Solution to the Exercises of Lecture 13
Team Lecce (University of Salento)

Let us start proving a preliminary result concerning shifted essentially
bounded functions.

Lemma. The shift operator is continuous with respect to || - || zr(ga ,) Over
L>®(R%) functions, i.e. for every f € L>®(R?), it holds f € LP(R? ~4) and

|h1|f_f>10Hf( +h) = fller@inq, =0

Proof. Let us fix p € [1,+00), f € L=(R?) and € > 0. Since v, is absolutely
continuous with respect to the Lebesgue measure in R?, we have the following
continuous immersions:

L®(RY) — L®(R?, v4) < LP(RY, ).

So we obtain f € LP(R? ~,). For all h € RY, let us define f := f(- + h);
obviously f* € L*(RY) C LP(R? ~,), too. Let us observe that, for all r > 0,

/Bm ) = F@ i) < @51 2a(BO.C) Ve RS

then
lim |f(x+h)— f(z)]P va(dx) =0

r—0+ B(0,r)C

uniformly for A € R?. This implies that there exists 7; > 0 such that
eP d
[ i) = @ ulde) < 5 vhe R
B(0,r1)C 2

Setting G4 the density function of 74 with respect to the Lebesgue measure
L4, we have Gy(x) < 1 for every & € R% then

/ |f(x+h)_f($)‘p7d(dx)§/ |f(x+h)— f(z)]P d.
B(0,r1)

B(0,r1)

Now let us fix § > 0 and consider |h| < §. Since f € L*(RY) C L (R?), we

have that f € LP(B(0,r1+9)); it follows that there exists g € C°(B(0,r;40))

such that
€

If = gllzr(Bo.r140) < e (1)

P



By the Triangle Inequality, using the above notation to denote shifted func-

tions, we have

h

1F" = Flle oy < 1F" = g" B0+ 19" = gliemorn), +

-~

() (1)

(2)

+ g = Fllerorm) -
)

Let us estimate addendum (7) in (2). Since B(h,r1) C B(0,7, +6), we have

z=xz+h

[ Wem-gernra £ [ i) - g ds <
B(0,r1)

B(hvrl)

1 /e\r

<[ e -g@rd<;(5)
B(0,r1496)

where last inequality follows from (1). So we obtain

13
1" = g" | LeBor) < TS (3)

To estimate addendum (/7), let us observe that g is uniformly continuous on
B(0,7; + 6); in particular, there exists § < § such that

19
3[2L4(B(0,71))]*

l9(x +h) —g(z)| <

for all z € B(0,7;) and for all |h| < 6. Then we have

b

1 eN?
glx+h —gxpdx</ dr=—-1(=] ,
/B(O,r1)| ( ) ( )l B(0,r1) 3p2£d(8(0’7a1)) 2 (3>

that is

g
19" = gllr(Bo) < pypes (4)
. 92p

Finally, we estimate addendum (/1) using (1):

\f = gllzeBor)) < NI — 9llerBor+o) < T (5)
. 2p
Using estimates (3), (4), (5) in (2) we have
€ €
“fh — fllzeBor)a < ||fh - fHLp(B(O,'/‘l)) <3 = .
3-2r 2



Then, for every |h| < 0, we obtain
156+ 1) = p@l i) =
— [ W m - s@P )+ [ () = f@P () <
B(0,r1)

B(0,r1)¢
eP eP »
<=+ ==
2 2
and so
||fh - fHLP(Rd,'yd) <g,
proving the thesis. O

Exercise 13.1. Let ¢ : R? — [0,4+00) be a mollifier, i.e. a smooth
function with support in B(0, 1) such that

/ o(z) der = 1.
B(0,1)

0-(x) =% <§> . zeRL

Prove that if p € [1,+00) and f € L>®(R?), then

For € > 0 set

fe(x) = f* Qa(m) = o f(y)gs(x —y) dy,

is well defined, belongs to LP(R% v,) and converges to f in LP(R%, v,) as
e— 0.

Solution. Let us fix p € [1,+00) and prove that the spaces LF (R? v,) and
L? (R?) are the same, i.e. that for every Q C R? such that Q is compact,
one has

12(9, ) = 17(92). (0

Last equality must be intended in a topological sense, not merely setwise.
Let us fix Q ¢ R? with Q compact and observe that

3



which is equivalent to
1
ar || flle@) < 1 fllr@ag < 1 llzr

and |- || r(,,) are equivalent, then (6) is proved. Now

So the norms || - || z»(q)
we are ready to prove the required assertion
Let f € L®(RY). By previous Lemma, f € LP(R% v,) and, by Young’s

inequality, f. is well defined, f. € L®(R%) C LP(R?, ~,), with

| fellzr®ang) < I fellpeo@ay < || flloo@aylloll rmay = || f || oo (may

Now, for x € R%, we have

z=

f*gg(l’)—f(x)—/ [f(@—y)—f()]e-(y)dy i/ [f(z—e2)—f(x)]o(2)dz.
Rd B(0,1)
Using Jensen’s inequality one obtains

1 * o) — F@)P < /B o [Fe=e) = f@Pete) =

Integrating last inequality and applying Fubini’s Theorem we get

115 o) = @) rutdo) <

<[ ([ ire-e - fore) i) wen = @
Re \J B(0,1)
[ o) ([ 102 = 0P i) s
B(0,1) R
We observe that the function
ey [f(z —ez) = f(@)[P valdz) = | F(- — €2) = fllpany
converges pointwise to 0 as € goes to 01, by the previous Lemma
< 2| f |l poe (ray, another application

Moreover, since || f(- —€2) = fl| Lo(ra 1) <
of the Dominated Convergence Theorem in formula (7) yields

[ 115 0uta) = 5@ uldr) = o

which proves the assertion.



Exercise 13.2. Prove that for every k € N, k > 3, CF(R?) is dense in
LP(R?, ~,) and that T(t) € L(CF(RY)) for every t > 0.

Solution. For the first assertion, for every fixed f € LP(R? v,) and € > 0, we
have to find a f € Cf(R?) such that || f— f|| pp(re., < €. Since f € LP(R?, 7q),
we can choose r > 0 such that for Q := B(0,r) we have

€

7@ ) < (5)"

that is -
1f = flallormiqg < 3 (8)

Recalling that LP(§2,v4) = LP(2) and C.(Q?) is dense in LP(2), we can find

g € C.(Q) C L*°(R2) such that

£

: o)

[f Lo = glliema g <

Using Exercise 13.1, we can choose €y > 0 such that, for f := g* g.,, we get

(10)

Wl M

lg = Fllrg <
Inequalities (8), (9), (10) yield

||f_?||LP(Rd,'yd) < ”f_fILQ”LP(Rd,'yd)+||le_g||LP(]Rdryd)+Hg_?HLP(Rd,'yd) <eé€.

Noticing f € C°(RY) C CF(RY), with Df = g * D%, and ||[D*f||» <
9]l [ D 0eo || 11 (ray for every multiindex o € N§, |a| < k, we obtain the first
assertion.

To prove the second statement, let us fix k € N, k > 3, and f € CF(R).
Recalling the expression

T(t)f(z) = g fle™'z + V1 — e~2y) vq(dy),

by an iterated use of Proposition 12.14 (or directly by Lebesgue Theorem of
differentiation under the integral sign) we get for each ¢t > 0 that T'(¢)f €
C*(R?) and, for every multiindex a € N, |a| < k:

DT () f(w) = e Rd D fe™"x + V1 — e~2y) ya(dy) =
= e 1Pt () D f ().
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Last equality combined with Proposition 12.11 yields
IDT(t) flloo = €T (&) D flloo < 1D -
It follows that

ITOf lep@a = D IDTOflloo < D 1D flloo = [ fllesmey

|| <k lo| <k

so T(t) is a contraction over the space CF(RY) for every ¢ > 0 and the second
assertion is proved. O

Exercise 13.3. Let {h; : j € N} be an orthonormal basis of H contained
in R,(X*). Prove that the set X of the cylindrical functions of the type
f(x) = o(hy(2),. .., hg(z)) with ¢ € C2(RY), for some d € N, is dense in
LP(X,~) and in W2P(X, v) for every p € [1,+00).

Solution. Let us prove that ¥ is dense in LP(RY, v,).
Let us fix f € LP(X,~) and € > 0; recalling that E,, f — f in LP(X,~) as
n goes to +o0o (Proposition 7.4.5), we can find d € N such that

)

1f = Eafllrxa) < 5 (11)

From Proposition 7.4.1 we have
(Baf)a) = [ F(Paa + (1 = P) 2(dy) = 9alia(@). ... (o))

where

d

pul€) = | F(3S&hs+ (= Pay)2(dy) € LP(RY, 70
x4

since 74 = v o ( }Azd)*l. Applying Exercise 13.2, we can find ¢y €

CFRY, ), k > 3, uch that

DO ™

la — Yall r @i, <

Defining the function g by

9(@) = da(ha (), ha(x)),

we have g € ¥ and, from last inequality, recalling v, = v o (ﬁl, oo hy) T

(12)

N ™

lg —Eafllzrxq <
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By estimates (11) and (12) we obtain

1f = gllrxqy <&

which proves the first statement.

For the second request, let us notice that the set FCZ(X) is dense in
W?2P(X,v) by definition, therefore we only have to prove that ¥ is dense in
FC(X).

To this aim, let us fix f € FCZ(X) such that f(z) = p(ly(x),...,l(z)),
with ¢ € CZ(RY), Iy,...,ls € X*,d € N. We will find a sequence (fi)reny C 2
such that fp — f in W?P(X, 7). Recalling Theorem 7.1.2, we have

+oo
x = Z B () P,
n=1
for a.e. x € X; so, for every j =1,...,d, we have
+00 R
Li(@) =) ha(@)l(hn) (13)
n=1

for a.e. © € X.
For each k € N, let us consider the real matrix A;, € R%* defined by

and the function ¢, € CZ(R¥) defined by

or(€) == p(Arf), € €RM

Let f; € X defined by



where we set [(h,,) := (I1(hy), ..., la(h,)) € RY. From (13) and the continuity
of o we have f, — f a.e. in X and, trivially, |fx(2)] < [|¢||co- An application
of the Lebesgue Dominated Convergence Theorem proves that f, — f in
LP(X, 7).

Using the chain rule we obtain, for all j eN

) li(h;) <k,

(Vi fu(@), hiln = 0;fr(x) = ‘i
0 otherwise.
Since gz is continuous for every i = 1,...,d, we have that
0, fi(x Z ag s la(2) Li(hy) = 0, f (2)

a.e. in X as k — +oo. Observmg that

10, f(z)] < IIDSOIIOOZZ
and applying the Dominated Convergence Theorem, we get Vg fi = Vi f
in LP(X,~v; H).
Let us turn now to the second derivatives. As shown in Lecture 10, pag.
130, by a standard calculus routine we obtain, for k,s,t € N:

Z 3@@@ (Z Bn(x)l%n)) Li(hs)li(he) st <k,

n=1

[Dl%lfk(x>h57 helg =

0 otherwise.

and

d 82g0

2 DE0E,

(D3 f(@)hs, bl = (), - la(@)) LiChs ) (he).

So we have
|1 D3, fr(x) — D} f (x)l3, =

+o0o d 2 k .
- Z [Z <8§i5§j (Z hn(%’)l(hn)> Loy (5) L, e (8)+

s,t=1 Li,j=1 n

(14)
A
D¢,

(ll(l‘), ceey ld(l’)) ) ll(hs)l](ht)] .
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Applying Holder inequality

(1 (he)*

d
=1

D% few) = Dif @it < 37 | ID*l)" D (a(hs)?

s,t=1 =1 J

which is, recalling | R,1||% = 32, (li(hs))?,

d
ID% (@) = Di f(@) 2 < 21D%lloe Y 1R
i=1

Recalling that ¢ € C?(R?) and using again Lebesgue Theorem to pass to the
limit as k — +oc inside the sum in (14), we have || D% fi(z) — D% f(z)||% —
0 a.e. in X. Finally, another application of the Dominated Convergence
Theorem proves that D% fry — D% f in LP(X,v;H).

Combining last convergence result with the previous ones, we get f, — f

in W?2?(X,~), which proves the required assertion.
O]

Exercise 13.4.

(i) With the help of Proposition 10.1.2, show that if f € W'P(X,~) with
p € [1,4+00) is such that Vg f = 0 a.e., then f is a.e. constant.

(ii) Use point (i) to show that for every p € (1,+00) the kernel of L,
consists of the constant functions.

Solution. Let us fix an orthonormal basis {hy, : k € N} of H, hy, = Rvﬁk with
hi € j(X*) for all k € N. Given f € LP(X,~), let us consider the conditional
expectation of f with respect to the o-algebra ¥, generated by the random
variables hy, ..., hy (see Proposition 7.4.1), whose expression is

~

E,f(z) = /X F(Pa 1 (I = Puy) 1(dy) = B (in (), ..., (),

where
E,f(¢) ;:/ f (Z Sl + (L — Pn)y> v(dy), §€R™
X k=1

Let us preliminarly prove that, given a cylindrical function f of the form
f(z) = f(hi(x),..., ha(z)), we have that f € W(X,v) if and only if f €
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WLP (Rda Vd)a with

of /- .
e hl(x)a"'ahd(w) J Sda
0, f(x) =4 %% ( ) ae in X.  (15)

0 Jj>d.
Firstly, if f € W'P(R?, ~4), then by definition there exist a sequence (f,, )nen C
CL(R9) such that f, — f in W'P(R? ~,). Recalling 74 = v o (hy,..., ha)"},
we have immediately that f, := f, o (h1,...,hq) = fo(hi,...,hg) = f in
W1P(X,~), namely the first implication required.

Conversely, if f € W'?(X, ), we can find a sequence (f,,)nen C FCL(X)
such that f, — f in W'?(X,~). By Proposition 10.1.2, we have that

Eqf, — Eqf = f  in W'YP(X, 7). (16)

Now, using the representation formula, we have

~

Eqfo(z) = /X FulPaz + (I = Pa)y) y(dy) =t fa(ln(@), ... ha(z)),

where
_ d
Foal€) = / f (Z@hw(l—&)y) Ydy), €eR™.  (17)
X k=1

By (16), we have 7n7d o(hy,... . hg) = fo(hy,... hg) = fin WHP(X, 7), ie.
7n’d — fin WhP(RY, v,). So the required equivalence is proved and formula
(15) follows as in Proposition 10.1.2.

Now we are ready to prove statements (i) and (ii).

(i) Let us fix f € W'P(X,v), with p € [1,+00), such that Vg f = 0 a.e.
in X. From Proposition 10.1.2 we have E, f € W'?(X,~) and

VH(Enf) = En(anHf) a.e. in X. (18)
Let f, € W'"?(R",,) as in (17) such that
Recalling Proposition 9.1.6, we have f, € W,”(R")and, from (18) and

loc

(15), Vf,, = 0 a.e. in R™; so there exists a, € R such that f, = a, a.e.
in R™. This fact implies that E, f = a, a.e. in X. Recalling that

f= lim E,f= lim a,

n—-+o0o n—-+oo

in W (X, v), we conclude that f is constant a.e. in X.
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(ii) Fixed p > 1, every a.e. constant function belongs obviously to D(L,)
and for all ¢ € R it holds L,c = 0.

Let now f € D(L,) such that L,f = 0; we claim that f is constant. To
prove this assertion, let us observe that

%T(t) f=LT{t)f =T({t)L,f =0 (19)

for every t > 0. So t — T'(t)f is constant in [0,400), then T'(¢)f =
T()f = f for every t > 0. Then, for every t > 0, f = T(t)f €
WP (X, ~) by Proposition 12.1.6(ii). Moreover, by Proposition 12.1.6(i),
we have for every ¢t > 0

Vuf=VuT(t)f =e"T(t)(Vuf),
SO
\Vuflu <e'Vuflu.

Since the second addendum tends to zero as t goes to +oo, it results
IVuflg = 0. Then Vgyf = 0 ae. in X, so, by part (i), f is a.e.
constant in X and assertion (ii) is proved.
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