
Lecture 13

The Ornstein-Uhlenbeck operator

In this lecture we study the infinitesimal generator of Tp(t), for p 2 (1,+1). The strongest
result is the characterisation of the domain of the generator L2 of T2(t) as the Sobolev
space W 2,2(X, �). A similar result holds for p 2 (1,+1)\{2}, but the proof is much more
complicated and will not be given here.

13.1 The finite dimensional case

Here, X = Rd and � = �d. We describe the infinitesimal generator Lp of Tp(t) in
Lp(Rd, �d), for p 2 (1,+1), which is a suitable realisation of the Ornstein-Uhlenbeck
di↵erential operator

Lf(x) := �f(x)� x ·rf(x) (13.1.1)

in Lp(Rd, �d).
We recall that

D(Lp) =

⇢

f 2 Lp(Rd, �d) : 9Lp � lim
t!0+

T (t)f � f

t

�

,

Lpf = lim
t!0+

T (t)f � f

t
.

If f 2 D(Lp), by Lemma 11.1.7 the function t 7! T (t)f belongs to C1([0,+1);Lp(Rd, �d))
\C([0,+1);D(Lp)) and d/dt T (t)f = LpT (t)f , for every t � 0. To find an expression of
Lp, we di↵erentiate T (t)f with respect to time for good f . We recall that for f 2 Cb(Rd),
Tp(t)f = T (t)f is given by formula (12.1.1).

Lemma 13.1.1. For every f 2 Cb(Rd), the function (t, x) 7! T (t)f(x) is smooth in
(0,+1)⇥ Rd, and we have

d

dt
(T (t)f)(x) = �T (t)f(x)� x ·rT (t)f(x), t > 0, x 2 Rd. (13.1.2)
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If f 2 C2
b (Rd), for every x 2 Rd the function t 7! T (t)f(x) is di↵erentiable also at t = 0,

with
d

dt
(T (t)f)(x)|t=0 = �f(x)� x ·rf(x), x 2 Rd, (13.1.3)

and the function (t, x) 7! d/dt (T (t)f)(x) is continuous in [0,+1)⇥ Rd.

Proof. Setting z = e�tx+
p
1� e�2ty in (12.1.1) we see that (t, x) 7! T (t)f(x) is smooth

in (0,+1)⇥ Rd, and that

d

dt
(T (t)f)(x) =

1

(2⇡)d/2

Z

Rd
f(z)

@

@t

✓

exp
n

� |z � e�tx|2

2(1� e�2t)

o

(1� e�2t)�d/2

◆

dz

=
(1� e�2t)�d/2

(2⇡)d/2

Z

Rd
f(z) exp

n

� |z � e�tx|2

2(1� e�2t)

o

✓

� e�t(z � e�tx) · x
1� e�2t

+
e�2t|z � e�tx|2

(1� e�2t)2
� de�2t

1� e�2t

◆

dz

=

Z

Rd
f(e�tx+

p

1� e�2ty)(�c(t) y · x+ c(t)2|y|2 � dc(t)2)�d(dy),

where c(t) = e�t/
p
1� e�2t. Di↵erentiating twice with respect to x in (12.1.1) (recall

(12.1.5)), we obtain

Dij(T (t)f)(x) = c(t)2
Z

Rd
f(e�tx+

p

1� e�2ty)(��ij + yiyj)�d(dy)

so that

�T (t)f(x) = c(t)2
Z

Rd
f(e�tx+

p

1� e�2ty)(�d+ |y|2)�d(dy).

Therefore,

d

dt
(T (t)f)(x)��T (t)f(x) = �c(t)

Z

Rd
f(e�tx+

p

1� e�2ty)x · y �d(dy)

= �rT (t)f(x) · x,

and (13.1.2) follows.
For f 2 C2

b (Rd), we rewrite formula (13.1.2) as

d

dt
(T (t)f)(x) = (LT (t)f)(x)

= e�2t(T (t)�f)(x)� e�tx · (T (t)rf)(x), t > 0, x 2 Rd,

(13.1.4)

taking into account (12.1.7) and (12.1.9). (We recall that (T (t)rf)(x) is the vector whose
j-th component is T (t)Djf(x)). Since �f and each Djf are continuous and bounded
in Rd, the right hand side is continuous in [0,+1) ⇥ Rd. So, for every x 2 Rd the
function ✓(t) := T (t)f(x) is continuous in [0,+1), it is di↵erentiable in (0,+1) and
limt!0 ✓

0(t) = �f(x)�x ·rf(x). Therefore, ✓ is di↵erentiable at 0 too, (13.1.4) holds also
at t = 0, and (13.1.3) follows.
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Lemma 13.1.1 suggests that Lp is a suitable realisation of the Ornstein-Uhlenbeck
di↵erential operator L defined in (13.1.1). For a first characterisation of Lp we use Lemma
11.1.9.

Proposition 13.1.2. For 1  p < 1 and k 2 N, k � 2, the operator L : D(L) =
Ck
b (Rd) ⇢ Lp(Rd, �d) ! Lp(Rd, �d) is closable, and its closure is Lp. So, D(Lp) consists

of all f 2 Lp(Rd, �d) for which there exists a sequence of functions (fn) ⇢ Ck
b (Rd) such

that fn ! f in Lp(Rd, �d) and (Lfn) converges in Lp(Rd, �d). In this case, Lpf = Lp �
limn!1Lfn.

Proof. We check that D = Ck
b (Rd) satisfies the assumptions of Proposition 11.1.9, i.e., it

is a core of Lp. We already know, from Proposition 12.1.4, that T (t) maps Ck
b (Rd) into

itself for k = 1, 2. The proof of the fact that Ck
b (Rd) is dense in Lp(Rd, �d) and that T (t)

maps Ck
b (Rd) into itself for k � 3 is left as Exercise 13.2.

Since Ck
b (Rd) ⇢ C2

b (Rd) for k � 2, it remains to prove that C2
b (Rd) ⇢ D(Lp), and

Lpf = Lf for every f 2 C2
b (Rd).

By Lemma 13.1.1, for every f 2 C2
b (Rd) we have d/dt T (t)f(x) = LT (t)f(x) for every

x 2 Rd and t � 0; moreover t 7! d/dt T (t)f(x) is continuous for every x. Therefore for
every t > 0 we have

T (t)f(x)� f(x)

t
=

1

t

Z t

0

d

ds
T (s)f(x) ds =

1

t

Z t

0
LT (s)f(x) ds,

and
Z

Rd

�

�

�

�

T (t)f(x)� f(x)

t
� Lf(x)

�

�

�

�

p

�d(dx) 
Z

Rd

✓

1

t

Z t

0
|LT (s)f(x)� Lf(x)| ds

◆p

�d(dx).

Since s 7! LT (s)f(x) is continuous, for every x we have

lim
t!0+

✓

1

t

Z t

0
|LT (s)f(x)� Lf(x)| ds

◆p

= 0.

Moreover, by (13.1.4),
✓

1

t

Z t

0
|LT (s)f(x)� Lf(x)| ds

◆p

 2p(k�fk1 + |x| k |rf | k1)p 2 L1(Rd, �d).

By the Dominated Convergence Theorem,

lim
t!0+

Z

Rd

�

�

�

�

T (t)f(x)� f(x)

t
� Lf(x)

�

�

�

�

p

�d(dx) = 0.

Then, Ck
b (Rd) ⇢ D(Lp). Since Lp is a closed operator and it is an extension of L :

Ck
b (Rd) ! Lp(Rd, �d), L : Ck

b (Rd) ! Lp(Rd, �d) is closable.
Applying Lemma 11.1.9 with D = Ck

b (Rd), we obtain that D(Lp) is the closure of
Ck
b (Rd) in the graph norm of Lp, namely f 2 D(Lp) i↵ there exists a sequence (fn) ⇢

Ck
b (Rd) such that fn ! f in Lp(Rd, �d) and Lpfn = Lfn converges in Lp(Rd, �d). This

shows that Lp is the closure of L : Ck
b (Rd) ! Lp(Rd, �d).
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In the case p = 2 we obtain other characterisations of D(L2). To start with, we point
out some important properties of L, when applied to elements of W 2,2(Rd, �d).

Lemma 13.1.3. (a) L : W 2,2(Rd, �d) ! L2(Rd, �d) is a bounded operator;

(b) for every f 2 W 2,2(Rd, �d), g 2 W 1,2(Rd, �d) we have
Z

Rd
Lf g d�d = �

Z

Rd
rf ·rg d�d. (13.1.5)

(c) for every f 2 W 2,2(Rd, �d) we have

Lf = div�drf. (13.1.6)

Proof. To prove (a) it is su�cient to show that the mapping T : W 2,2(Rd, �d) ! L2(Rd, �d)
defined by (Tf)(x) := x ·rf(x) is bounded. For every i = 1, . . . , d, set gi(x) = xiDif(x).
The mapping f 7! gi is bounded from W 2,2(Rd, �d) to L2(Rd, �d) by Lemma 10.2.6, and
summing up the statement follows.

To prove (b) it is su�cient to apply the integration by parts formula (9.1.3) to compute
R

Rd Diif g d�d, for every i = 1, . . . , d, and to sum up. In fact, (9.1.3) was stated for C1
b

functions, but it is readily extended to Sobolev functions using Proposition 9.1.5.
Statement (c) follows from Theorem 10.2.7. In this case we have H = Rd, and it is

convenient to take the canonical basis of Rd as a basis for H. So, we have ĥi(x) = xi for
i = 1, . . . , d and div�dv(x) =

Pd
i=1Divi � xivi, for every v 2 W 1,2(Rd, �d;Rd). Taking

v = rf , (13.1.6) follows.

The first characterisation of D(L2) is the following.

Theorem 13.1.4. D(L2) = W 2,2(Rd, �d), and L2f = Lf for every f 2 W 2,2(Rd, �d).
Moreover, for every f 2 W 2,2(Rd, �d),

kfkL2(Rd,�d) + kLfkL2(Rd,�d)  kfkW 2,2(Rd,�d) 
3

2
(kfkL2(Rd,�d) + kLfkL2(Rd,�d)). (13.1.7)

Proof. The embedding W 2,2(Rd, �d) ⇢ D(L2) is an easy consequence of Lemma 13.1.3(a).
For every f 2 W 2,2(Rd, �d) there is a sequence (fk) of C2

b functions such that fk ! f
in W 2,2(Rd, �d). Then, Lfk ! g = Lf in L2(Rd, �d). By Proposition 13.1.2, f 2 D(L2)
and L2f = Lf for every f 2 W 2,2(Rd, �d). However, the embedding constant that comes
from Lemma 13.1.3(a) is not clear, and may depend on d. It is better to use (13.1.6) and
Theorem 10.2.7, with v = rf , that gives the clean estimate

kLfkL2(Rd,�d)  krfkW 1,2(Rd,�d;Rd) =
⇣

Z

Rd

d
X

i=1

(Dif)
2 d�d

⌘1/2
+
⇣

Z

Rd

d
X

i,j=1

(Dijf)
2 d�d

⌘1/2

which yields

kfkL2(Rd,�d) + kLfkL2(Rd,�d)  kfkW 2,2(Rd,�d), f 2 W 2,2(Rd, �d).
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To prove the other embedding we shall show that

kfkW 2,2(Rd,�d) 
3

2
(kfkL2(Rd,�d) + kLfkL2(Rd,�d)) (13.1.8)

for every f 2 C3
b (Rd). Indeed, by Proposition 13.1.2, if f 2 D(L2) there is a sequence (fk)

of C3
b functions such that fk converges to f and Lfk converges in L2(Rd, �d). Applying

estimate (13.1.8) to fk � fh we obtain that (fk) is a Cauchy sequence in W 2,2(Rd, �d), so
that its L2 limit f belongs to W 2,2(Rd, �d), and f satisfies estimate (13.1.8), too. This
shows that D(L2) is continuously embedded in W 2,2(Rd, �d) and that (13.1.8) holds for
every f 2 D(L2).

So, let us prove that (13.1.8) holds for every f 2 C3
b (Rd). By Lemma 13.1.3(b),

Z

Rd
|rf |2d�d = �

Z

Rd
fLf d�d  kfkL2(Rd,�d)kLfkL2(Rd,�d). (13.1.9)

To estimate the L2 norm of the second order derivatives, we set Lf =: g and we di↵er-
entiate with respect to xj (this is why we consider C3

b , instead of only C2
b , functions) for

every j = 1, . . . d. We obtain

Dj(�f)�
d

X

i=1

(�ijDif + xiDjif) = Djg.

Multiplying by Djf and summing up we get

d
X

j=1

Djf�(Djf)� |rf |2 �
d

X

j=1

x ·r(Djf)Djf = rf ·rg.

Note that each term in the above sum belongs to Lp(Rd, �d) for every p > 1. We integrate
over Rd and we obtain

Z

Rd

✓ d
X

j=1

Djf L(Djf)� |rf |2
◆

d�d =

Z

Rd
rf ·rg d�d.

Now we use the integration formula (13.1.5), both in the left hand side and in the right
hand side, obtaining

�
Z

Rd

d
X

j=1

|rDjf |2d�d �
Z

Rd
|rf |2d�d = �

Z

Rd
gLf d�d

so that, since g = Lf

Z

Rd

d
X

i,j=1

(Dijf)
2d�d =

Z

Rd
(Lf)2d�d �

Z

Rd
|rf |2d�d 

Z

Rd
(Lf)2d�d.
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This inequality and (13.1.9) yield (13.1.8). Indeed,

kfkW 2,2  kfkL2 + (kfkL2kLfkL2)1/2 + kLfkL2

 kfkL2 +
1

2
(kfkL2 + kLfkL2) + kLfkL2

 3

2
(kfkL2 + kLfkL2).

The next characterisation fits last year Isem. We recall below general results about
bilinear forms in Hilbert spaces. We only need a basic result; more refined results are in
last year Isem lecture notes.

Let V ⇢ W be real Hilbert spaces, with continuous and dense embedding, and let
Q : V ⇥ V ! R be a bounded bilinear form. “Bounded” means that there exists M > 0
such that |Q(u, v)|  MkukV kvkV for every u, v 2 V ; “bilinear” means that Q is linear
both with respect to u and with respect to v. Q is called “nonnegative” if Q(u, u) � 0 for
every u 2 V , and “coercive” if there is c > 0 such that Q(u, u) � ckuk2V , for every u 2 V ;
it is called “symmetric” if Q(u, v) = Q(v, u) for every u, v 2 V . Note that the form in
(13.1.10), with V = W 1,2(Rd, �d), W = L2(Rd, �d) is bounded, bilinear, symmetric and
nonnegative. It is not coercive, but Q(u, v) + ↵hu, viL2(Rd,�d) is coercive for every ↵ > 0.

For any bounded bilinear form Q, an unbounded linear operator A in the space W is
naturally associated with Q. D(A) consists of the elements u 2 V such that the mapping
V ! R, v 7! Q(u, v), has a linear bounded extension to the whole W . By the Riesz
Theorem, this is equivalent to the existence of g 2 W such that Q(u, v) = hg, viW , for
every v 2 V . Note that g is unique, because V is dense in W . Then we set Au = �g,
where g is the unique element of W such that Q(u, v) = hg, viW , for every v 2 V .

Theorem 13.1.5. Let V ⇢ W be real Hilbert spaces, with continuous and dense em-
bedding, and let Q : V ⇥ V ! R be a bounded bilinear symmetric form, such that
(u, v) 7! Q(u, v)+↵hu, viW is coercive for some ↵ > 0. Then the operator A : D(A) ! W
defined above is densely defined and self-adjoint. If in addition Q is nonnegative, A is
dissipative.

Proof. The mapping (u, v) 7! Q(u, v) + ↵hu, viW is an inner product in V , and the as-
sociated norm is equivalent to the V -norm, by the continuity of Q and the coercivity
assumption.

It is convenient to consider the operator eA : D( eA) = D(A) ! W , eAu := Au+ ↵u. Of
course if eA is self-adjoint, also A is self-adjoint.

We consider the canonical isomorphism T : V ! V ⇤ defined by (Tu)(v) = Q(u, v) +
↵hu, viW (we are using the new inner product above defined), and the embedding J :
W ! V ⇤, such that (Ju)(v) = hu, viW . T is an isometry by the Riesz Theorem, and J is
bounded since for every u 2 W and v 2 V we have |(Ju)(v)|  kukW kvkW  CkukW kvkV ,
where C is the norm of the embedding V ⇢ W . Moreover, J is one to one, since V is
dense in W .



The Ornstein-Uhlenbeck operator 161

By definition, u 2 D( eA) i↵ there exists g 2 W such that Q(u, v) + ↵hu, viW = hg, viW
for every v 2 V , which means Tu = Jg, and in this case eAu = �g.

The range of J is dense in V ⇤. If it were not, there would exist � 2 V ⇤ \ {0} such that
hJw,�iV ⇤ = 0 for every w 2 W . So, there would exists ' 2 V \ {0} such that Jw(') = 0,
namely hw,'iW = 0 for every w 2 W . This implies ' = 0, a contradiction. Since T is
an isomorphism, the range of T�1J , which is nothing but the domain of eA, is dense in V .
Since V is in its turn dense in W , then D( eA) is dense in W .

The symmetry of Q implies immediately that eA is self–adjoint. Indeed, for u, v 2 D( eA)
we have

h eAu, viW = Q(u, v) + ↵hu, viW = Q(v, u) + ↵hv, uiW = hu, eAviW .

Since eA is onto, it is self-adjoint.

The last statement is obvious: since hAu, ui = �Q(u, u) for every u 2 D(A), if Q is
nonnegative then A is dissipative.

In our setting the bilinear form is

Q(u, v) :=

Z

Rd
ru ·rv d�d, u, v 2 W 1,2(Rd, �d), (13.1.10)

so that the assumptions of Theorem 13.1.5 are satisfied with W = L2(Rd, �d), V =
W 1,2(Rd, �d) and every ↵ > 0. D(A) is the set

n

u 2 W 1,2(Rd, �d) : 9g 2 L2(Rd, �d) such that Q(u, v) =

Z

Rd
g v d�d, 8v 2 W 1,2(Rd, �d)

o

and Au = �g.

Theorem 13.1.6. Let Q be the bilinear form in (13.1.10). Then D(A) = W 2,2(Rd, �d),
and A = L2.

Proof. Let u 2 W 2,2(Rd, �d). By (13.1.5) and Theorem 13.1.4, for every v 2 W 1,2(Rd, �d)
we have

Q(u, v) = �
Z

Rd
Lu v d�d

Therefore, the function g = Lu = L2u fits the definition of Au (recall that g 2 L2(Rd, �d)
by Lemma 13.1.3(a)). So, W 2,2(Rd, �d) ⇢ D(A) and Au = L2u for every u 2 W 2,2(Rd, �d)
(the last equality follows from Theorem 13.1.4). In other words, A is a self-adjoint ex-
tension of L2. L2 itself is self-adjoint by Corollary 11.4.5, because T2(t) is self-adjoint
in L2(Rd, �d) by Proposition 12.1.5(ii), for every t > 0. Self-adjoint operators have no
proper self-adjoint extensions (this is because D(L2) ⇢ D(A) ) D(A⇤) ⇢ D(L⇤

2), but
D(A⇤) = D(A) and D(L⇤

2) = D(L2)), hence D(A) = D(L2) and A = L2.
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13.2 The infinite dimensional case

Here, as usual, X is a separable Banach space endowed with a centred nondegenerate
Gaussian measure �, and H is the relevant Cameron-Martin space.

The connection between finite dimension and infinite dimension is provided by the
cylindrical functions. In the next proposition we show that suitable cylindrical functions
belong to D(Lp) for every p 2 (1,+1), and we write down an explicit expression of Lpf for
such f . Precisely, we fix an orthonormal basis {hj : j 2 N} of H contained in R�(X⇤), and

we denote by ⌃ the set of the cylindrical functions of the type f(x) = '(ĥ1(x), . . . , ĥd(x))
with ' 2 C2

b (Rd), for some d 2 N. This is a dense subspace of Lp(X, �) for every p 2
[1,+1), see Exercise 13.3. For such f , we have

@if(x) =
@'

@⇠i
(ĥ1(x), . . . , ĥd(x)), i  d; @if(x) = 0, i > d. (13.2.1)

To distinguish between the finite and the infinite dimensional case, we use the superscript
(d) when dealing with the Ornstein-Uhlenbeck semigroup and the Ornstein-Uhlenbeck

semigroup in Rd. So, L(d)
p is the infinitesimal generator of the Ornstein-Uhlenbeck semi-

group T (d)(t) in Lp(Rd, �d). We recall that L
(d)
p is a realisation of the operator L(d) =

�� x ·r, namely L
(d)
p f = L(d)f for every f 2 D(L(d)

p ).

Proposition 13.2.1. Let {hj : j 2 N} be any orthonormal basis of H contained in

R�(X⇤), and let f(x) = '(ĥ1(x), . . . , ĥd(x)) with ' 2 Lp(Rd, �d), for some d 2 N and
p 2 [1,+1). Then for every t > 0 and �-a.e. x 2 X,

Tp(t)f(x) = (T (d)
p (t)')(ĥ1(x), . . . , ĥd(x)).

If in addition ' 2 D(L(d)
p ), then f 2 D(Lp), and

Lpf(x) = L(d)
p '(ĥ1(x), . . . , ĥd(x)).

If ' 2 C2
b (Rd), then

Lpf(x) = L(d)'(ĥ1(x), . . . , ĥd(x)) =
d

X

i=1

(@iif(x)� ĥi(x)@if(x)) = div�rHf(x).

Proof. Assume first that ' 2 Cb(Rd). For t > 0 we have

T (t)f(x) =

Z

X
f(e�tx+

p

1� e�2ty)�(dy)

=

Z

X
'(e�tĥ1(x) +

p

1� e�2tĥ1(y), . . . , e
�tĥd(x) +

p

1� e�2tĥd(y))�(dy)

=

Z

Rd
'(e�tĥ1(x) +

p

1� e�2t⇠1, . . . , e
�tĥd(x) +

p

1� e�2t⇠d)�d(d⇠)

= (T (d)(t)')(ĥ1(x), . . . , ĥd(x)),
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because � � (ĥ1, . . . , ĥd)�1 = �d by Exercise 2.4. If ' 2 Lp(Rd, �d) is not continuous,
we approximate it in Lp(Rd, �d) by a sequence of continuous and bounded functions 'n.
The sequence fn(x) := 'n(ĥ1(x), . . . , ĥd(x)) converges to f and the sequence gn(x) :=
(T (d)(t)'n)(ĥ1(x), . . . , ĥd(x)) converges to (T (d)(t)')(ĥ1(x), . . . , ĥd(x)) in Lp(X, �), still
by Exercise 2.4. Therefore, T (t)fn converges to T (t)f in Lp(X, �) for every t > 0, and the
first statement follows.

Let now ' 2 D(L(d)
p ). For every t > 0 we have

Z

X

�

�

�

T (t)f(x)� f(x)

t
� L(d)

p '(ĥ1(x), . . . , ĥd(x))
�

�

�

p
�(dx)

=

Z

X

�

�

�

T (d)(t)'(ĥ1(x), . . . , ĥd(x))� '(ĥ1(x), . . . , ĥd(x))

t
� L(d)

p '(ĥ1(x), . . . , ĥd(x))
�

�

�

p
�(dx)

=

Z

Rd

�

�

�

T (d)(t)'(⇠)� '(⇠)

t
� L(d)

p '(⇠)
�

�

�

p
�d(d⇠)

that vanishes as t ! 0. So, the second statement follows.
Let ' 2 C2

b (Rd). By Theorem 13.1.2 we have

L(d)
p '(⇠) =

d
X

i=1

(Dii'(⇠)� ⇠iDi'(⇠)) = L(d)'(⇠), ⇠ 2 Rd.

Therefore,

Lpf(x) = (L(d)')(ĥ1(x), . . . , ĥd(x)) =
d

X

i=1

(Dii'(⇠)� ⇠iDi'(⇠))|⇠=(ĥ1(x),...,ĥd(x))

=
d

X

i=1

(@iif(x)� ĥi(x)@if(x)),

which coincides with div�rHf(x). See Theorem 10.2.7.

As a consequence of Propositions 13.2.1 and 11.1.9, we obtain a characterisation of
D(Lp) which is quite similar to the finite dimensional one.

Theorem 13.2.2. Let {hj : j 2 N} be an orthonormal basis of H contained in R�(X⇤).
Then the subspace ⌃ of FC2

b (X) defined above is a core of Lp for every p 2 [1,+1), the
restriction of Lp to ⌃ is closable in Lp(X, �) and its closure is Lp. In other words, D(Lp)
consists of all f 2 Lp(X, �) such that there exists a sequence (fn) in ⌃ which converges to
f in Lp(X, �) and such that Lpfn = div�rHfn converges in Lp(X, �).

Proof. By Proposition 13.2.1, ⌃ ⇢ D(Lp). For every t > 0, T (t)f 2 ⌃ if f 2 ⌃, by
Proposition 13.2.1 and Proposition 12.1.4. By Lemma 11.1.9, ⌃ is a core of Lp.

For p = 2 we can prove other characterisations.
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Theorem 13.2.3. D(L2) = W 2,2(X, �), and for every f 2 W 2,2(X, �) we have

L2f = div�rHf, (13.2.2)

and

kfkL2(X,�) + kL2fkL2(X,�)  kfkW 2,2(X,�) 
3

2
(kfkL2(X,�) + kL2fkL2(X,�)). (13.2.3)

Proof. Fix an orthonormal basis of H contained in R�(X⇤). By Exercise 13.3, ⌃ is dense
in W 2,2(X, �), and by Theorem 13.2.2 it is dense in D(L2).

We claim that every f 2 ⌃ satisfies (13.2.3), so that the W 2,2 norm is equivalent
to the graph norm of L2 on ⌃. For every f 2 ⌃, if f(x) = '(ĥ1(x), . . . , ĥd(x)), by
Proposition 13.2.1 we have L2f(x) = (L(d)')(ĥ1(x), . . . , ĥd(x)), where L(d) is defined in
(13.1.1). Recalling that � � (ĥ1, . . . , ĥd)�1 = �d, we get

Z

X
f2d� =

Z

Rd
'2d�d,

Z

X
(L2f)

2d� =

Z

Rd
(L(d)')2d�d,

and, using (13.2.1),
kfkW 2,2(X,�) = k'kW 2,2(Rd,�d).

Therefore, estimates (13.1.7) imply that f satisfies (13.2.3), and the claim is proved.
The statement is now a standard consequence of the density of ⌃ in W 2,2(X, �) and

in D(L2). Indeed, to prove that W 2,2(X, �) ⇢ D(L2), and that L2f = div�rHf for every
f 2 W 2,2(Rd, �d), it is su�cient to approximate any f 2 W 2,2(X, �) by a sequence (fn)
of elements of ⌃; then fn converges to f and L2fn = div�rHfn converges to div�rHf
in L2(X, �) by Theorem 10.2.7, as rHfn converges to rHf in L2(X, �;H). Since L2 is
a closed operator, f 2 D(L2) and L2f = div�rHf . Similarly, to prove that D(L2) ⇢
W 2,2(X, �) we approximate any f 2 D(L2) by a sequence (fn) of elements of ⌃ that
converges to f in the graph norm; then (fn) is a Cauchy sequence in W 2,2(X, �) and
therefore f 2 W 2,2(X, �).

Eventually, as in finite dimension, we have a characterisation of L2 in terms of the
bilinear form

Q(u, v) =

Z

X
[rHu,rHv]Hd�, u, v 2 W 1,2(X, �). (13.2.4)

Applying Theorem 13.1.5 with W = L2(X, �), V = W 1,2(X, �) we obtain

Theorem 13.2.4. Let A be the operator associated with the bilinear form Q above. Then
D(A) = W 2,2(X, �), and A = L2.

The proof is identical to the proof of Theorem 13.1.6 and it is omitted.
Note that Theorem 13.2.4 implies that for every f 2 D(L2) = W 2,2(X, �) and for every

g 2 W 1,2(X, �) we have

Z

X
L2f g d� = �

Z

X
[rHf,rHg]Hd� (13.2.5)
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that is the infinite dimensional version of (13.1.5). Proposition 11.4.3 implies that L2 is a
sectorial operator, therefore the Ornstein-Uhlenbeck semigroup is analytic in L2(X, �).

We mention that, by general results about semigroups and interpolation theory (e.g.
[D, Thm. 1.4.2]), {Tp(t) : p � 0} is an analytic semigroup in Lp(X, �) for every p 2
(1,+1). However, this fact will not be used in these lectures.

A result similar to Theorem 13.2.3 holds also for p 6= 2. More precisely, for every
p 2 (1,+1), D(Lp) = W 2,p(X, �), and the graph norm of D(Lp) is equivalent to the W 2,p

norm. But the proof is not as simple. We refer to [M] and [B, Sect. 5.5] for the infinite
dimensional case, and to [MPRS] for an alternative proof in the finite dimensional case.

13.3 Exercises

Exercise 13.1. Let % : Rd ! [0,+1) be a mollifier, i.e. a smooth function with support
in B(0, 1) such that

Z

B(0,1)
%(x)dx = 1.

For " > 0 set

%"(x) = "�d%
⇣x

"

⌘

, x 2 Rd.

Prove that if p 2 [1,+1) and f 2 Lp(Rd, �d), then

f"(x) := f ⇤ %"(x) =
Z

Rd
f(y)%"(x� y)dy,

is well defined, belongs to Lp(Rd, �d) and converges to f in Lp(Rd, �d) as " ! 0+.

Exercise 13.2. Prove that for every k 2 N, k � 3, Ck
b (Rd) is dense in Lp(Rd, �d) and that

T (t) 2 L(Ck
b (Rd)) for every t > 0.

Exercise 13.3. Let {hj : j 2 N} be any orthonormal basis of H contained in R�(X⇤).

Prove that the set ⌃ of the cylindrical functions of the type f(x) = '(ĥ1(x), . . . , ĥd(x))
with ' 2 C2

b (Rd), for some d 2 N, is dense in Lp(X, �) and in W 2,p(X, �) for every
p 2 [1,+1).

Exercise 13.4.

(i) With the help of Proposition 10.1.2, show that if f 2 W 1,p(X, �) with p 2 [1,+1)
is such that rHf = 0 a.e., then f is a.e. constant.

(ii) Use point (i) to show that for every p 2 [1,+1) the kernel of Lp consists of the
constant functions.
(Hint: First of all, prove that T (t)f = f for all f 2 D(Lp) such that Lpf = 0 and
then pass to the limit as t ! +1 in (12.1.3))
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