Solution to the Exercises of Lecture 13

Team Lecce (University of Salento)

Let us start proving a preliminary result concerning shifted essentially bounded functions.

Lemma. The shift operator is continuous with respect to $\|\cdot\|_{L^p(\mathbb{R}^d,\gamma_d)}$ over $L^{\infty}(\mathbb{R}^d)$ functions, i.e. for every $f \in L^{\infty}(\mathbb{R}^d)$, it holds $f \in L^p(\mathbb{R}^d,\gamma_d)$ and

$$\lim_{|h| \to 0} \|f(\cdot + h) - f\|_{L^p(\mathbb{R}^d, \gamma_d)} = 0.$$

Proof. Let us fix $p \in [1, +\infty)$, $f \in L^{\infty}(\mathbb{R}^d)$ and $\varepsilon > 0$. Since γ_d is absolutely continuous with respect to the Lebesgue measure in \mathbb{R}^d , we have the following continuous immersions:

$$L^{\infty}(\mathbb{R}^d) \hookrightarrow L^{\infty}(\mathbb{R}^d, \gamma_d) \hookrightarrow L^p(\mathbb{R}^d, \gamma_d).$$

So we obtain $f \in L^p(\mathbb{R}^d, \gamma_d)$. For all $h \in \mathbb{R}^d$, let us define $f^h := f(\cdot + h)$; obviously $f^h \in L^{\infty}(\mathbb{R}^d) \subset L^p(\mathbb{R}^d, \gamma_d)$, too. Let us observe that, for all r > 0,

$$\int_{B(0,r)^C} |f(x+h) - f(x)|^p \gamma_d(dx) \le (2||f||_\infty)^p \gamma_d(B(0,r)^C) \quad \forall h \in \mathbb{R}^d,$$

then

$$\lim_{r \to 0^+} \int_{B(0,r)^C} |f(x+h) - f(x)|^p \gamma_d(dx) = 0$$

uniformly for $h \in \mathbb{R}^d$. This implies that there exists $r_1 > 0$ such that

$$\int_{B(0,r_1)^C} |f(x+h) - f(x)|^p \gamma_d(dx) < \frac{\varepsilon^p}{2} \quad \forall h \in \mathbb{R}^d.$$

Setting G_d the density function of γ_d with respect to the Lebesgue measure \mathcal{L}^d , we have $G_d(x) \leq 1$ for every $x \in \mathbb{R}^d$, then

$$\int_{B(0,r_1)} |f(x+h) - f(x)|^p \gamma_d(dx) \le \int_{B(0,r_1)} |f(x+h) - f(x)|^p dx.$$

Now let us fix $\delta > 0$ and consider $|h| < \delta$. Since $f \in L^{\infty}(\mathbb{R}^d) \subset L^p_{loc}(\mathbb{R}^d)$, we have that $f \in L^p(B(0, r_1+\delta))$; it follows that there exists $g \in C^{\infty}_c(B(0, r_1+\delta))$ such that

$$\|f - g\|_{L^{p}(B(0,r_{1}+\delta))} < \frac{\varepsilon}{3 \cdot 2^{\frac{1}{p}}}.$$
(1)

By the Triangle Inequality, using the above notation to denote shifted functions, we have

$$\|f^{h} - f\|_{L^{p}(B(0,r_{1}))} \leq \underbrace{\|f^{h} - g^{h}\|_{L^{p}(B(0,r_{1}))}}_{(I)} + \underbrace{\|g^{h} - g\|_{L^{p}(B(0,r_{1}))}}_{(II)} + \underbrace{\|g - f\|_{L^{p}(B(0,r_{1}))}}_{(III)}.$$
(2)

Let us estimate addendum (I) in (2). Since $B(h, r_1) \subset B(0, r_1 + \delta)$, we have

$$\int_{B(0,r_1)} |f(x+h) - g(x+h)|^p dx \stackrel{\stackrel{z=x+h}{\rightarrow}}{=} \int_{B(h,r_1)} |f(z) - g(z)|^p dz \leq \\ \leq \int_{B(0,r_1+\delta)} |f(z) - g(z)|^p dz < \frac{1}{2} \left(\frac{\varepsilon}{3}\right)^p,$$

where last inequality follows from (1). So we obtain

$$\|f^{h} - g^{h}\|_{L^{p}(B(0,r_{1}))} < \frac{\varepsilon}{3 \cdot 2^{\frac{1}{p}}}.$$
(3)

To estimate addendum (II), let us observe that g is uniformly continuous on $B(0, r_1 + \delta)$; in particular, there exists $\overline{\delta} \leq \delta$ such that

$$|g(x+h) - g(x)| < \frac{\varepsilon}{3\left[2\mathcal{L}^d(B(0,r_1))\right]^{\frac{1}{p}}}$$

for all $x \in B(0, r_1)$ and for all $|h| < \overline{\delta}$. Then we have

$$\int_{B(0,r_1)} |g(x+h) - g(x)|^p \, dx < \int_{B(0,r_1)} \frac{\varepsilon^p}{3^p 2\mathcal{L}^d(B(0,r_1))} \, dx = \frac{1}{2} \left(\frac{\varepsilon}{3}\right)^p,$$

that is

$$\|g^{h} - g\|_{L^{p}(B(0,r_{1}))} < \frac{\varepsilon}{3 \cdot 2^{\frac{1}{p}}}.$$
(4)

Finally, we estimate addendum (III) using (1):

$$\|f - g\|_{L^{p}(B(0,r_{1}))} \le \|f - g\|_{L^{p}(B(0,r_{1}+\delta))} < \frac{\varepsilon}{3 \cdot 2^{\frac{1}{p}}}.$$
(5)

Using estimates (3), (4), (5) in (2) we have

$$\|f^{h} - f\|_{L^{p}(B(0,r_{1}),\gamma_{d})} \leq \|f^{h} - f\|_{L^{p}(B(0,r_{1}))} < 3 \cdot \frac{\varepsilon}{3 \cdot 2^{\frac{1}{p}}} = \frac{\varepsilon}{2^{\frac{1}{p}}}.$$

Then, for every $|h| < \overline{\delta}$, we obtain

$$\begin{split} &\int_{\mathbb{R}^d} |f(x+h) - f(x)|^p \,\gamma_d(dx) = \\ &= \int_{B(0,r_1)} |f(x+h) - f(x)|^p \,\gamma_d(dx) + \int_{B(0,r_1)^C} |f(x+h) - f(x)|^p \,\gamma_d(dx) < \\ &< \frac{\varepsilon^p}{2} + \frac{\varepsilon^p}{2} = \varepsilon^p, \end{split}$$

and so

$$\|f^h - f\|_{L^p(\mathbb{R}^d, \gamma_d)} < \varepsilon,$$

proving the thesis.

Exercise 13.1. Let $\rho : \mathbb{R}^d \to [0, +\infty)$ be a mollifier, i.e. a smooth function with support in B(0, 1) such that

$$\int_{B(0,1)} \varrho(x) \, dx = 1.$$

For $\varepsilon>0$ set

$$\varrho_{\varepsilon}(x) := \varepsilon^{-d} \varrho\left(\frac{x}{\varepsilon}\right), \quad x \in \mathbb{R}^d.$$

Prove that if $p \in [1, +\infty)$ and $f \in L^{\infty}(\mathbb{R}^d)$, then

$$f_{\varepsilon}(x) := f * \varrho_{\varepsilon}(x) = \int_{\mathbb{R}^d} f(y) \varrho_{\varepsilon}(x-y) \, dy,$$

is well defined, belongs to $L^p(\mathbb{R}^d, \gamma_d)$ and converges to f in $L^p(\mathbb{R}^d, \gamma_d)$ as $\varepsilon \to 0^+$.

Solution. Let us fix $p \in [1, +\infty)$ and prove that the spaces $L^p_{loc}(\mathbb{R}^d, \gamma_d)$ and $L^p_{loc}(\mathbb{R}^d)$ are the same, i.e. that for every $\Omega \subset \mathbb{R}^d$ such that $\overline{\Omega}$ is compact, one has

$$L^{p}(\Omega, \gamma_{d}) = L^{p}(\Omega).$$
(6)

Last equality must be intended in a topological sense, not merely setwise.

Let us fix $\Omega \subset \mathbb{R}^d$ with $\overline{\Omega}$ compact and observe that

$$a := \inf_{x \in \Omega} \left[\frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{|x|^2}{2}\right) \right] > 0.$$

This implies

$$a \int_{\Omega} |f(x)|^p \, dx \le \int_{\Omega} |f(x)|^p \, \gamma_d(dx) \le \int_{\Omega} |f(x)|^p \, dx,$$

which is equivalent to

$$a^{\frac{1}{p}} \|f\|_{L^{p}(\Omega)} \le \|f\|_{L^{p}(\Omega,\gamma_{d})} \le \|f\|_{L^{p}(\Omega)}.$$

So the norms $\|\cdot\|_{L^p(\Omega)}$ and $\|\cdot\|_{L^p(\Omega,\gamma_d)}$ are equivalent, then (6) is proved. Now we are ready to prove the required assertion.

Let $f \in L^{\infty}(\mathbb{R}^d)$. By previous Lemma, $f \in L^p(\mathbb{R}^d, \gamma_d)$ and, by Young's inequality, f_{ε} is well defined, $f_{\varepsilon} \in L^{\infty}(\mathbb{R}^d) \subset L^p(\mathbb{R}^d, \gamma_d)$, with

$$\|f_{\varepsilon}\|_{L^{p}(\mathbb{R}^{d},\gamma_{d})} \leq \|f_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^{d})} \leq \|f\|_{L^{\infty}(\mathbb{R}^{d})} \|\varrho\|_{L^{1}(\mathbb{R}^{d})} = \|f\|_{L^{\infty}(\mathbb{R}^{d})}.$$

Now, for $x \in \mathbb{R}^d$, we have

$$f * \varrho_{\varepsilon}(x) - f(x) = \int_{\mathbb{R}^d} [f(x-y) - f(x)] \varrho_{\varepsilon}(y) dy \stackrel{z = \frac{y}{\varepsilon}}{=} \int_{B(0,1)} [f(x-\varepsilon z) - f(x)] \varrho(z) dz.$$

Using Jensen's inequality one obtains

$$|f * \varrho_{\varepsilon}(x) - f(x)|^p \le \int_{B(0,1)} |f(x - \varepsilon z) - f(x)|^p \varrho(z) \, dz.$$

Integrating last inequality and applying Fubini's Theorem we get

$$\int_{\mathbb{R}^d} |f * \varrho_{\varepsilon}(x) - f(x)|^p \gamma_d(dx) \leq \\
\leq \int_{\mathbb{R}^d} \left(\int_{B(0,1)} |f(x - \varepsilon z) - f(x)|^p \varrho(z) \, dz \right) \, \gamma_d(dx) = \\
= \int_{B(0,1)} \varrho(z) \left(\int_{\mathbb{R}^d} |f(x - \varepsilon z) - f(x)|^p \, \gamma_d(dx) \right) \, dz.$$
(7)

We observe that the function

$$z \mapsto \int_{\mathbb{R}^d} |f(x - \varepsilon z) - f(x)|^p \gamma_d(dx) = \|f(\cdot - \varepsilon z) - f\|_{L^p(\mathbb{R}^d, \gamma_d)}^p$$

converges pointwise to 0 as ε goes to $0^+,$ by the previous Lemma.

Moreover, since $||f(\cdot - \varepsilon z) - f||_{L^p(\mathbb{R}^d, \gamma_d)} \leq 2||f||_{L^{\infty}(\mathbb{R}^d)}$, another application of the Dominated Convergence Theorem in formula (7) yields

$$\int_{\mathbb{R}^d} |f \ast \varrho_{\varepsilon}(x) - f(x)|^p \gamma_d(dx) \xrightarrow{\varepsilon \to 0^+} 0,$$

which proves the assertion.

Exercise 13.2. Prove that for every $k \in \mathbb{N}$, $k \geq 3$, $C_b^k(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d, \gamma_d)$ and that $T(t) \in \mathcal{L}(C_b^k(\mathbb{R}^d))$ for every t > 0.

Solution. For the first assertion, for every fixed $f \in L^p(\mathbb{R}^d, \gamma_d)$ and $\varepsilon > 0$, we have to find a $\overline{f} \in C_b^k(\mathbb{R}^d)$ such that $\|f - \overline{f}\|_{L^p(\mathbb{R}^d, \gamma_d)} < \varepsilon$. Since $f \in L^p(\mathbb{R}^d, \gamma_d)$, we can choose r > 0 such that for $\Omega := B(0, r)$ we have

$$\int_{\Omega^c} |f(x)|^p \, \gamma_d(dx) < \left(\frac{\varepsilon}{3}\right)^p,$$

that is

$$\|f - f \mathbb{1}_{\Omega}\|_{L^p(\mathbb{R}^d, \gamma_d)} < \frac{\varepsilon}{3}.$$
(8)

Recalling that $L^p(\Omega, \gamma_d) = L^p(\Omega)$ and $C_c(\Omega)$ is dense in $L^p(\Omega)$, we can find $g \in C_c(\Omega) \subset L^{\infty}(\Omega)$ such that

$$\|f\mathbb{1}_{\Omega} - g\|_{L^{p}(\mathbb{R}^{d},\gamma_{d})} < \frac{\varepsilon}{3}.$$
(9)

Using Exercise 13.1, we can choose $\varepsilon_0 > 0$ such that, for $\overline{f} := g * \rho_{\varepsilon_0}$, we get

$$\|g - \overline{f}\|_{L^p(\mathbb{R}^d, \gamma_d)} < \frac{\varepsilon}{3}.$$
 (10)

Inequalities (8), (9), (10) yield

$$\|f - \overline{f}\|_{L^{p}(\mathbb{R}^{d}, \gamma_{d})} \leq \|f - f \mathbb{1}_{\Omega}\|_{L^{p}(\mathbb{R}^{d}, \gamma_{d})} + \|f \mathbb{1}_{\Omega} - g\|_{L^{p}(\mathbb{R}^{d}, \gamma_{d})} + \|g - \overline{f}\|_{L^{p}(\mathbb{R}^{d}, \gamma_{d})} < \varepsilon.$$

Noticing $\overline{f} \in C^{\infty}_{L}(\mathbb{R}^{d}) \subset C^{k}_{L}(\mathbb{R}^{d})$, with $D^{\alpha}\overline{f} = q * D^{\alpha}\rho_{\varepsilon_{\alpha}}$ and $\|D^{\alpha}\overline{f}\|_{\infty} < \varepsilon.$

Noticing $f \in C_b^{\infty}(\mathbb{R}^d) \subset C_b^{\kappa}(\mathbb{R}^d)$, with $D^{\alpha}f = g * D^{\alpha}\varrho_{\varepsilon_0}$ and $||D^{\alpha}f||_{\infty} \leq ||g||_{\infty} ||D^{\alpha}\varrho_{\varepsilon_0}||_{L^1(\mathbb{R}^d)}$ for every multiindex $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq k$, we obtain the first assertion.

To prove the second statement, let us fix $k \in \mathbb{N}$, $k \geq 3$, and $f \in C_b^k(\mathbb{R}^d)$. Recalling the expression

$$T(t)f(x) = \int_{\mathbb{R}^d} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) \gamma_d(dy),$$

by an iterated use of Proposition 12.14 (or directly by Lebesgue Theorem of differentiation under the integral sign) we get for each t > 0 that $T(t)f \in C^k(\mathbb{R}^d)$ and, for every multiindex $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq k$:

$$D^{\alpha}T(t)f(x) = e^{-|\alpha|t} \int_{\mathbb{R}^d} D^{\alpha}f(e^{-t}x + \sqrt{1 - e^{-2t}}y) \gamma_d(dy) =$$
$$= e^{-|\alpha|t}T(t)D^{\alpha}f(x).$$

Last equality combined with Proposition 12.11 yields

$$||D^{\alpha}T(t)f||_{\infty} = e^{-|\alpha|t}||T(t)D^{\alpha}f||_{\infty} \le ||D^{\alpha}f||_{\infty}.$$

It follows that

$$\|T(t)f\|_{C_b^k(\mathbb{R}^d)} = \sum_{|\alpha| \le k} \|D^{\alpha}T(t)f\|_{\infty} \le \sum_{|\alpha| \le k} \|D^{\alpha}f\|_{\infty} = \|f\|_{C_b^k(\mathbb{R}^d)};$$

so T(t) is a contraction over the space $C_b^k(\mathbb{R}^d)$ for every t > 0 and the second assertion is proved.

Exercise 13.3. Let $\{h_j : j \in \mathbb{N}\}$ be an orthonormal basis of H contained in $R_{\gamma}(X^*)$. Prove that the set Σ of the cylindrical functions of the type $f(x) = \varphi(\hat{h}_1(x), \dots, \hat{h}_d(x))$ with $\varphi \in C_b^2(\mathbb{R}^d)$, for some $d \in \mathbb{N}$, is dense in $L^p(X, \gamma)$ and in $W^{2,p}(X, \gamma)$ for every $p \in [1, +\infty)$.

Solution. Let us prove that Σ is dense in $L^p(\mathbb{R}^d, \gamma_d)$.

Let us fix $f \in L^p(X, \gamma)$ and $\varepsilon > 0$; recalling that $\mathbb{E}_n f \to f$ in $L^p(X, \gamma)$ as n goes to $+\infty$ (Proposition 7.4.5), we can find $d \in \mathbb{N}$ such that

$$\|f - \mathbb{E}_d f\|_{L^p(X,\gamma)} < \frac{\varepsilon}{2}.$$
 (11)

From Proposition 7.4.1 we have

$$(\mathbb{E}_d f)(x) = \int_X f(P_d x + (I - P_d)y) \,\gamma(dy) = \varphi_d(\hat{h}_1(x), \dots, \hat{h}_d(x)),$$

where

$$\varphi_d(\xi) := \int_X f(\sum_{j=1}^d \xi_j h_j + (I - P_d)y) \,\gamma(dy) \in L^p(\mathbb{R}^d, \gamma_d)$$

since $\gamma_d = \gamma \circ (\hat{h}_1, \dots, \hat{h}_d)^{-1}$. Applying Exercise 13.2, we can find $\psi_d \in C_b^k(\mathbb{R}^d, \gamma_d), k \geq 3$, such that

$$\|\varphi_d - \psi_d\|_{L^p(\mathbb{R}^d, \gamma_d)} < \frac{\varepsilon}{2}.$$

Defining the function g by

$$g(x) := \psi_d(\hat{h}_1(x), \dots, \hat{h}_d(x)),$$

we have $g \in \Sigma$ and, from last inequality, recalling $\gamma_d = \gamma \circ (\hat{h}_1, \ldots, \hat{h}_d)^{-1}$,

$$\|g - \mathbb{E}_d f\|_{L^p(X,\gamma)} < \frac{\varepsilon}{2}.$$
(12)

By estimates (11) and (12) we obtain

$$\|f-g\|_{L^p(X,\gamma)} < \varepsilon,$$

which proves the first statement.

For the second request, let us notice that the set $\mathcal{F}C_b^2(X)$ is dense in $W^{2,p}(X,\gamma)$ by definition, therefore we only have to prove that Σ is dense in $\mathcal{F}C_b^2(X)$.

To this aim, let us fix $f \in \mathcal{F}C_b^2(X)$ such that $f(x) = \varphi(l_1(x), \ldots, l_d(x))$, with $\varphi \in C_b^2(\mathbb{R}^d)$, $l_1, \ldots, l_d \in X^*$, $d \in \mathbb{N}$. We will find a sequence $(f_k)_{k \in \mathbb{N}} \subset \Sigma$ such that $f_k \to f$ in $W^{2,p}(X, \gamma)$. Recalling Theorem 7.1.2, we have

$$x = \sum_{n=1}^{+\infty} \hat{h}_n(x)h_n$$

for a.e. $x \in X$; so, for every $j = 1, \ldots, d$, we have

$$l_j(x) = \sum_{n=1}^{+\infty} \hat{h}_n(x) l_j(h_n)$$
(13)

for a.e. $x \in X$.

For each $k \in \mathbb{N}$, let us consider the real matrix $A_k \in \mathbb{R}^{d,k}$ defined by

$$A_k := (l_i(h_p))_{\substack{i=1,\dots,d\\p=1,\dots,k}}$$

and the function $\phi_k \in C_b^2(\mathbb{R}^k)$ defined by

$$\phi_k(\xi) := \varphi(A_k\xi), \quad \xi \in \mathbb{R}^k.$$

Let $f_k \in \Sigma$ defined by

$$f_k(x) := \phi_k(\hat{h}_1(x), \dots, \hat{h}_k(x)), \quad \xi \in \mathbb{R}^k.$$

It follows by definition that

$$f_k(x) = \varphi\left(\sum_{n=1}^k \hat{h}_n(x)l_1(h_n), \dots, \sum_{n=1}^k \hat{h}_n(x)l_d(h_n)\right) =$$
$$=: \varphi\left(\sum_{n=1}^k \hat{h}_n(x)l(h_n)\right),$$

where we set $l(h_n) := (l_1(h_n), \ldots, l_d(h_n)) \in \mathbb{R}^d$. From (13) and the continuity of φ we have $f_k \to f$ a.e. in X and, trivially, $|f_k(x)| \leq ||\varphi||_{\infty}$. An application of the Lebesgue Dominated Convergence Theorem proves that $f_k \to f$ in $L^p(X, \gamma)$.

Using the chain rule we obtain, for all $j \in \mathbb{N}$

$$[\nabla_H f_k(x), h_j]_H = \partial_j f_k(x) = \begin{cases} \sum_{i=1}^d \frac{\partial \varphi}{\partial \xi_i} \left(\sum_{n=1}^k \hat{h}_n(x) l(h_n) \right) l_i(h_j) & j \le k, \\ 0 & \text{otherwise.} \end{cases}$$

Since $\frac{\partial \varphi}{\partial \xi_i}$ is continuous for every $i = 1, \ldots, d$, we have that

$$\partial_j f_k(x) \to \sum_{i=1}^d \frac{\partial \varphi}{\partial \xi_i} \left(l_1(x), \dots, l_d(x) \right) l_i(h_j) = \partial_j f(x)$$

a.e. in X as $k \to +\infty$. Observing that

$$|\partial_j f(x)| \le ||D\varphi||_{\infty} \sum_{i=1}^d l_i(h_j)$$

and applying the Dominated Convergence Theorem, we get $\nabla_H f_k \to \nabla_H f$ in $L^p(X, \gamma; H)$.

Let us turn now to the second derivatives. As shown in Lecture 10, pag. 130, by a standard calculus routine we obtain, for $k, s, t \in \mathbb{N}$:

$$[D_H^2 f_k(x)h_s, h_t]_H = \begin{cases} \sum_{i,j=1}^d \frac{\partial^2 \varphi}{\partial \xi_i \partial \xi_j} \left(\sum_{n=1}^k \hat{h}_n(x)l(h_n)\right) l_i(h_s)l_j(h_t) & s, t \le k, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$[D_H^2 f(x)h_s, h_t]_H = \sum_{i,j=1}^d \frac{\partial^2 \varphi}{\partial \xi_i \partial \xi_j} \left(l_1(x), \dots, l_d(x) \right) l_i(h_s) l_j(h_t).$$

So we have

$$\|D_{H}^{2}f_{k}(x) - D_{H}^{2}f(x)\|_{\mathcal{H}}^{2} =$$

$$= \sum_{s,t=1}^{+\infty} \left[\sum_{i,j=1}^{d} \left(\frac{\partial^{2}\varphi}{\partial\xi_{i}\partial\xi_{j}} \left(\sum_{n=1}^{k} \hat{h}_{n}(x)l(h_{n}) \right) \mathbb{1}_{\{1,\dots,k\}}(s) \mathbb{1}_{\{1,\dots,k\}}(t) + \frac{\partial^{2}\varphi}{\partial\xi_{i}\partial\xi_{j}} \left(l_{1}(x),\dots,l_{d}(x) \right) \right) l_{i}(h_{s})l_{j}(h_{t}) \right]^{2}.$$
(14)

Applying Hölder inequality

$$\|D_H^2 f_k(x) - D_H^2 f(x)\|_{\mathcal{H}}^2 \le \sum_{s,t=1}^{+\infty} \left[\left(2\|D^2\varphi\|_{\infty} \right)^2 \sum_{i=1}^d \left(l_i(h_s) \right)^2 \sum_{j=1}^d \left(l_j(h_t) \right)^2 \right]$$

which is, recalling $||R_{\gamma}l_i||_H^2 = \sum_s (l_i(h_s))^2$,

$$\|D_{H}^{2}f_{k}(x) - D_{H}^{2}f(x)\|_{\mathcal{H}} \leq 2\|D^{2}\varphi\|_{\infty} \sum_{i=1}^{d} \|R_{\gamma}l_{i}\|_{H}^{2}.$$

Recalling that $\varphi \in C^2(\mathbb{R}^d)$ and using again Lebesgue Theorem to pass to the limit as $k \to +\infty$ inside the sum in (14), we have $\|D_H^2 f_k(x) - D_H^2 f(x)\|_{\mathcal{H}} \to 0$ a.e. in X. Finally, another application of the Dominated Convergence Theorem proves that $D_H^2 f_k \to D_H^2 f$ in $L^p(X, \gamma; \mathcal{H})$.

Combining last convergence result with the previous ones, we get $f_k \to f$ in $W^{2,p}(X,\gamma)$, which proves the required assertion.

Exercise 13.4.

- (i) With the help of Proposition 10.1.2, show that if $f \in W^{1,p}(X,\gamma)$ with $p \in [1, +\infty)$ is such that $\nabla_H f = 0$ a.e., then f is a.e. constant.
- (ii) Use point (i) to show that for every $p \in (1, +\infty)$ the kernel of L_p consists of the constant functions.

Solution. Let us fix an orthonormal basis $\{h_k : k \in \mathbb{N}\}$ of $H, h_k = R_{\gamma}\hat{h}_k$ with $\hat{h}_k \in j(X^*)$ for all $k \in \mathbb{N}$. Given $f \in L^p(X, \gamma)$, let us consider the conditional expectation of f with respect to the σ -algebra Σ_n generated by the random variables $\hat{h}_1, \ldots, \hat{h}_n$ (see Proposition 7.4.1), whose expression is

$$\mathbb{E}_n f(x) = \int_X f(P_n x + (I - P_n)y) \,\gamma(dy) =: \overline{\mathbb{E}_n f}(\hat{h}_1(x), \dots, \hat{h}_n(x)),$$

where

$$\overline{\mathbb{E}_n f}(\xi) := \int_X f\left(\sum_{k=1}^n \xi_k h_k + (I - P_n)y\right) \gamma(dy), \quad \xi \in \mathbb{R}^n.$$

Let us preliminarly prove that, given a cylindrical function f of the form $f(x) = \overline{f}(\hat{h}_1(x), \ldots, \hat{h}_d(x))$, we have that $f \in W^{1,p}(X, \gamma)$ if and only if $\overline{f} \in \mathcal{F}(X, \gamma)$

 $W^{1,p}(\mathbb{R}^d, \gamma_d)$, with

$$\partial_j f(x) = \begin{cases} \frac{\partial \overline{f}}{\partial \xi_j} \left(\hat{h}_1(x), \dots, \hat{h}_d(x) \right) & j \le d, \\ 0 & \text{a.e. in } X. \end{cases}$$
(15)

Firstly, if $\overline{f} \in W^{1,p}(\mathbb{R}^d, \gamma_d)$, then by definition there exist a sequence $(\overline{f}_n)_{n \in \mathbb{N}} \subset C_b^1(\mathbb{R}^d)$ such that $\overline{f}_n \to \overline{f}$ in $W^{1,p}(\mathbb{R}^d, \gamma_d)$. Recalling $\gamma_d = \gamma \circ (\hat{h}_1, \ldots, \hat{h}_d)^{-1}$, we have immediately that $f_n := \overline{f}_n \circ (\hat{h}_1, \ldots, \hat{h}_d) \to \overline{f} \circ (\hat{h}_1, \ldots, \hat{h}_d) = f$ in $W^{1,p}(X, \gamma)$, namely the first implication required.

Conversely, if $f \in W^{1,p}(X,\gamma)$, we can find a sequence $(f_n)_{n\in\mathbb{N}} \subset \mathcal{F}C_b^1(X)$ such that $f_n \to f$ in $W^{1,p}(X,\gamma)$. By Proposition 10.1.2, we have that

$$\mathbb{E}_d f_n \to \mathbb{E}_d f = f \qquad \text{in } W^{1,p}(X,\gamma).$$
(16)

Now, using the representation formula, we have

$$\mathbb{E}_d f_n(x) = \int_X f_n(P_d x + (I - P_d)y) \,\gamma(dy) =: \overline{f}_{n,d}(\hat{h}_1(x), \dots, \hat{h}_d(x)),$$

where

$$\overline{f}_{n,d}(\xi) := \int_X f_n\left(\sum_{k=1}^d \xi_k h_k + (I - P_d)y\right) \gamma(dy), \quad \xi \in \mathbb{R}^n.$$
(17)

By (16), we have $\overline{f}_{n,d} \circ (\hat{h}_1, \ldots, \hat{h}_d) \to \overline{f} \circ (\hat{h}_1, \ldots, \hat{h}_d) = f$ in $W^{1,p}(X, \gamma)$, i.e. $\overline{f}_{n,d} \to \overline{f}$ in $W^{1,p}(\mathbb{R}^d, \gamma_d)$. So the required equivalence is proved and formula (15) follows as in Proposition 10.1.2.

Now we are ready to prove statements (i) and (ii).

(i) Let us fix $f \in W^{1,p}(X,\gamma)$, with $p \in [1, +\infty)$, such that $\nabla_H f = 0$ a.e. in X. From Proposition 10.1.2 we have $\mathbb{E}_n f \in W^{1,p}(X,\gamma)$ and

$$\nabla_H(\mathbb{E}_n f) = \mathbb{E}_n(P_n \nabla_H f) \qquad \text{a.e. in } X.$$
(18)

Let $\overline{f}_n \in W^{1,p}(\mathbb{R}^n, \gamma_n)$ as in (17) such that

$$\mathbb{E}_n f(x) = \overline{f}_n(\hat{h}_1(x), \dots, \hat{h}_n(x)).$$

Recalling Proposition 9.1.6, we have $\overline{f}_n \in W^{1,p}_{loc}(\mathbb{R}^n)$ and, from (18) and (15), $\nabla \overline{f}_n = 0$ a.e. in \mathbb{R}^n ; so there exists $a_n \in \mathbb{R}$ such that $\overline{f}_n = a_n$ a.e. in \mathbb{R}^n . This fact implies that $\mathbb{E}_n f = a_n$ a.e. in X. Recalling that

$$f = \lim_{n \to +\infty} \mathbb{E}_n f = \lim_{n \to +\infty} a_n$$

in $W^{1,p}(X,\gamma)$, we conclude that f is constant a.e. in X.

(ii) Fixed p > 1, every a.e. constant function belongs obviously to $D(L_p)$ and for all $c \in \mathbb{R}$ it holds $L_p c = 0$.

Let now $f \in D(L_p)$ such that $L_p f = 0$; we claim that f is constant. To prove this assertion, let us observe that

$$\frac{d}{dt}T(t)f = L_pT(t)f = T(t)L_pf = 0$$
(19)

for every $t \ge 0$. So $t \mapsto T(t)f$ is constant in $[0, +\infty)$, then T(t)f = T(0)f = f for every $t \ge 0$. Then, for every t > 0, $f = T(t)f \in W^{1,p}(X,\gamma)$ by Proposition 12.1.6(ii). Moreover, by Proposition 12.1.6(i), we have for every t > 0

$$\nabla_H f = \nabla_H T(t) f = e^{-t} T(t) (\nabla_H f),$$

 \mathbf{SO}

$$|\nabla_H f|_H \le e^{-t} |\nabla_H f|_H$$

Since the second addendum tends to zero as t goes to $+\infty$, it results $|\nabla_H f|_H = 0$. Then $\nabla_H f = 0$ a.e. in X, so, by part (i), f is a.e. constant in X and assertion (ii) is proved.

		-