Lecture 13

The Ornstein-Uhlenbeck operator

In this lecture we study the infinitesimal generator of T),(¢), for p € (1,400). The strongest
result is the characterisation of the domain of the generator Ly of Th(¢) as the Sobolev
space W22(X,~). A similar result holds for p € (1, +0c0)\ {2}, but the proof is much more
complicated and will not be given here.

13.1 The finite dimensional case

Here, X = R? and v = 74. We describe the infinitesimal generator L, of T,(t) in
LP(R%,~y), for p € (1,400), which is a suitable realisation of the Ornstein-Uhlenbeck
differential operator

Lf(x):=Af(x) —x-Vf(x) (13.1.1)

in LP(RY, ~,).
We recall that

D(Ly) = {fELp(Rd,ryd): 377 — lim T(t)Jtc—f}7

t—0+
T f-f
Lyf = lim ————.
2 ti%lJr t

If f € D(Ly,), by Lemma 11.1.7 the function ¢ — T'() f belongs to C1([0, +00); LP(R%,~4))
NC([0,400); D(Ly)) and d/dtT(t)f = L,T(t)f, for every t > 0. To find an expression of
Ly, we differentiate T'(t) f with respect to time for good f. We recall that for f € Cj,(R%),

T,(t)f =T(t)f is given by formula (12.1.1).

Lemma 13.1.1. For every f € Cy(R?), the function (t,z) ~— T(t)f(x) is smooth in
(0,4+00) x R, and we have

d

Z(TON)(@) = AT f(2) - VIO f (), >0, xR (13.1.2)
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If f € C’g(]Rd), for every x € R the function t — T(t)f(x) is differentiable also at t =0,

with
d

dt
and the function (t,z) v+ d/dt (T(t)f)(x) is continuous in [0, +oc) x R

Proof. Setting z = e 'z + V1 — e 2ty in (12.1.1) we see that (t,z) — T(t)f(x) is smooth
in (0,400) x R and that

(T(t)f)(a:)|t:0 =Af(z)—z-Vf(x), z¢€ R, (13.1.3)

d 1 0 |z — e~tx|? o
FTON = oy [ 1615 ({70
_ (1-— (3_215)—‘11/2 |2 — e_t:c‘Q

SRR SICE L b

e tz—eta)-x e |z —el2|? de=2
- 1 — o2 l—e2)2 1-e2 dz

= [ J a4 V1= ey (et y - @+ et)’lyl? — de(t)*)raldy),

where c(t) = e t/y/1 —e2t. Differentiating twice with respect to x in (12.1.1) (recall
(12.1.5)), we obtain

Di;(T(t)f)(w) = c(t)? o (e™'z + V1 — e 2y)(=dij + yiy;)va(dy)

so that
AT(t) f(x) = e(t)? y fle'a+ V1 — e 2y) (—d + |y[*)ya(dy).

Therefore,

GEONE) = AT f(@) = ~ctt) [ e o V/T= ) e yuldy
Rd
= VI()f(2) =,

and (13.1.2) follows.
For f € CZ(R%), we rewrite formula (13.1.2) as

STONE) = (CTWf)@)
(13.1.4)

= e H(THASf)(x) — etz - (TH)Vf)(z), t>0, x€RE

taking into account (12.1.7) and (12.1.9). (We recall that (T'(¢)V f)(x) is the vector whose
Jj-th component is T'(t)D;f(x)). Since Af and each D;f are continuous and bounded
in R?, the right hand side is continuous in [0,400) x R%. So, for every z € R? the
function 6(t) := T(t)f(x) is continuous in [0, +00), it is differentiable in (0, +o00) and
limy_0 0'(t) = Af(x) —x-V f(x). Therefore, 6 is differentiable at 0 too, (13.1.4) holds also
at t =0, and (13.1.3) follows. O
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Lemma 13.1.1 suggests that L, is a suitable realisation of the Ornstein-Uhlenbeck
differential operator £ defined in (13.1.1). For a first characterisation of L, we use Lemma
11.1.9.

Proposition 13.1.2. For 1 < p < oo and k € N, k > 2, the operator L : D(L) =
CFR?) C LP(RY,~yy) — LP(RY,~y) is closable, and its closure is L. So, D(L,) consists
of all f € LP(RY,~y) for which there exists a sequence of functions (f,) C C’If(Rd) such
that fn — f in LP(RY, ~g) and (Lf,) converges in LP(R, ~,). In this case, Lyf = LP —

Proof. We check that D = C’f(]Rd) satisfies the assumptions of Proposition 11.1.9, i.e., it
is a core of L,. We already know, from Proposition 12.1.4, that T'(t) maps CF(R?) into
itself for k =1, 2. The proof of the fact that C¥(R?) is dense in LP(R?, v4) and that T(¢)
maps Cr(RY) into itself for k > 3 is left as Exercise 13.2.

Since CF(R?) C CZ(RY) for k > 2, it remains to prove that CZ(R?) C D(L,), and
Lyf = Lf for every f € C2(R?).

By Lemma 13.1.1, for every f € CZ(R?) we have d/dt T(t) f(z) = LT(t)f(z) for every
r € R and ¢t > 0; moreover ¢ + d/dtT(t)f(z) is continuous for every x. Therefore for
every t > 0 we have

Tt)f(z) = flx) 1 /O %T(s)f(l‘) ds = 1/0 LT(s)f(x)ds,

t Tt t

and

J.

Since s — LT(s)f(z) is continuous, for every = we have

1 p

batan) < [ (3 [ 6161 10) - 2501 ds )t

T(t)f(x) - f(x)
t

—Lf(x)

t—0t

¢ P
lim <1/ |LT(s)f(x) — Lf(x)] ds) =0.
0
Moreover, by (13.1.4),
1 t p » » 1 d
t/o LT (s)f(x) = Lf(x)lds ) < 2P(|Aflloc + 2] | [V ] lloo)” € LT (R, 7a)-
By the Dominated Convergence Theorem,

T(t)f(xg - f(x) _ Lf(-%') pryd(dg;> =0.

lim
t—0t+ JRd

Then, CF(RY) C D(L,). Since L, is a closed operator and it is an extension of £ :
CF(RY) — LP(RY,7,), £ : CF(RY) — LP(RY,~,) is closable.

Applying Lemma 11.1.9 with D = CF(RY), we obtain that D(L,) is the closure of
CF(RY) in the graph norm of L,, namely f € D(L,) iff there exists a sequence (f,) C
C{f(]Rd) such that f, — f in LP(R% ~,) and L,f, = Lf, converges in LP(R% ~,). This
shows that L, is the closure of £ : CF(RY) — LP(RY, ~,). O
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In the case p = 2 we obtain other characterisations of D(Ly). To start with, we point
out some important properties of £, when applied to elements of W22 (R%, ~,).

Lemma 13.1.3. (a) £ : W22(R% y) — L?(R%,~,) is a bounded operator;

(b) for every f € W22(R%, ~y), g € WH2(RY, ~,4) we have
/ Lfgdy, = —/ Vf-Vgdyg. (13.1.5)
R4 R4

(c) for every f € W2(R?, ~4) we have
Lf = div,, VY. (13.1.6)

Proof. To prove (a) it is sufficient to show that the mapping T : W22(R%, v4) — L?(R%, ~y)
defined by (Tf)(x) := x - Vf(x) is bounded. For every i =1,...,d, set g;(z) = z;D; f(x).
The mapping f — g; is bounded from W22(R?, v4) to L?(R%,v,4) by Lemma 10.2.6, and
summing up the statement follows.

To prove (b) it is sufficient to apply the integration by parts formula (9.1.3) to compute
Jra Diif gdvg, for every i = 1,...,d, and to sum up. In fact, (9.1.3) was stated for C}
functions, but it is readily extended to Sobolev functions using Proposition 9.1.5.

Statement (c) follows from Theorem 10.2.7. In this case we have H = RY and it is
convenient to take the canonical basis of R? as a basis for H. So, we have ﬁl(x) = z; for
i=1,...,d and divy,v(z) = Zle Djv; — wv;, for every v € WH2(R? 44;R?). Taking
v=Vf, (13.1.6) follows. O

The first characterisation of D(L2) is the following.
Theorem 13.1.4. D(Ls) = W22(R%, v,), and Lof = Lf for every f € W22(R4, ).
Moreover, for every f € W>2(R%, ~,),

[fl 2y + 1L F Il L2ma g < I fllw2emaqy < 5 U FllL2maqyg) + 1€l L2Raqg))- (13.1.7)

3
2
Proof. The embedding W22(R9, ;) C D(Ls) is an easy consequence of Lemma 13.1.3(a).
For every f € W%2(R% v,) there is a sequence (fx) of C2 functions such that fr — f
in W22(R? ~4). Then, £f, — g = Lf in L?(R%,~,). By Proposition 13.1.2, f € D(Ls)
and Lof = Lf for every f € W22(R?, ~,). However, the embedding constant that comes
from Lemma 13.1.3(a) is not clear, and may depend on d. It is better to use (13.1.6) and
Theorem 10.2.7, with v = V f, that gives the clean estimate

d 1/2 d 1/2
12 g vy < IV S et ety = ( /R D)+ ( /R Y (Dyf)Pda)
i=1 ij=1

which yields

£l 2 ey + 1L F Il L2ma g < I fllweemaqy f€ W22(RY, yy).
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To prove the other embedding we shall show that

3
[ fllw22mayg) < §(Hf”L2(Rd,'yd) + 1€ fll 22 7)) (13.1.8)

for every f € C3(R?). Indeed, by Proposition 13.1.2, if f € D(Ls) there is a sequence (fx)
of C3 functions such that f; converges to f and £ f converges in L*(R%, ~4). Applying
estimate (13.1.8) to fi — f we obtain that (f;) is a Cauchy sequence in W22(R%, ~,), so
that its L2 limit f belongs to W22(R% ~,4), and f satisfies estimate (13.1.8), too. This
shows that D(Ls) is continuously embedded in W?22(R%, ~,4) and that (13.1.8) holds for
every f € D(Ls).

So, let us prove that (13.1.8) holds for every f € C$(R?). By Lemma 13.1.3(b),

L rPau == [ rerau < ilmeaploflogn,,. (319

To estimate the L? norm of the second order derivatives, we set Lf =: g and we differ-
entiate with respect to z; (this is why we consider Cj, instead of only Cg, functions) for
every j = 1,...d. We obtain

d
Dj(Af) - Z(dijDif +2;Djif) = Djg.

=1

Multiplying by D, f and summing up we get

d d
> DifAD;f) — VP =D x-V(D;f)D;f =Vf-Vg.

J=1 J=1

Note that each term in the above sum belongs to LP(R%, v,) for every p > 1. We integrate
over R? and we obtain

d
/Rd (ZDjfL(Djf) - IVf|2>d%z = /R Vf-Vgda.
j=1

Now we use the integration formula (13.1.5), both in the left hand side and in the right
hand side, obtaining

d
= [ SR - [ 1ViPda= - [ g8t
RY S Rd Rd

so that, since g = L f

d
L X 0arpa= [ (erpau= | 1Vifaus | @i

4,j=1
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This inequality and (13.1.9) yield (13.1.8). Indeed,

1wz < IFllze + (2L F 1l 2)? + 1Ll 22
1
< A llee + S Ul + 1Ll ) + 1211 2

< SO lze + 185 z2).
O

The next characterisation fits last year Isem. We recall below general results about
bilinear forms in Hilbert spaces. We only need a basic result; more refined results are in
last year Isem lecture notes.

Let V. C W be real Hilbert spaces, with continuous and dense embedding, and let
Q:V xV — R be a bounded bilinear form. “Bounded” means that there exists M > 0
such that |Q(u,v)| < M||ully ||v||yv for every u, v € V; “bilinear” means that Q is linear
both with respect to u and with respect to v. Q is called “nonnegative” if Q(u,u) > 0 for
every u € V, and “coercive” if there is ¢ > 0 such that Q(u,u) > c||ul|},, for every u € V;
it is called “symmetric” if Q(u,v) = Q(v,u) for every u, v € V. Note that the form in
(13.1.10), with V' = WH2(R9, ~4), W = L?(R% ~,) is bounded, bilinear, symmetric and
nonnegative. It is not coercive, but Q(u,v) + a(u, v) r2ra ) is coercive for every a > 0.

For any bounded bilinear form Q, an unbounded linear operator A in the space W is
naturally associated with Q. D(A) consists of the elements u € V such that the mapping
V — R, v — 9Q(u,v), has a linear bounded extension to the whole W. By the Riesz
Theorem, this is equivalent to the existence of g € W such that Q(u,v) = (g,v)w, for
every v € V. Note that g is unique, because V is dense in W. Then we set Au = —g,
where g is the unique element of W such that Q(u,v) = (g, v)w, for every v € V.

Theorem 13.1.5. Let V. C W be real Hilbert spaces, with continuous and dense em-
bedding, and let Q : V. x V. — R be a bounded bilinear symmetric form, such that
(u,v) — Qu,v) + alu, v)w is coercive for some a > 0. Then the operator A: D(A) - W
defined above is densely defined and self-adjoint. If in addition Q is nonnegative, A is
dissipative.

Proof. The mapping (u,v) — Q(u,v) + a{u,v)y is an inner product in V, and the as-
sociated norm is equivalent to the V-norm, by the continuity of Q and the coercivity
assumption.

It is convenient to consider the operator A : D(A) = D(A) — W, Au := Au+ au. Of
course if A is self-adjoint, also A is self-adjoint.

We consider the canonical isomorphism 7' : V' — V* defined by (Tu)(v) = Q(u,v) +
alu,v)w (we are using the new inner product above defined), and the embedding J :
W — V*, such that (Ju)(v) = (u,v)w. T is an isometry by the Riesz Theorem, and J is
bounded since for every u € W and v € V' we have |(Ju)(v)| < |Ju|lw||v]lw < C|lullw]v|lv,
where C' is the norm of the embedding V' C W. Moreover, J is one to one, since V is
dense in W.
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By definition, u € D(A) iff there exists g € W such that Q(u,v) + a(u, v)w = (g, v)w
for every v € V, which means Tu = Jg, and in this case Au = —g.

The range of J is dense in V*. If it were not, there would exist ® € V*\ {0} such that
(Jw, @)y« = 0 for every w € W. So, there would exists ¢ € V'\ {0} such that Jw(p) =0,
namely (w, )y = 0 for every w € W. This implies ¢ = 0, a contradiction. Since T is
an isomorphism, the range of T~!.J, which is nothing but the domain of E, is dense in V.
Since V is in its turn dense in W, then D(A) is dense in W.

The symmetry of Q implies immediately that Ais self-adjoint. Indeed, for u, v € D(Z)
we have

(Au,v)w = Qu,v) + alu, v)w = Qv,u) + alv, ww = (u, Av)y .

Since A is onto, it is self-adjoint.
The last statement is obvious: since (Au,u) = —Q(u,u) for every u € D(A), if Q is
nonnegative then A is dissipative. O

In our setting the bilinear form is

Qu,v) := y Vu-Vody, u, ve WH2(RY, 4y), (13.1.10)

so that the assumptions of Theorem 13.1.5 are satisfied with W = L*(R%4y), V =
W1H2(R9, ~,4) and every o > 0. D(A) is the set

{u e WH2(R?,~y) : 3g € L*(R?, ~,) such that Q(u,v) = / gudyg, Yv € Wl’z(Rd,yd)}
Rd

and Au = —g.

Theorem 13.1.6. Let Q be the bilinear form in (13.1.10). Then D(A) = W22(R%,~,),
and A = Ls.

Proof. Let u € W22(R% ~4). By (13.1.5) and Theorem 13.1.4, for every v € WhH2(R%, ~4)
we have

Qu,v) = —/Rdﬁuvd’yd

Therefore, the function g = Lu = Lou fits the definition of Au (recall that g € L2(R%,v,)
by Lemma 13.1.3(a)). So, W22(R% ~4) C D(A) and Au = Lou for every u € W22(R%, v,)
(the last equality follows from Theorem 13.1.4). In other words, A is a self-adjoint ex-
tension of Lo. Lo itself is self-adjoint by Corollary 11.4.5, because T»(t) is self-adjoint
in L2(R%, ~4) by Proposition 12.1.5(ii), for every ¢ > 0. Self-adjoint operators have no
proper self-adjoint extensions (this is because D(L2) C D(A) = D(A*) C D(L3), but
D(A*) = D(A) and D(L%) = D(L2)), hence D(A) = D(Ls2) and A = L. O
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13.2 The infinite dimensional case

Here, as usual, X is a separable Banach space endowed with a centred nondegenerate
Gaussian measure v, and H is the relevant Cameron-Martin space.

The connection between finite dimension and infinite dimension is provided by the
cylindrical functions. In the next proposition we show that suitable cylindrical functions
belong to D(L,;,) for every p € (1, +00), and we write down an explicit expression of L,, f for
such f. Precisely, we fix an orthonormal basis {h; : j € N} of H contained in R, (X*), and
we denote by ¥ the set of the cylindrical functions of the type f(z) = @(hi(z), ..., ha(z))
with ¢ € C’g (RY), for some d € N. This is a dense subspace of LP(X,~) for every p €
[1,+00), see Exercise 13.3. For such f, we have

g? (h1(z),... hg(z)), i < d; 8if(x)=0,i>d. (13.2.1)

To distinguish between the finite and the infinite dimensional case, we use the superscript
(d) when dealing with the Ornstein-Uhlenbeck semigroup and the Ornstein-Uhlenbeck
semigroup in R%. So, Lz(,d)
group T@(t) in Lp(Rd,*yd) We recall that L( ) is a realisation of the operator £ =

A — x -V, namely L f LD f for every f € D(L (d))

0if(z) =
is the infinitesimal generator of the Ornstein-Uhlenbeck semi-

Proposition 13.2.1. Let {h; : j € N} be any orthonormal basis of H contained in
R(X™), and let f(z) = o(h1(z), ..., hq(z)) with ¢ € LP(R%, ~y), for some d € N and
p € [1,+00). Then for every t >0 and y-a.e. z € X,

Ty () f (@) = (T3 (1)) (R (), .., ha()).

If in addition ¢ € D(Ly L )) then f € D(Lp), and

Lypf(x) = L o(ha(x),. .., ha(x)),
If p € CE(RY), then

Lyf(x) = LDl (), ... ha(x)) = Y (0 f(@) = hi(2)0i f (x)) = div, Vr f ().
Proof. Assume first that ¢ € Cp(RY). For t > 0 we have
T(t)f(z) = / fle™'z + V1 — e 2y)y(dy)
- /X " (z) + V1 — e 2hi(y),. .., e tha() + V1 — e 2ha(y))y(dy)

:/ ethy(x) + V1 — e 2, e tha(z) + V1 — e 2Eg)vq(dE)
Rd
= (TD (1)) (hi (), .., ha(x)),
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because 7y o (ill,...,ild)_l = g by Exercise 2.4. If p € LP(R? ~4) is not continuous,
we approximate it in LP(R?, ~4) by a sequence of continuous and bounded functions ¢,,.
The sequence fp(z) := @n(hi(x), ..., hq(z)) converges to f and the sequence gy (z) :=
(TD () n)(h1(z), ..., hg(z)) converges to (TD(t)p)(hy(z),. .., hg(z)) in LP(X,~), still
by Exercise 2.4. Therefore, T(t) f,, converges to T'(t)f in LP(X,~) for every t > 0, and the
first statement follows.

Let now ¢ € D(LI()d)). For every t > 0 we have

/ ‘T(t)f(l‘z —f=) _ LDy (hy(2), .. .,Bd(x))‘pv(dfv)
X

p

:/ ‘T(d)(t)cp(in(x),...,iLd(:):))—go(hl(m),...,hd(x)) L@@ ale) o)
X

:/Rd

that vanishes as ¢ — 0. So, the second statement follows.
Let ¢ € CZ(RY). By Theorem 13.1.2 we have

TD(t)p(€) — ¢(€)
¢

— L0(6)| vatde)

Lilp(e) = i@w(&) —&Dip(€)) = £D0(¢), €ER”.
Therefore,
Lpf(x) = (L9)(hi(x),... ha(x)) = i(Diw(f) = &iDio(€)) |y (2),... ha(a))
d
= ;(@'if(iv) — hi()dif(x)),
which coincides with div,V g f(x). See Theorem 10.2.7. O

As a consequence of Propositions 13.2.1 and 11.1.9, we obtain a characterisation of
D(L,) which is quite similar to the finite dimensional one.

Theorem 13.2.2. Let {h; : j € N} be an orthonormal basis of H contained in R(X™).
Then the subspace & of FCZ(X) defined above is a core of L, for every p € [1,+oc), the
restriction of L, to ¥ is closable in LP(X,~) and its closure is Ly,. In other words, D(Ly)
consists of all f € LP(X,~) such that there exists a sequence (fy,) in X which converges to
fin LP(X,~) and such that Ly f, = div,V g f,, converges in LP(X, ).

Proof. By Proposition 13.2.1, ¥ C D(L;,). For every t > 0, T'(t)f € ¥ if f € X, by
Proposition 13.2.1 and Proposition 12.1.4. By Lemma 11.1.9, ¥ is a core of L. O

For p = 2 we can prove other characterisations.
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Theorem 13.2.3. D(Ly) = W22(X, ), and for every f € W?2(X,~) we have
Lof = div,Vy f, (13.2.2)

and

3
1 fllz2x ) + 1 L2fllz2x ) < 1 fllw22xy) < §(Hf||L2(X,fy) + I Lafllr2x ). (13.2.3)

Proof. Fix an orthonormal basis of H contained in R, (X™*). By Exercise 13.3, ¥ is dense
in W22(X, ), and by Theorem 13.2.2 it is dense in D(Ls).

We claim that every f € X satisfies (13.2.3), so that the W?? norm is equivalent
to the graph norm of Ly on . For every f € %, if f(z) = @(hi(z),..., hq(z)), by
Proposition 13.2.1 we have Lof(z) = (L D) (hy(x), ..., hg(z)), where £ is defined in
(13.1.1). Recalling that v o (hy,...,hq) ! = 74, we get

/f2d7=/ P dyd, /(sz)2d7:/ (£ D)2 dry,
X R4 X R

and, using (13.2.1),
I Flwecxm = I lwae .

Therefore, estimates (13.1.7) imply that f satisfies (13.2.3), and the claim is proved.
The statement is now a standard consequence of the density of ¥ in W22(X,~) and
in D(L3). Indeed, to prove that W2?2(X,~) € D(Lz), and that Ly f = div,Vy f for every
f € W22(R?, ~y), it is sufficient to approximate any f € W22(X,~) by a sequence (f,)
of elements of ¥; then f, converges to f and Laf, = div, Vg f, converges to div, Vg f
in L?(X,v) by Theorem 10.2.7, as Vg f,, converges to Vg f in L?(X,~; H). Since Lo is
a closed operator, f € D(L) and Lof = div, Vg f. Similarly, to prove that D(Ls) C
W22(X,~) we approximate any f € D(Ls) by a sequence (f,) of elements of ¥ that
converges to f in the graph norm; then (f,) is a Cauchy sequence in W?22(X,~) and
therefore f € W22(X, 7). O

Eventually, as in finite dimension, we have a characterisation of Lo in terms of the
bilinear form

Qu,v) = / [V, Vgvlgdy, u, veWh2(X, 7). (13.2.4)
X

Applying Theorem 13.1.5 with W = L?(X,v), V = W12(X,v) we obtain

Theorem 13.2.4. Let A be the operator associated with the bilinear form Q above. Then
D(A) = W?2(X,~), and A = L.

The proof is identical to the proof of Theorem 13.1.6 and it is omitted.
Note that Theorem 13.2.4 implies that for every f € D(Ly) = W22(X,~) and for every
g € WH2(X,v) we have

/ Lof gdy = / Vuf Vagludy (13.2.5)
X X
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that is the infinite dimensional version of (13.1.5). Proposition 11.4.3 implies that Lo is a
sectorial operator, therefore the Ornstein-Uhlenbeck semigroup is analytic in L?(X, 7).

We mention that, by general results about semigroups and interpolation theory (e.g.
[D, Thm. 1.4.2]), {T,(t) : p > 0} is an analytic semigroup in LP(X,~) for every p €
(1,400). However, this fact will not be used in these lectures.

A result similar to Theorem 13.2.3 holds also for p # 2. More precisely, for every
p € (1,+00), D(L,) = W?P(X,~), and the graph norm of D(L,) is equivalent to the W?2?
norm. But the proof is not as simple. We refer to [M] and [B, Sect. 5.5] for the infinite
dimensional case, and to [MPRS] for an alternative proof in the finite dimensional case.

13.3 Exercises

Exercise 13.1. Let o : R4 — [0, 4+00) be a mollifier, i.e. a smooth function with support

in B(0,1) such that
/ o(x)dx = 1.
B(0,1)

o-(z) =% (g) , zeR

For € > 0 set

Prove that if p € [1,4+00) and f € LP(R?, v4), then
fele) = Froe@) = [ Feste =),

is well defined, belongs to LP(R%, v,) and converges to f in LP(R?, 4) as ¢ — 0.

Exercise 13.2. Prove that for every k € N, k > 3, CF(R?) is dense in LP(R?, v,) and that
T(t) € L(CF(RY)) for every t > 0.

Exercise 13.3. Let {h; : j € N} be any orthonormal basis of H contained in R, (X*).
Prove that the set ¥ of the cylindrical functions of the type f(z) = @(h1(2),..., hq(z))
with ¢ € CZ(R?), for some d € N, is dense in LP(X,v) and in W*P(X,v) for every
p € [1,+00).

Exercise 13.4.

(i) With the help of Proposition 10.1.2, show that if f € WP(X,~) with p € [1, +00)
is such that Vg f = 0 a.e., then f is a.e. constant.

(ii) Use point (i) to show that for every p € [1,+00) the kernel of L, consists of the
constant functions.
(HiNT: First of all, prove that T'(t)f = f for all f € D(L,) such that L,f = 0 and
then pass to the limit as t — +o0 in (12.1.3))
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