
= -\int_X \sum_{k=0}^\infty I_k(f) I_k(L_2 f) d\gamma,
$$

since $I_l(f) \in \mathfrak{X}_l$, $I_k(L_2f) \in \mathfrak{X}_k$. By Proposition 14.1.2,

$$
\int_X |\nabla_H f|_H^2 d\gamma = \sum_{k=1}^{\infty} k \int_X (I_k(f))^2 d\gamma.
$$

Comparing with (14.1.8), we obtain

$$
\int_X |\nabla_H f|_H^2 d\gamma = \sum_{k=1}^{\infty} \int_X |\nabla_H I_k(f)|_H^2 d\gamma.
$$

So, the mappings $T_n: D(L_2) \to L^2(X, \gamma)$, $T_n f = \sum_{k=1}^n$ $kI_k(f)$ satisfy

 $\exists L^2(X, \gamma) - \lim_{n \to \infty} T_n f, \quad ||T_n f||_{L^2(X, \gamma)} \le ||f||_{W^{1,2}(X, \gamma)}.$

Since $D(L_2)$ is dense in $W^{1,2}(X,\gamma)$, the sequence (T_nf) converges in $L^2(X,\gamma)$ for every $f \in W^{1,2}(X,\gamma)$. Since $||T_nf||^2_{L^2(X,\gamma)} = \sum_{k=1}^n k||I_k(f)||^2_{L^2(X,\gamma)}$, letting $n \to \infty$ we get $\sum_{k=1}^{\infty} k \|I_k(f)\|_{L^2(X,\gamma)}^2 < \infty.$ \Box

Proposition 14.1.3 may be recognized as the spectral decomposition of L. See e.g. [RS, §VIII.3], in particular Theorem VIII.6. Accordingly, a functional calculus for L may be defined , namely for every $g : -\mathbb{N} \cup \{0\} \to \mathbb{R}$ we set

$$
D(g(L)) := \left\{ f \in L^{2}(X,\gamma) : \sum_{k=0}^{\infty} |g(-k)|^{2} \| I_{k}(f) \|_{L^{2}(X,\gamma)}^{2} < \infty \right\}
$$

and

$$
g(L)(f) = \sum_{k=0}^{\infty} g(-k)I_k(f), \quad f \in D(g(L)).
$$

In particular, for $g(\xi) = (-\xi)^{1/2}$, Proposition 14.1.5 says that $D((-L)^{1/2}) = W^{1,2}(X,\gamma)$, and $\|(-L)^{1/2}f\|_{L^2(X,\gamma)} = \|\nabla_H f|_H\|_{L^2(X,\gamma)}$ for every $f \in W^{1,2}(X,\gamma)$.

Corollary 14.1.6. For every $d \in \mathbb{N}$, the embedding $W^{1,2}(\mathbb{R}^d, \gamma_d) \subset L^2(\mathbb{R}^d, \gamma_d)$ is compact.

Proof. Let (f_n) be a bounded sequence in $W^{1,2}(\mathbb{R}^d, \gamma_d)$, say $||f_n||_{W^{1,2}(\mathbb{R}^d, \gamma_d)} \leq C$. Then there exists a subsequence (f_{n_j}) that converges weakly in $W^{1,2}(\mathbb{R}^d, \gamma_d)$ to an element $f \in W^{1,2}(\mathbb{R}^d, \gamma_d)$, that still satisfies $||f||_{W^{1,2}(\mathbb{R}^d, \gamma_d)} \leq C$. We claim that $f_{n_j} \to f$ in $L^2(\mathbb{R}^d, \gamma_d)$.

For every $N \in \mathbb{N}$ we have (norms and inner products are in $L^2(\mathbb{R}^d, \gamma_d)$)

$$
||f_{n_j} - f||^2 = \sum_{k=0}^{\infty} ||I_k(f_{n_j} - f)||^2 = \sum_{k=0}^{N-1} ||I_k(f_{n_j} - f)||^2 + \sum_{k=N}^{\infty} ||I_k(f_{n_j} - f)||^2
$$

$$
\leq \sum_{k=0}^{N-1} \sum_{\alpha \in (\mathbb{N} \cup \{0\})^d, |\alpha| = k} \langle f_{n_j} - f, H_\alpha \rangle^2 + \frac{1}{N} \sum_{k=N}^{\infty} k ||I_k(f_{n_j} - f)||^2
$$

$$
\leq \sum_{k=0}^{N-1} \sum_{\alpha \in (\mathbb{N} \cup \{0\})^d, |\alpha| = k} \langle f_{n_j} - f, H_\alpha \rangle^2 + \frac{(2C)^2}{N}.
$$

Fixed any $\varepsilon > 0$, let N be such that $4C^2/N \leq \varepsilon$. The sum in the right hand side consists of a finite number of summands, each of them goes to 0 as $n_j \to \infty$, therefore it does not exceed ε provided n_j is large enough. \Box

The argument in the proof of Corollary 14.1.6 does not work in infinite dimension, because in this case for every $k \in \mathbb{N}$ the Hermite polynomials H_{α} with $|\alpha| = k$ are infinitely many. In fact, $W^{1,2}(X,\gamma)$ is not compactly embedded in $L^2(X,\gamma)$ if H is infinite dimensional. It is sufficient to consider the Hermite polynomials H_{α} with $|\alpha|=1$, namely the sequence of functions (\hat{h}_j) . Their $W^{1,2}(X,\gamma)$ norm is 2 but no subsequence converges in $L^2(X, \gamma)$ since $\|\hat{h}_i - \hat{h}_j\|_{L^2(X, \gamma)}^2 = 2$ for $i \neq j$. The same argument shows that $D(L_2)$ is not compactly embedded in $L^2(X, \gamma)$.

14.2 Functional inequalities and asymptotic behaviour

In this section we present two important inequalities, the Logarithmic Sobolev and Poincaré inequality, that hold for functions in Sobolev spaces. The Ornstein-Uhlenbeck semigroup can be used as a tool in their proofs, and, in their turn, they are used to prove summability improving and asymptotic behaviour results for $T_p(t)f$, as $t \to \infty$.

We introduce the mean value \overline{f} of any $f \in L^1(X, \gamma)$,

$$
\overline{f} := \int_X f \, d\gamma.
$$

If $f \in L^2(X, \gamma)$, $\overline{f} = I_0(f)$ is just the orthogonal projection of f on the kernel \mathfrak{X}_0 of L_2 , that consists of constant functions by Proposition 14.1.2 (see also Exercise 13.4). In any case, we have the following asymptotic behavior result.

Lemma 14.2.1. For every $f \in C_b(X)$,

$$
\lim_{t \to +\infty} T(t)f(x) = \overline{f}, \quad x \in X. \tag{14.2.1}
$$

For every $f \in L^p(X, \gamma)$, $1 \leq p < \infty$,

$$
\lim_{t \to +\infty} \|T_p(t)f - \overline{f}\|_{L^p(X,\gamma)} = 0.
$$
\n(14.2.2)

Proof. The first assertion is an easy consequence of the definition (12.1.1) of $T(t)$, through the Dominated Convergence Theorem. Still for $f \in C_b(X)$, we have that (14.2.2) holds again by the Dominated Convergence Theorem. Since $C_b(X)$ is dense in $L^p(X, \gamma)$ and the linear operators $f \mapsto T_p(t)f - \overline{f}$ belong to $\mathcal{L}(L^p(X,\gamma))$ and have norm not exeeding 2, the second assertion follows as well. \Box

We shall see that the rate of convergence in (14.2.2) is exponential. This fact could be seen as a consequence of general results on analytic semigroups, but here we shall give a simpler and direct independent proof.

14.2.1 The Logarithmic Sobolev inequality

To begin with, we remark that no Sobolev embedding holds for nondegenerate Gaussian measures. Even in dimension 1, the function

$$
f(\xi) = \frac{e^{\xi^2/4}}{1 + \xi^2}, \quad \xi \in \mathbb{R},
$$

belongs to $W^{1,2}(\mathbb{R},\gamma_1)$ but it does not belong to $L^{2+\varepsilon}(\mathbb{R},\gamma_1)$ for any $\varepsilon > 0$. This example may be adapted to show that for every $p \geq 1$, $W^{1,p}(\mathbb{R}, \gamma_1)$ is not contained in $L^{p+\varepsilon}(\mathbb{R}, \gamma_1)$ for any $\varepsilon > 0$, see Exercise 14.2.

The best result about summability properties in this context is the next Logarithmic Sobolev (Log-Sobolev) inequality. In the following we set $0 \log 0 = 0$.

Theorem 14.2.2. Let $p > 1$. For every $f \in C_b^1(X)$ we have

$$
\int_{X} |f|^{p} \log |f| \, d\gamma \le \|f\|_{L^{p}(X,\gamma)}^{p} \log \|f\|_{L^{p}(X,\gamma)} + \frac{p}{2} \int_{X} |f|^{p-2} |\nabla_{H} f|_{H}^{2} \mathbb{1}_{\{f \ne 0\}} d\gamma. \tag{14.2.3}
$$

Proof. As a first step, we consider a function f with positive infimum, say $f(x) \ge c > 0$ for every x. In this case, also f^p belongs to $C_b^1(X)$, and $(T(t)f^p)(x) \geq c^p$ for every x, by (12.1.1). We define the function

$$
F(t) = \int_X (T(t)f^p) \log(T(t)f^p) d\gamma, \quad t \ge 0.
$$

Since L_2 is a sectorial operator (or, by Corollary 14.1.4), the function $t \mapsto T(t)f^p$ and $t \mapsto \log(T(t) f^{p})$ belong to $C^{1}((0, +\infty); L^{2}(X, \gamma))$. Consequently, their product is in $C^1((0, +\infty); L^1(X, \gamma)), F \in C^1(0, +\infty)$, and for every $t > 0$ we have

$$
F'(t) = \int_X [L_2(T(t)f^p) \cdot \log(T(t)f^p) + L_2T(t)f^p] d\gamma
$$
\n
$$
= \int_X L_2(T(t)f^p) \cdot \log(T(t)f^p) d\gamma.
$$
\n(14.2.4)

The second equality is a consequence of the invariance of γ (Propositions 12.1.5(iii) and 11.3.1). Moreover, $t \mapsto T(t) f^p(x)$ and $t \mapsto \log(T(t) f^p)(x)$ are continuous for every x and bounded by constants independent of x. It follows that F is continuous up to $t = 0$, and $F(t) - F(0) = \int_0^t F'(s)ds$. Integrating in the right hand side of (14.2.4) and using (13.2.5) with f replaced by $T(t) f^p$, g replaced by $\log(T(t) f^p)$, we obtain

$$
F'(t) = -\int_X [\nabla_H T(s) f^p, \nabla_H \log(T(s) f^p))]_H d\gamma
$$

=
$$
-\int_X \frac{1}{T(t) f^p} |\nabla_H (T(t) f^p)|_H^2 d\gamma.
$$

We recall that for every $x \in X$, $|\nabla_H(T(t)f^p)(x)|_H \leq e^{-t}T(t)(|\nabla_H f^p|_H)(x)$ (see Proposition 12.1.6). So,

$$
F'(t) \ge -e^{-2t} \int_X \frac{1}{T(t)f^p} (T(t)(|\nabla_H f^p|_H))^2 d\gamma.
$$
 (14.2.5)

Moreover, using the Hölder inequality in $(12.1.1)$ yields

$$
|T(t)(\varphi_1\varphi_2)(x)| \le [(T(t)\varphi_1^2)(x)]^{1/2} [(T(t)\varphi_2^2)(x)]^{1/2}, \quad \varphi_i \in C_b(X), \ x \in X.
$$

We use this estimate with $\varphi_1 = |\nabla_H f^p|_H / f^{p/2}$, $\varphi_2 = f^{p/2}$ and we obtain

$$
T(t)(|\nabla_H f^p|_H) = T(t) \left(\frac{|\nabla_H f^p|_H}{f^{p/2}} f^{p/2} \right) \le \left(T(t) \left(\frac{|\nabla_H f^p|_H^2}{f^p} \right) \right)^{1/2} (T(t) f^p)^{1/2}.
$$

Replacing in $(14.2.5)$ and using $(12.1.2)$, we get

$$
F'(t) \ge -e^{-2t} \int_X T(t) \left(\frac{|\nabla_H f^p|_H^2}{f^p} \right) d\gamma = -e^{-2t} \int_X \frac{|\nabla_H f^p|_H^2}{f^p} d\gamma
$$

= $-p^2 e^{-2t} \int_X f^{p-2} |\nabla_H f|_H^2 d\gamma$.

 \Box

Integrating with respect to time in $(0, t)$ yields

$$
\int_{X} (T(t)f^{p}) \log(T(t)f^{p}) d\gamma - \int_{X} f^{p} \log(f^{p}) d\gamma = F(t) - F(0)
$$
\n
$$
\geq \frac{p^{2}}{2} (e^{-2t} - 1) \int_{X} f^{p-2} |\nabla_{H} f|_{H}^{2} d\gamma.
$$
\n(14.2.6)

Now we let $t \to +\infty$. By Lemma 14.2.1, $\lim_{t\to+\infty} (T(t)f^p)(x) = \overline{f^p} = ||f||_{L^p}^p$, and consequently $\lim_{t\to+\infty} \log((T(t)f^p)(x)) = p \log(||f||_{L^p})$, for every $x \in X$. Moreover, $c^p \leq |(T(t) f^p)(x)| \leq ||f||_{\infty}^p$, for every x. By the Dominated Convergence Theorem, the left hand side of (14.2.6) converges to $p||f||_{L^p}^p \log(||f||_{L^p}) - p \int_X f^p \log f d\gamma$ as $t \to +\infty$, and (14.2.3) follows.

For $f \in C_b^1(X)$ we approximate $|f|$ in $W^{1,p}(X,\gamma)$ and pointwise by the sequence $f_n = \sqrt{f^2 + 1/n}$, see Exercise 14.3. Applying (14.2.3) to each f_n we get

$$
\int_X f_n^p \log f_n \, d\gamma - \|f_n\|_{L^p(X,\gamma)}^p \log \|f_n\|_{L^p(X,\gamma)} \le \frac{p}{2} \int_X f^2 (f^2 + 1/n)^{p/2 - 2} |\nabla_H f|_H^2 d\gamma
$$
\n
$$
\le \frac{p}{2} \int_X \mathbf{1}_{\{f \ne 0\}} (f^2 + 1/n)^{p/2 - 1} |\nabla_H f|_H^2 d\gamma,
$$

and letting $n \to \infty$ yields that f satisfies (14.2.3). Notice that the last integral goes to $\int_X 1\!\mathrm{d}_\{f \neq 0\} |f|^{p-2} |\nabla_H f|_H^2 d\gamma$ by the Monotone Convergence Theorem, even if $p < 2$. \Box

Corollary 14.2.3. Let $p \geq 2$. For every $f \in W^{1,p}(X, \gamma)$ we have

$$
\int_{X} |f|^{p} \log |f| \, d\gamma \le \|f\|_{L^{p}(X,\gamma)}^{p} \log \|f\|_{L^{p}(X,\gamma)} + \frac{p}{2} \int_{X} |f|^{p-2} |\nabla_{H} f|_{H}^{2} d\gamma. \tag{14.2.7}
$$

Proof. We approximate f by a sequence of $\mathcal{F}C_b^1(X)$ functions (f_n) that converges in $W^{1,p}(X, \gamma)$ and pointwise a.e. to f. We apply (14.2.3) to each f_n , and then we let $n \to \infty$. Recalling that $\nabla_H f_n = 0$ a.e. in the set $\{f_n = 0\}$ (see Exercise 10.3), we get

$$
\int_X |f_n|^{p-2} |\nabla_H f_n|_H^2 \mathbb{1}_{\{f_n \neq 0\}} d\gamma = \int_X |f_n|^{p-2} |\nabla_H f_n|_H^2 d\gamma
$$

for every n , and

$$
\int_X |f|^p \log |f| d\gamma \le \liminf_{n \to \infty} \int_X |f_n|^p \log |f_n| d\gamma
$$
\n
$$
\le \liminf_{n \to \infty} \left(\|f_n\|_{L^p(X,\gamma)}^p \log \|f_n\|_{L^p(X,\gamma)} + \frac{p}{2} \int_X |f_n|^{p-2} |\nabla_H f_n|_H^2 d\gamma \right)
$$
\n
$$
= \|f\|_{L^p(X,\gamma)}^p \log \|f\|_{L^p(X,\gamma)} + \frac{p}{2} \int_X |f|^{p-2} |\nabla_H f|_H^2 d\gamma
$$

Note that for $1 < p < 2$ the function $1\!\!1_{f\neq0}|f|^{p-2}|\nabla_H f|_H^2$ does not necessarily belong to $L^1(X, \gamma)$ for $f \in W^{1,p}(X, \gamma)$, and in this case (14.2.3) is not meaningful, since it says that the left hand side does not exceed $+\infty$. Take for instance $X = \mathbb{R}$ and $f(x) = x^{1/p}$ for $0 < x < 1$, $f(x) = 0$ for $x \le 0$, $f(x) = 1$ for $x \ge 1$. Then $f \in W^{1,p}(\mathbb{R}, \gamma_1)$ but $\int_{\mathbb{R}} |f|^{p-2} |\nabla_H f|_H^2 1\!\!1_{\{f \neq 0\}} d\gamma_1 = +\infty.$

Instead, it is possible to show that for any $p \in (1, +\infty)$

$$
-(p-1)\int_X |f|^{p-2} |\nabla_H f|_H^2 \mathbb{1}_{\{f \neq 0\}} d\gamma = \int_X f|f|^{p-2} L_p f d\gamma \tag{14.2.8}
$$

for every $f \in D(L_p)$, so that $\int_X |f|^{p-2} |\nabla_H f|_H^2 1\!\!\!1_{\{f \neq 0\}} d\gamma \leq C_p ||f||_{D(L_p)}$. See Exercise 14.4. So, if $f \in D(L_p)$ (14.2.3) may be rewritten as

$$
\int_{X} |f|^{p} \log |f| \, d\gamma \le \|f\|_{L^{p}(X,\gamma)}^{p} \log \|f\|_{L^{p}(X,\gamma)} - \frac{p}{2(p-1)} \int_{X} f|f|^{p-2} L_{p} f \, d\gamma. \tag{14.2.9}
$$

An important consequence of the Log-Sobolev inequality is the next summability improving property of $T(t)$, called *hypercontractivity*.

Theorem 14.2.4. Let $p > 1$, and set $p(t) = e^{2t}(p-1) + 1$ for $t > 0$. Then $T_p(t)f \in$ $L^{p(t)}(X,\gamma)$ for every $f \in L^p(X,\gamma)$, and

$$
||T_p(t)f||_{L^{p(t)}(X,\gamma)} \le ||f||_{L^p(X,\gamma)}, \quad t > 0. \tag{14.2.10}
$$

Proof. Let us prove that (14.2.10) holds for every $f \in \Sigma$ with positive infimum (the set Σ was introduced at the beginning of Section 13.2, and it is dense in $L^p(X, \gamma)$). For such f's, since they belong to $D(L_q)$ for any q, we have that $T_p(f) = T(t)f$ and we can drop the idex p in the semigroup. We shall show that the function

$$
\beta(t) := \|T(t)f\|_{L^{p(t)}(X,\gamma)}, \quad t \ge 0
$$

decreases in $[0, +\infty)$.

It is easily seen that β is continuous in $[0, +\infty)$. Our aim is to show that $\beta \in$ $C^1(0, +\infty)$, and $\beta'(t) \leq 0$ for every $t > 0$. Indeed, by Proposition 13.2.1 we know that for every $x \in X$ the function $t \mapsto T(t)f(x)$ belongs to $C^1(0, +\infty)$, as well as $t \mapsto (T(t)f(x))^{p(t)}$, and

$$
\frac{d}{dt}(T(t)f(x))^{p(t)} = p'(t)(T(t)f(x))^{p(t)}\log(T(t)f(x)) + p(t)(T(t)f(x))^{p(t)-1}\frac{d}{dt}(T(t)f(x))
$$
\n
$$
= p'(t)(T(t)f(x))^{p(t)}\log(T(t)f(x)) + p(t)(T(t)f(x))^{p(t)-1}(L_2T(t)f(x)).
$$

We have used the operator L_2 , but any other L_q can be equivalently used. Moreover, $|d/dt(T(t)f(x))^{p(t)}|$ is bounded by $c(t)(1+||x||)$ for some continuous function $c(\cdot)$. So, $t \mapsto \int_X |T(t)f|^{p(t)} d\gamma$ is continuously differentiable, with derivative equal to

$$
p'(t) \int_X (T(t)f)^{p(t)} \log(T(t)f) d\gamma - p(t)(p(t) - 1) \int_X T(t)f)^{p(t) - 2} |\nabla_H T(t)f|_H^2 d\gamma.
$$

.

It follows that β is differentiable and

$$
\beta'(t) = \beta(t) \left[-\frac{p'(t)}{p(t)^2} \log \int_X (T(t)f)^{p(t)} d\gamma + +\frac{p'(t)}{p(t)} \frac{\int_X (T(t)f)^{p(t)} \log(T(t)f) d\gamma}{\int_X (T(t)f)^{p(t)} d\gamma} - (p(t) - 1) \frac{\int_X (T(t)f)^{p(t)-2} |\nabla_H T(t)f|_H^2 d\gamma}{\int_X (T(t)f)^{p(t)} d\gamma} \right].
$$

The Logarithmic Sobolev inequality (14.2.3) yields

$$
\int_X (T(t)f)^{p(t)} \log(T(t)f) d\gamma \le
$$
\n
$$
\leq \frac{1}{p(t)} \int_X (T(t)f)^{p(t)} d\gamma \log \int_X (T(t)f)^{p(t)} d\gamma + \frac{p(t)}{2} \int_X (T(t)f)^{p(t)-2} |\nabla_H T(t)f|_H^2 d\gamma,
$$

and replacing we obtain

$$
\beta'(t) \leq \left(\frac{p'(t)}{2}-(p(t)-1)\right)\frac{\int_X (T(t)f)^{p(t)-2}|\nabla_H T(t)f|_H^2 d\gamma}{\int_X (T(t)f)^{p(t)} d\gamma}
$$

The function $p(t)$ was chosen in such a way that $p'(t) = 2(p(t) - 1)$. Therefore, $\beta'(t) \leq 0$, and (14.2.10) follows.

Let now $f \in \Sigma$ and set $f_n = (f^2 + 1/n)^{1/2}$. For every $x \in X$ and $n \in \mathbb{N}$ we have, by $(12.1.1), |(T(t)f)(x)| \leq (T(t)|f|)(x) \leq (T(t)f_n)(x)$, so that

$$
||T(t)f||_{L^{p(t)}(X,\gamma)} \leq \liminf_{n \to \infty} ||T(t)f_n||_{L^{p(t)}(X,\gamma)} \leq \liminf_{n \to \infty} ||f_n||_{L^p(X,\gamma)} = ||f||_{L^p(X,\gamma)},
$$

and (14.2.10) holds. Since Σ is dense in $L^p(X, \gamma)$, (14.2.10) holds for every $f \in L^p(X, \gamma)$. \Box

We notice that in the proof of Theorem 14.2.4 we have not used specific properties of the Ornstein-Uhlenbeck semigroup: the main ingredients were the integration by parts formula, namely the fact that the infinitesimal generator L_2 is the operator associated to the quadratic form (13.2.4), and the Log-Sobolev inequality (14.2.3) for good functions. In fact, the proof may be extended to a large class of semigroups in spaces $L^p(\Omega, \mu)$, (Ω, μ) being a probability space, see [G]. In [G] a sort of converse is proved, namely under suitable assumptions if a semigroup $T(t)$ is a contraction from $L^p(\Omega,\mu)$ to $L^{q(t)}(\Omega,\mu)$, with q differentiable and increasing, then a logarithmic Sobolev inequality of the type (14.2.9) holds in the domain of the infinitesimal generator of $T(t)$ in $L^p(X, \mu)$.

14.2.2 The Poincaré inequality and the asymptotic behaviour

The Poincaré inequality is the following.

Theorem 14.2.5. For every $f \in W^{1,2}(X, \gamma)$,

$$
\int_{X} (f - \overline{f})^2 d\gamma \le \int_{X} |\nabla_H f|_H^2 d\gamma.
$$
\n(14.2.11)

Proof. There are several proofs of $(14.2.11)$. One of them follows from Theorem 14.2.4, see Exercise 14.5. The simplest proof uses the Wiener Chaos decomposition. By (8.1.9) and (14.1.3), for every $f \in D(L_2)$ we have $f = \sum_{k=0}^{\infty} I_k(f)$ and $L_2 f = \sum_{k=1}^{\infty} -kI_k(f)$, where both series converge in $L^2(X, \gamma)$. Using (13.2.5) and these representation formulas we obtain

$$
\int_X |\nabla_H f|_H^2 d\gamma = -\int_X f L_2 f d\gamma
$$

=
$$
\sum_{k=1}^{\infty} k ||I_k(f)||_{L^2(X,\gamma)}^2 \ge \sum_{k=1}^{\infty} ||I_k(f)||_{L^2(X,\gamma)}^2
$$

=
$$
||f||_{L^2(X,\gamma)}^2 - ||I_0(f)||_{L^2(X,\gamma)}^2
$$

=
$$
||f||_{L^2(X,\gamma)}^2 - \overline{f}^2 = ||f - \overline{f}||_{L^2(X,\gamma)}^2.
$$

Since $D(L_2)$ is dense in $W^{1,2}(X,\gamma)$, (14.2.11) follows.

An immediate consequence of the Poincaré inequality is the following: if $f \in W^{1,2}(X, \gamma)$ and $\nabla_H f \equiv 0$, then f is constant a.e. (compare with Exercise 13.4).

An L^p version of $(14.2.11)$ is

$$
\int_{X} |f - \overline{f}|^{p} \gamma \leq c_{p} \int_{X} |\nabla_{H} f|_{H}^{p} d\gamma. \tag{14.2.12}
$$

that holds for $p > 2$, $f \in W^{1,p}(X, \gamma)$ (Exercise 14.6).

Now we are able to improve Lemma 14.2.1, specifying the decay rate of $T_q(t)f$ to \overline{f} .

Proposition 14.2.6. For every $q > 1$ there exists $c_q > 0$ such that $c_2 = 1$ and for every $f \in L^q(X,\gamma),$

$$
||T_q(t)f - \overline{f}||_{L^q(X,\gamma)} \le c_q e^{-t} ||f||_{L^q(X,\gamma)}, \quad t > 0.
$$
 (14.2.13)

Proof. As a first step, we prove that the statement holds for $q = 2$. By (14.1.5), for every $f \in L^2(\underline{X}, \gamma)$ and $t > 0$ we have $T(t)f = \sum_{k=0}^{\infty} e^{-kt} I_k(f)$. We already know that for $k = 0$, $I_0(f) = \overline{f}$. Therefore,

$$
||T(t)f-\overline{f}||^2_{L^2(X,\gamma)}= \bigg\|\sum_{k=1}^\infty e^{-kt}I_k(f)\bigg\|^2_{L^2(X,\gamma)}\leq e^{-2t}\sum_{k=1}^\infty \|I_k(f)\|^2_{L^2(X,\gamma)}\leq e^{-2t}\|f\|^2_{L^2(X,\gamma)}.
$$

For $q \neq 2$ it is enough to prove that (14.2.13) holds for every $f \in C_b(X)$. For such functions we have $T_q(t)f = T(t)f$ for every $t > 0$.

Let $q > 2$. Set $\tau = \log \sqrt{q-1}$, so that $e^{2\tau} + 1 = q$, and by Theorem 14.2.4 $T_q(\tau)$ is a contraction from $L^2(X, \gamma)$ to $L^q(X, \gamma)$. Then, for every $t \geq \tau$,

$$
||T(t)f - \overline{f}||_{L^q(X,\gamma)} = ||T(\tau)(T(t-\tau)f - \overline{f})||_{L^q(X,\gamma)}
$$

\n
$$
\leq ||T(t-\tau)f - \overline{f}||_{L^2(X,\gamma)} \quad \text{(by (14.2.10))}
$$

\n
$$
\leq e^{-(t-\tau)}||f||_{L^2(X,\gamma)} \quad \text{(by (14.2.13) with } q = 2)
$$

\n
$$
\leq e^{-(t-\tau)}||f||_{L^q(X,\gamma)} \quad \text{(by the Hölder inequality)}
$$

\n
$$
= \sqrt{q-1}e^{-t}||f||_{L^q(X,\gamma)},
$$

 \Box

while for $t \in (0, \tau)$ we have

$$
||T(t)f - \overline{f}||_{L^{q}(X,\gamma)} \leq 2||f||_{L^{q}(X,\gamma)} = 2e^{t}e^{-t}||f||_{L^{q}(X,\gamma)} \leq 2\sqrt{q-1}e^{-t}||f||_{L^{q}(X,\gamma)}.
$$

So, (14.2.13) holds with $c_q = 2\sqrt{q-1}$.

Let now $q < 2$ and set $\tau = -\log \sqrt{q-1}$, so that $e^{2\tau}(q-1) + 1 = 2$, and by Theorem 14.2.4 $T_q(\tau)$ is a contraction from $L^q(X,\gamma)$ to $L^2(X,\gamma)$. For every $t \geq \tau$ we have

$$
||T(t)f - \overline{f}||_{L^q(X,\gamma)} \le ||T(t)f - \overline{f}||_{L^2(X,\gamma)}
$$
 (by the Hölder inequality)
\n
$$
= ||T(t - \tau)(T(\tau)f - \overline{T(\tau)f})||_{L^2(X,\gamma)}
$$

\n
$$
\le e^{-(t-\tau)} ||T(\tau)f||_{L^2(X,\gamma)}
$$
 (by (14.2.13) with $q = 2$)
\n
$$
\le e^{-(t-\tau)} ||f||_{L^q(X,\gamma)}
$$
 (by (14.2.10))
\n
$$
= \frac{1}{\sqrt{q-1}} e^{-t} ||f||_{L^q(X,\gamma)},
$$

while for $t \in (0, \tau)$ we have, as before,

$$
||T(t)f - \overline{f}||_{L^{q}(X,\gamma)} \leq 2||f||_{L^{q}(X,\gamma)} = 2e^{t}e^{-t}||f||_{L^{q}(X,\gamma)} \leq \frac{2}{\sqrt{q-1}}e^{-t}||f||_{L^{q}(X,\gamma)}.
$$

So, (14.2.13) holds with $c_q = 2/$ $\sqrt{q-1}$.

In fact, estimate (14.2.13) could be deduced also by the general theory of (analytic) semigroups, but we prefer to give a simpler self-contained proof.

14.3 Exercises

Exercise 14.1. Prove the equality $(14.1.4)$.

Exercise 14.2. Show that for every $p \geq 1$, $W^{1,p}(\mathbb{R}, \gamma_1)$ is not contained in $L^{p+\varepsilon}(\mathbb{R}, \gamma_1)$ for any $\varepsilon > 0$.

Exercise 14.3. Prove that for every $f \in W^{1,p}(X, \gamma)$ the sequence $f_n = \sqrt{f^2 + 1/n}$ converges to |f| in $W^{1,p}(X,\gamma)$.

Exercise 14.4. Prove that for every $p > 1$ and $f \in D(L_p)$, (14.2.8) holds. *Hint*: for every $f \in \Sigma$ and $\varepsilon > 0$, apply formula (13.2.5) with $g = f(f^2 + \varepsilon)^{1-p/2}$ and then let $\varepsilon \to 0$.

Exercise 14.5. Prove the Poincaré inequality (14.2.11) for functions $f \in C_b^1(X)$ such that $\overline{f} = 0$, in the following alternative way: apply (14.2.7) with $p = 2$ to the functions $f_{\varepsilon} := 1 + \varepsilon f$, for $\varepsilon > 0$, and then divide by ε^2 and let $\varepsilon \to 0$.

Exercise 14.6. Prove that (14.2.12) holds for every $f \in W^{1,p}(X, \gamma)$ with $p > 2$. *Hint:* For $p \leq 4$, apply (14.2.11) to $|f|^{p/2}$ and estimate $(\int_X |f|^{p/2} d\gamma)^2$ by $||f||_L^p$ $L^2(X,\gamma)$, then

 \Box

estimate $(\int_X |\nabla_H f|_H^2 |f|^{p/2-1} d\gamma)^2$ by $\varepsilon \int_X |f|^p d\gamma + C(\varepsilon) (\int_X |\nabla_H f|_H^p d\gamma)$. Taking ε small, arrive at Z Z

$$
\int_X |f|^p d\gamma \le \|f\|_{L^2(X,\gamma)}^p + K \int_X |\nabla_H f|_H^p d\gamma.
$$

(14.2.12) follows applying such estimate to $f - f$, and using (14.2.11) to estimate $||f - f||$ $f\|_{L^2(X,\gamma)}$. For $p\geq 4$, use a bootstrap procedure.

Bibliography

- [B] V. I. BOGACHEV: Gaussian Measures. American Mathematical Society, 1998.
- [G] L. Gross: Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
- [RS] M. REED, B. SIMON: Methods of modern mathematical physics. I: Functional analysis, Academic Press, Inc., 1980.