
Lecture 11

Semigroups of Operators

In this Lecture we gather a few notions on one-parameter semigroups of linear operators,
confining to the essential tools that are needed in the sequel. As usual, X is a real or
complex Banach space, with norm ‖ · ‖. In this lecture Gaussian measures play no role.

11.1 Strongly continuous semigroups

Definition 11.1.1. Let {T (t) : t ≥ 0} be a family of operators in L(X). We say that it
is a semigroup if

T (0) = I, T (t+ s) = T (t)T (s) ∀ t, s ≥ 0.

A semigroup is called strongly continuous (or C0-semigroup) if for every x ∈ X the func-
tion T (·)x : [0,∞)→ X is continuous.

Let us present the most elementary properties of strongly continuous semigroups.

Lemma 11.1.2. Let {T (t) : t ≥ 0} ⊂ L(X) be a semigroup. The following properties
hold:

(a) if there exist δ > 0, M ≥ 1 such that

‖T (t)‖ ≤M, 0 ≤ t ≤ δ,

then, setting ω = (logM)/δ we have

‖T (t)‖ ≤Meωt, t ≥ 0. (11.1.1)

Moreover, for every x ∈ X the function t 7→ T (t)x is continuous in [0,+∞) iff it is
continuous at 0.

(b) If {T (t) : t ≥ 0} is strongly continuous, then for any δ > 0 there is Mδ > 0 such
that

‖T (t)‖ ≤Mδ, ∀ t ∈ [0, δ].
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Proof. (a) Using repeatedly the semigroup property in Definition 11.1.1 we get T (t) =
T (δ)n−1T (t− (n− 1)δ) for (n− 1)δ ≤ t ≤ nδ, whence ‖T (t)‖ ≤ Mn ≤ Meωt. Let x ∈ X
be such that t 7→ T (t)x is continuous at 0, i.e., limh→0+ T (h)x = x. Using again the
semigroup property in Definition 11.1.1 it is easily seen that for every t > 0 the equality
limh→0+ T (t+ h)x = T (t)x holds. Moreover,

‖T (t− h)x− T (t)x‖ = ‖T (t− h)(x− T (h)x)‖ ≤Meω(t−h)‖(x− T (h)x)‖, 0 < h < t,

whence limh→0+ T (t− h)x = T (t)x. It follows that t 7→ T (t)x is continuous in [0,+∞).
(b) Let x ∈ X. As T (·)x is continuous, for every δ > 0 there is Mδ,x > 0 such that

‖T (t)x‖ ≤Mδ,x, ∀ t ∈ [0, δ].

The statement follows from the Uniform Boundedness Principle, see e.g. [Br, Chapter 2]
or [DS1, §II.1].

If (11.1.1) holds with M = 1 and ω = 0 then the semigroups is said semigroup of
contractions or contractive semigroup. From now on, {T (t) : t ≥ 0} is a fixed strongly
continuous semigroup.

Definition 11.1.3. The infinitesimal generator (or, shortly, the generator) of the semi-
group {T (t) : t ≥ 0} is the operator defined by

D(L) =
{
x ∈ X : ∃ lim

h→0+

T (h)− I
h

x
}
, Lx = lim

h→0+

T (h)− I
h

x.

By definition, the vector Lx is the right derivative of the function t 7→ T (t)x at t = 0
and D(L) is the subspace where such derivative exists. In general, D(L) is not the whole
X, but it is dense, as the next proposition shows.

Proposition 11.1.4. The domain D(L) of the generator is dense in X.

Proof. Set

Ma,tx =
1

t

∫ a+t

a
T (s)x ds, a ≥ 0, t > 0, x ∈ X

(this is a X-valued Bochner integral). As the function s 7→ T (s)x is continuous, we have
(see Exercise 11.1)

lim
t→0

Ma,tx = T (a)x.

In particular, limt→0+ M0,tx = x for every x ∈ X. Let us show that for every t > 0,
M0,tx ∈ D(L), which implies that the statement holds. We have

T (h)− I
h

M0,tx =
1

ht

(∫ t

0
T (h+ s)x ds−

∫ t

0
T (s)x ds

)
=

1

ht

(∫ h+t

h
T (s)x ds−

∫ t

0
T (s)x ds

)
=

1

ht

(∫ h+t

t
T (s)x ds−

∫ h

0
T (s)x ds

)
=
Mt,hx−M0,hx

t
.
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Therefore, for every x ∈ X we have M0,tx ∈ D(L) and

LM0,tx =
T (t)x− x

t
. (11.1.2)

Proposition 11.1.5. For every t > 0, T (t) maps D(L) into itself, and L and T (t)
commute on D(L).

If x ∈ D(L), then the function T (·)x is differentiable at every t ≥ 0 and

d

dt
T (t)x = LT (t)x = T (t)Lx, t ≥ 0.

Proof. For every x ∈ X and for every h > 0 we have

T (h)− I
h

T (t)x = T (t)
T (h)− I

h
x.

If x ∈ D(L), letting h→ 0 we obtain T (t)x ∈ D(L) and LT (t)x = T (t)Lx.
Fix t0 ≥ 0 and let h > 0. We have

T (t0 + h)x− T (t0)x

h
= T (t0)

T (h)− I
h

x→ T (t0)Lx as h→ 0+.

This shows that T (·)x is right differentiable at t0. Let us show that it is left differentiable,
assuming t0 > 0. If h ∈ (0, t0) we have

T (t0 − h)x− T (t0)x

−h
= T (t0 − h)

T (h)− I
h

x→ T (t0)Lx as h→ 0+,

as∥∥∥T (t0−h)
T (h)− I

h
x−T (t0)Lx

∥∥∥ ≤ ∥∥∥T (t0−h)
(T (h)− I

h
x−Lx

)∣∣∣+‖(T (t0−h)−T (t0))Lx‖

and ‖T (t0 − h)‖ ≤ sup0≤t≤t0 ‖T (t)‖ < ∞ by Lemma 11.1.2. It follows that the function
t 7→ T (t)x is differentiable at all t ≥ 0 and its derivative is T (t)Lx, which is equal to
LT (t)x by the first part of the proof.

Using Proposition 11.1.5 we prove that the generator L is a closed operator. Therefore,
D(L) is a Banach space with the graph norm ‖x‖D(L) = ‖x‖+ ‖Lx‖.

Proposition 11.1.6. The generator L of any strongly continuous semigroup is a closed
operator.

Proof. Let (xn) be a sequence in D(L), and let x, y ∈ X be such that xn → x, Lxn =:
yn → y. By Proposition 11.1.5 the function t 7→ T (t)xn is continuously differentiable in
[0,∞). Hence for 0 < h < 1 we have (see Exercise 11.1)

T (h)− I
h

xn =
1

h

∫ h

0
LT (t)xndt =

1

h

∫ h

0
T (t)yndt,
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and then∥∥∥T (h)− I
h

x− y
∥∥∥ ≤ ∥∥∥T (h)− I

h
(x− xn)

∥∥∥+
∥∥∥1

h

∫ h

0
T (t)(yn − y)dt

∥∥∥+
∥∥∥1

h

∫ h

0
T (t)ydt− y

∥∥∥
≤ C + 1

h
‖x− xn‖+ C‖yn − y‖+

∥∥∥1

h

∫ h

0
T (t)ydt− y

∥∥∥,
where C = sup0<t<1 ‖T (t)‖. Given ε > 0, there is h0 such that for 0 < h ≤ h0 we have

‖
∫ h

0 T (t)ydt/h− y‖ ≤ ε/3. For h ∈ (0, h0], take n such that ‖x− xn‖ ≤ εh/3(C + 1) and

‖yn − y‖ ≤ ε/3C: we get ‖T (h)−I
h x− y‖ ≤ ε and therefore x ∈ D(L) and y = Lx, i.e., the

operator L is closed.

Proposition 11.1.5 implies that for any x ∈ D(L) the function u(t) = T (t)x is differ-
entiable for t ≥ 0 and it solves the Cauchy problem

u′(t) = Lu(t), t ≥ 0,

u(0) = x.
(11.1.3)

Lemma 11.1.7. For every x ∈ D(L), the function u(t) := T (t)x is the unique solution
of (11.1.3) belonging to C([0,+∞);D(L)) ∩ C1([0,+∞);X).

Proof. From Proposition 11.1.5 we know that u′(t) = T (t)Lx for every t ≥ 0, and then
u′ ∈ C([0,+∞);X). Therefore, u ∈ C1([0,+∞);X). Since D(L) is endowed with the
graph norm, a function u : [0,+∞)→ D(L) is continuous iff both u and Lu are continuous.
In our case, both u and Lu = u′ belong to C([0,+∞);X), and then u ∈ C([0,+∞);D(L)).

Let us prove that (11.1.3) has a unique solution in C([0,+∞);D(L))∩C1([0,+∞);X).
If u ∈ C([0,+∞);D(L)) ∩ C1([0,+∞);X) is any solution, we fix t > 0 and define the
function

v(s) := T (t− s)u(s), 0 ≤ s ≤ t.

Then (Exercise 11.2) v is differentiable, and v′(s) = −T (t − s)Lu(s) + T (t − s)u′(s) = 0
for 0 ≤ s ≤ t, whence v(t) = v(0), i.e., u(t) = T (t)x.

Remark 11.1.8. If {T (t) : t ≥ 0} is a C0-semigroup with generator L, then for every
λ ∈ C the family of operators

S(t) = eλtT (t), t ≥ 0,

is a C0-semigroup as well, with generator L+ λI : D(L)→ X. The semigroup property is
obvious. Concerning the generator, for every x ∈ X we have

S(h)x− x
h

= eλh
T (h)− x

h
+
eλhx− x

h

and then

lim
h→0+

S(h)x− x
h

= lim
h→0+

eλh
T (h)− x

h
+
eλhx− x

h
= Lx+ λx

iff x ∈ D(L).
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Let {T (t) : t ≥ 0} be a strongly continuous semigroup. Characterising the domain
of its generator L may be difficult. However, for many proofs it is enough to know that
“good” elements x are dense in D(L). A subspace D ⊂ D(L) is called a core of L if D is
dense in D(L) with respect to the graph norm. The following proposition gives an easily
checkable sufficient condition in order that D is a core.

Lemma 11.1.9. If D ⊂ D(L) is a dense subspace of X and T (t)(D) ⊂ D for every t ≥ 0,
then D is a core.

Proof. Let M , ω be such that ‖T (t)‖ ≤Meωt for every t > 0. For x ∈ D(L) we have

Lx = lim
t→0

1

t

∫ t

0
T (s)Lxds.

Let (xn) ⊂ D be a sequence such that limn→∞ xn = x. Set

yn,t =
1

t

∫ t

0
T (s)xn ds =

1

t

∫ t

0
T (s)(xn − x) ds+

1

t

∫ t

0
T (s)x ds.

As the D(L)-valued function s 7→ T (s)xn is continuous in [0,+∞), the vector
∫ t

0 T (s)xnds
belongs to D(L). Moreover, it is the limit of the Riemann sums of elements of D (see
Exercise 11.1), hence it belongs to the closure of D in D(L). Therefore, yn,t belongs to
the closure of D in D(L) for every n and t. Furthermore,

‖yn,t − x‖ ≤
∥∥∥1

t

∫ t

0
T (s)(xn − x) ds

∥∥∥+
∥∥∥1

t

∫ t

0
T (s)x ds− x

∥∥∥
tends to 0 as t→ 0, n→∞. By (11.1.2) we have

Lyn,t − Lx =
T (t)(xn − x)− (xn − x)

t
+

1

t

∫ t

0
T (s)Lxds− Lx.

Given ε > 0, fix τ > 0 such that∥∥∥1

τ

∫ τ

0
T (s)Lxds− Lx

∥∥∥ ≤ ε,
and then take n ∈ N such that (Meωτ + 1)‖xn − x‖/τ ≤ ε. Therefore, ‖Lyn,τ − Lx‖ ≤ 2ε
and the statement follows.

11.2 Generation Theorems

In this section we recall the main generation theorems for C0-semigroups. The most general
result is the classical Hille–Yosida Theorem, which gives a complete characterisation of the
generators. For contractive semigroups, i.e., semigroups verifying the estimate ‖T (t)‖ ≤
1 for all t ≥ 0, the characterisation of the generators provided by the Lumer-Phillips
Theorem is often useful. We do not present here the proofs of these results, referring e.g.
to [EN, §II.3].
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First, we recall the definition of spectrum and resolvent. The natural setting for spec-
tral theory is that of complex Banach spaces, hence if X is real we replace it by its
complexification X̃ = {x+ iy : x, y ∈ X} endowed with the norm

‖x+ iy‖X̃ := sup
−π≤θ≤π

‖x cos θ + y sin θ‖

(notice that the seemingly more natural “Euclidean norm” (‖x‖2 + ‖y‖2)1/2 is not a norm
in general).

Definition 11.2.1. Let L : D(L) ⊂ X → X be a linear operator. The resolvent set ρ(L)
and the spectrum σ(L) of L are defined by

ρ(L) = {λ ∈ C : ∃ (λI − L)−1 ∈ L(X)}, σ(L) = C\ρ(L). (11.2.1)

The complex numbers λ ∈ σ(L) such that λI − L is not injective are the eigenvalues, and
the vectors x ∈ D(L) such that Lx = λx are the eigenvectors (or eigenfunctions, when
X is a function space). The set σp(L) whose elements are all the eigenvalues of L is the
point spectrum.

For λ ∈ ρ(L), we set
R(λ, L) := (λI − L)−1. (11.2.2)

The operator R(λ, L) is the resolvent operator or briefly resolvent.
We ask to check (Exercise 11.3) that if the resolvent set ρ(L) is not empty, then L is

a closed operator. We also ask to check (Exercise 11.4) the following equality, known as
the resolvent identity

R(λ, L)−R(µ,L) = (µ− λ)R(λ, L)R(µ,L), ∀ λ, µ ∈ ρ(L). (11.2.3)

Theorem 11.2.2 (Hille–Yosida). The linear operator L : D(L) ⊂ X → X is the generator
of a C0-semigroup verifying estimate (11.1.1) iff the following conditions hold:

(i) D(L) is dense in X,

(ii) ρ(L) ⊃ {λ ∈ R : λ > ω},

(iii) ‖(R(λ, L))k‖L(X) ≤
M

(λ− ω)k
∀ k ∈ N, ∀ λ > ω.

(11.2.4)

Before stating the Lumer–Phillips Theorem, we define the dissipative operators.

Definition 11.2.3. A linear operator (L,D(L)) is called dissipative if

‖(λI − L)x‖ ≥ λ‖x‖

for all λ > 0, x ∈ D(L).

Theorem 11.2.4 (Lumer–Phillips). A densely defined and dissipative operator L on X is
closable and its closure is dissipative. Moreover, the following statements are equivalent.

(i) The closure of L generates a contraction C0-semigroup.

(ii) The range of λI − L is dense in X for some (hence all) λ > 0.
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11.3 Invariant measures

In our lectures we shall encounter semigroups defined in Lp spaces, i.e., X = Lp(Ω) where
(Ω,F , µ) is a measure space, with µ(Ω) <∞. A property that will play an important role
is the conservation of the mean value, namely∫

Ω
T (t)f dµ =

∫
Ω
f dµ ∀ t > 0, ∀f ∈ Lp(Ω).

In this case µ is called invariant for T (t). The following proposition gives an equiva-
lent condition for invariance, in terms of the generator of the semigroup rather than the
semigroup itself.

Proposition 11.3.1. Let {T (t) : t ≥ 0} be a strongly continuous semigroup with generator
L in Lp(Ω, µ), where (Ω, µ) is a measure space, p ∈ [1,+∞), and µ(Ω) <∞. Then∫

Ω
T (t)f dµ =

∫
Ω
f dµ ∀t > 0, ∀f ∈ Lp(Ω, µ) ⇐⇒

∫
Ω
Lf dµ = 0 ∀f ∈ D(L).

Proof. “⇒” Let f ∈ D(L). Then limt→0(T (t)f − f)/t = Lf in Lp(Ω, µ) and consequently
in L1(Ω, µ). Integrating we obtain∫

Ω
Lf dµ = lim

t→0

1

t

∫
Ω

(T (t)f − f)dµ = 0.

“⇐” Let f ∈ D(L). Then the function t 7→ T (t)f belongs to C1([0,+∞);Lp(Ω, µ)) and
d/dt T (t)f = LT (t)f , so that for every t ≥ 0,

d

dt

∫
X
T (t)f dµ =

∫
Ω
LT (t)f dµ = 0.

Therefore the function t 7→
∫
X T (t)f dµ is constant, and equal to

∫
X f dµ. The operator

Lp(Ω, µ)→ R, f 7→
∫

Ω(T (t)f − f)dµ, is bounded and vanishes on the dense subset D(L);
hence it vanishes in the whole Lp(Ω, µ).

11.4 Analytic semigroups

We recall now an important class of semigroups, the analytic semigroups generated by
sectorial operators. For the definition of sectorial operators we need that X is a complex
Banach space.

Definition 11.4.1. A linear operator L : D(L) ⊂ X → X is called sectorial if there are
ω ∈ R, θ ∈ (π/2, π), M > 0 such that

(i) ρ(L) ⊃ Sθ,ω := {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ},

(ii) ‖R(λ, L)‖L(X) ≤
M

|λ− ω|
∀λ ∈ Sθ,ω.

(11.4.1)
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Sectorial operators with dense domains are infinitesimal generators of semigroups with
noteworthy smoothing properties. The proof of the following theorem may be found in
[EN, Chapter 2], [L, Chapter 2].

Theorem 11.4.2. Let L be a sectorial operator with dense domain. Then it is the in-
finitesimal generator of a semigroup {T (t) : t ≥ 0} that enjoys the following properties.

(i) T (t)x ∈ D(Lk) for every t > 0, x ∈ X, k ∈ N.

(ii) There are M0, M1, M2, . . ., such that
(a) ‖T (t)‖L(X) ≤M0e

ωt, t > 0,

(b) ‖tk(L− ωI)kT (t)‖L(X) ≤Mke
ωt, t > 0,

(11.4.2)

where ω is the constant in (11.4.1).

(iii) The function t 7→ T (t) belongs to C∞((0,+∞);L(X)), and the equality

dk

dtk
T (t) = LkT (t), t > 0, (11.4.3)

holds.

(iv) The function t 7→ T (t) has a L(X)-valued holomorphic extension in a sector Sβ,0
with β > 0.

The name “analytic semigroup” comes from property (iv). If O is an open set in C,
and Y is a complex Banach space, a function f : O → Y is called holomorphic if it is
differentiable at every z0 ∈ O in the usual complex sense, i.e. there exists the limit

lim
z→z0

f(z)− f(z0)

z − z0
=: f ′(z0).

As in the scalar case, such functions are infinitely many times differentiable at every
z0 ∈ O, and the Taylor series

∑∞
k=0 f

(k)(z0)(z − z0)k/k! converges to f(z) for every z in a
neighborhood of z0.

We do not present the proof of this theorem, because in the case of Ornstein-Uhlenbeck
semigroup that will be discussed in the next lectures we shall provide direct proofs of the
relevant properties without relying on the above general results. A more general theory
of analytic semigroups, not necessarily strongly continuous at t = 0, is available, see [L].

11.4.1 Self-adjoint operators in Hilbert spaces

If X is a Hilbert space (inner product 〈·, ·〉, norm ‖ · ‖) then we can say more on semi-
groups and generators in connection to self-adjointness. Notice also that the dissipativity
condition can be rephrased in the Hilbert space as follows. An operator L : D(L)→ X is
dissipative iff (see Exercise 11.5)

Re 〈Lx, x〉 ≤ 0, ∀x ∈ D(L). (11.4.4)

Let us prove that any self-adjoint dissipative operator is sectorial.
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Proposition 11.4.3. Let L : D(L) ⊂ X → X be a self-adjoint dissipative operator. Then
L is sectorial with θ < π arbitrary and ω = 0.

Proof. Let us first show that the spectrum of L is real. If λ = a + ib ∈ C, for every
x ∈ D(L) we have

‖(λI − L)x‖2 = (a2 + b2)‖x‖2 − 2a〈x, Lx〉+ ‖Lx‖2 ≥ b2‖x‖2, (11.4.5)

hence if b 6= 0 then λI − L is injective. Let us check that in this case it is also surjective,
showing that its range is closed and dense in X. Let (xn) ⊂ D(L) be a sequence such that
the sequence (λxn − Lxn) is convergent. From the inequality

‖(λI − L)(xn − xm)‖2 ≥ b2‖xn − xm‖2, n, m ∈ N,

it follows that the sequence (xn) is a Cauchy sequence, hence (Lxn) as well. Therefore,
there are x, y ∈ X such that xn → x and Lxn → y. Since L is closed, x ∈ D(L) and
Lx = y, hence λxn − Lxn converges to λx− Lx ∈ rg (λI − L) and the range of λI − L is
closed.

Let now y be orthogonal to the range of (λI − L). Then, for every x ∈ D(L) we have
〈y, λx − Lx〉 = 0, whence y ∈ D(L?) = D(L) and λy − L?y = λy − Ly = 0. As λI − L
injective, y = 0 follows. Therefore the range of (λI − L) is dense in X.

From the dissipativity of L it follows that the spectrum of L is contained in (−∞, 0].
Indeed, if λ > 0 then for every x ∈ D(L) we have, instead of (11.4.5),

‖(λI − L)x‖2 = λ2‖x‖2 − 2λ〈x, Lx〉+ ‖Lx‖2 ≥ λ2‖x‖2, (11.4.6)

and arguing as above we deeduce λ ∈ ρ(L).

Let us now estimate ‖R(λ, L)‖, for λ = ρeiθ, with ρ > 0, −π < θ < π. For x ∈ X, set
u = R(λ, L)x. Multiplying the equality λu− Lu = x by e−iθ/2 and then taking the inner
product with u, we get

ρeiθ/2‖u‖2 − e−iθ/2〈Lu, u〉 = e−iθ/2〈x, u〉,

whence, taking the real part,

ρ cos(θ/2)‖u‖2 − cos(θ/2)〈Lu, u〉 = Re(e−iθ/2〈x, u〉) ≤ ‖x‖ ‖u‖

and then, as cos(θ/2) > 0, also

‖u‖ ≤ ‖x‖
|λ| cos(θ/2)

,

with θ = arg λ.

Proposition 11.4.4. Let {T (t) : t ≥ 0} be a C0-semigroup. The family of operators
{T ?(t) : t ≥ 0} is a C0-semigroup whose generator is L?.
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Proof. The semigroup law is immediately checked. Let us prove the strong continuity.
Possibly considering the rescaled semigroup e−ωtT (t) with M,ω as in (11.1.1), see Remark
11.1.8, we may assume that ‖T (t)‖L(X) ≤ M for every t ≥ 0, without loss of generality,
‖T (t)‖ = ‖T (t)?‖ ≤ 1 (see Exercise 11.6). For x ∈ X we have

‖T (t)?x− x‖2 = 〈T (t)?x− x, T (t)?x− x〉
= ‖T (t)?x‖2 + ‖x‖2 − 〈x, T (t)?x〉 − 〈T (t)?x, x〉
≤ 2‖x‖2 −

(
〈x, T (t)?x〉+ 〈T (t)?x, x〉

)
= 2‖x‖2 −

(
〈T (t)x, x〉+ 〈x, T (t)x〉

)
whence

lim sup
t→0

‖T (t)?x− x‖ = 0

by the strong continuity of T (t), and then T (·)?x is continuous at 0. By Lemma 11.1.2,
t 7→ T (t)?x is continuous on [0,∞) and {T (t)? : t ≥ 0} is a C0-semigroup. Denoting by
A its generator, for x ∈ D(L) and y ∈ D(A) we have

〈Lx, y〉 = lim
t→0
〈t−1(T (t)− I)x, y〉 = lim

t→0
〈x, t−1(T (t)? − I)y〉 = 〈x,Ay〉,

so that A ⊂ L?. Conversely, for y ∈ D(L?), x ∈ D(L) we have

〈x, T (t)?y − y〉 = 〈T (t)x− x, y〉 =

∫ t

0
〈LT (s)x, y〉 ds

=

∫ t

0
〈T (s)x, L?y〉 ds =

∫ t

0
〈x, T (s)?L?y〉 ds.

We deduce

T (t)?y − y =

∫ t

0
T (s)?L?y ds,

whence, dividing by t and letting t → 0 we get Ay = L?y for every y ∈ D(L?) and
consequently L? ⊂ A.

The following result is an immediate consequence of Proposition 11.4.4.

Corollary 11.4.5. The generator L is self-adjoint if and only if T (t) is self-adjoint for
every t > 0.

11.5 Exercises

Exercise 11.1. Let R be endowed with the Lebesgue measure λ1, and let f : [a, b]→ X
be a continuous function. Prove that it is Bochner integrable, that∫ b

a
f(t) dt = lim

n→∞

n∑
i=1

f(τi)
b− a
n
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for any choice of τi ∈
[
a+ (b−a)(i−1)

n , a+ (b−a)i
n

]
, i = 1, . . . , n (the sums in this approxi-

mation are the usual Riemann sums in the real-valued case) and that, setting

F (t) =

∫ t

a
f(s)ds, a ≤ t ≤ b,

the function F is continuously differentiable, with

F ′(t) = f(t), a ≤ t ≤ b.

Exercise 11.2. Prove that if u ∈ C([0,+∞);D(L))∩C1([0,+∞);X) is a solution of prob-
lem (11.1.3), then for t > 0 the function v(s) = T (t− s)u(s) is continuously differentiable
in [0, t] and it verifies v′(s) = −T (t− s)Lu(s) + T (t− s)u′(s) = 0 for 0 ≤ s ≤ t.

Exercise 11.3. Let L : D(L) ⊂ X → X be a linear operator. Prove that if ρ(L) 6= ∅ then
L is closed.

Exercise 11.4. Prove the resolvent identity (11.2.3).

Exercise 11.5. Prove that in Hilbert spaces the dissipativity condition in Definition 11.2.3
is equivalent to (11.4.4).

Exercise 11.6. Let {T (t) : t ≥ 0} be a bounded strongly continuous semigroup. Prove
that the norm

|x| := sup
t≥0
‖T (t)x‖

is equivalent to ‖ · ‖ and that T (t) is contractive on (X, | · |).
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