Lecture 11

Semigroups of Operators

In this Lecture we gather a few notions on one-parameter semigroups of linear operators, confining to the essential tools that are needed in the sequel. As usual, X is a real or complex Banach space, with norm $\|\cdot\|$. In this lecture Gaussian measures play no role.

11.1 Strongly continuous semigroups

Definition 11.1.1. Let $\{T(t): t \geq 0\}$ be a family of operators in $\mathcal{L}(X)$. We say that it is a semigroup if

 $T(0) = I$, $T(t + s) = T(t)T(s) \forall t, s \ge 0$.

A semigroup is called strongly continuous (or C_0 -semigroup) if for every $x \in X$ the function $T(\cdot)x : [0, \infty) \to X$ is continuous.

Let us present the most elementary properties of strongly continuous semigroups.

Lemma 11.1.2. Let $\{T(t): t \geq 0\} \subset \mathcal{L}(X)$ be a semigroup. The following properties hold:

(a) if there exist $\delta > 0$, $M \geq 1$ such that

$$
||T(t)|| \le M, \ 0 \le t \le \delta,
$$

then, setting $\omega = (\log M)/\delta$ we have

$$
||T(t)|| \le Me^{\omega t}, \ \ t \ge 0. \tag{11.1.1}
$$

Moreover, for every $x \in X$ the function $t \mapsto T(t)x$ is continuous in $[0, +\infty)$ iff it is continuous at 0.

(b) If $\{T(t): t \geq 0\}$ is strongly continuous, then for any $\delta > 0$ there is $M_{\delta} > 0$ such that

$$
||T(t)|| \le M_{\delta}, \ \forall t \in [0, \delta].
$$

Proof. (a) Using repeatedly the semigroup property in Definition 11.1.1 we get $T(t)$ = $T(\delta)^{n-1}T(t-(n-1)\delta)$ for $(n-1)\delta \leq t \leq n\delta$, whence $||T(t)|| \leq M^{n} \leq Me^{\omega t}$. Let $x \in X$ be such that $t \mapsto T(t)x$ is continuous at 0, i.e., $\lim_{h\to 0^+} T(h)x = x$. Using again the semigroup property in Definition 11.1.1 it is easily seen that for every $t > 0$ the equality $\lim_{h\to 0^+} T(t+h)x = T(t)x$ holds. Moreover,

$$
||T(t-h)x - T(t)x|| = ||T(t-h)(x - T(h)x)|| \le Me^{\omega(t-h)}||(x - T(h)x)||, \qquad 0 < h < t,
$$

whence $\lim_{h\to 0^+} T(t-h)x = T(t)x$. It follows that $t \mapsto T(t)x$ is continuous in $[0, +\infty)$. (b) Let $x \in X$. As $T(\cdot)x$ is continuous, for every $\delta > 0$ there is $M_{\delta,x} > 0$ such that

$$
||T(t)x|| \le M_{\delta,x}, \ \ \forall \ t \in [0,\delta].
$$

The statement follows from the Uniform Boundedness Principle, see e.g. [Br, Chapter 2] or [DS1, §II.1]. \Box

If (11.1.1) holds with $M = 1$ and $\omega = 0$ then the semigroups is said semigroup of contractions or contractive semigroup. From now on, $\{T(t): t \geq 0\}$ is a fixed strongly continuous semigroup.

Definition 11.1.3. The infinitesimal generator (or, shortly, the generator) of the semigroup $\{T(t): t \geq 0\}$ is the operator defined by

$$
D(L) = \left\{ x \in X : \exists \lim_{h \to 0^+} \frac{T(h) - I}{h} x \right\}, \quad Lx = \lim_{h \to 0^+} \frac{T(h) - I}{h} x.
$$

By definition, the vector Lx is the right derivative of the function $t \mapsto T(t)x$ at $t = 0$ and $D(L)$ is the subspace where such derivative exists. In general, $D(L)$ is not the whole X, but it is dense, as the next proposition shows.

Proposition 11.1.4. The domain $D(L)$ of the generator is dense in X.

Proof. Set

$$
M_{a,t}x = \frac{1}{t} \int_{a}^{a+t} T(s)x \, ds, \ a \ge 0, \ t > 0, \ x \in X
$$

(this is a X-valued Bochner integral). As the function $s \mapsto T(s)x$ is continuous, we have (see Exercise 11.1)

$$
\lim_{t \to 0} M_{a,t} x = T(a)x.
$$

In particular, $\lim_{t\to 0^+} M_{0,t}x = x$ for every $x \in X$. Let us show that for every $t > 0$, $M_{0,t}x \in D(L)$, which implies that the statement holds. We have

$$
\frac{T(h) - I}{h} M_{0,t}x = \frac{1}{ht} \left(\int_0^t T(h+s)x \, ds - \int_0^t T(s)x \, ds \right)
$$

$$
= \frac{1}{ht} \left(\int_h^{h+t} T(s)x \, ds - \int_0^t T(s)x \, ds \right)
$$

$$
= \frac{1}{ht} \left(\int_t^{h+t} T(s)x \, ds - \int_0^h T(s)x \, ds \right)
$$

$$
= \frac{M_{t,h}x - M_{0,h}x}{t}.
$$

Semigroups of Operators 135

Therefore, for every $x \in X$ we have $M_{0,t}x \in D(L)$ and

$$
LM_{0,t}x = \frac{T(t)x - x}{t}.
$$
\n(11.1.2)

$$
\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}
$$

Proposition 11.1.5. For every $t > 0$, $T(t)$ maps $D(L)$ into itself, and L and $T(t)$ commute on $D(L)$.

If $x \in D(L)$, then the function $T(\cdot)x$ is differentiable at every $t \geq 0$ and

$$
\frac{d}{dt}T(t)x = LT(t)x = T(t)Lx, \ t \ge 0.
$$

Proof. For every $x \in X$ and for every $h > 0$ we have

$$
\frac{T(h) - I}{h}T(t)x = T(t)\frac{T(h) - I}{h}x.
$$

If $x \in D(L)$, letting $h \to 0$ we obtain $T(t)x \in D(L)$ and $LT(t)x = T(t)Lx$.

Fix $t_0 \geq 0$ and let $h > 0$. We have

$$
\frac{T(t_0 + h)x - T(t_0)x}{h} = T(t_0)\frac{T(h) - I}{h}x \to T(t_0)Lx \text{ as } h \to 0^+.
$$

This shows that $T(\cdot)x$ is right differentiable at t_0 . Let us show that it is left differentiable, assuming $t_0 > 0$. If $h \in (0, t_0)$ we have

$$
\frac{T(t_0 - h)x - T(t_0)x}{-h} = T(t_0 - h)\frac{T(h) - I}{h}x \to T(t_0)Lx \text{ as } h \to 0^+,
$$

as

$$
\left\|T(t_0-h)\frac{T(h)-I}{h}x-T(t_0)Lx\right\| \le \left\|T(t_0-h)\left(\frac{T(h)-I}{h}x-Lx\right)\right| + \left\|(T(t_0-h)-T(t_0))Lx\right\|
$$

and $||T(t_0 - h)|| \le \sup_{0 \le t \le t_0} ||T(t)|| < \infty$ by Lemma 11.1.2. It follows that the function $t \mapsto T(t)x$ is differentiable at all $t \geq 0$ and its derivative is $T(t)Lx$, which is equal to $LT(t)x$ by the first part of the proof. \Box

Using Proposition 11.1.5 we prove that the generator L is a closed operator. Therefore, $D(L)$ is a Banach space with the graph norm $||x||_{D(L)} = ||x|| + ||Lx||$.

Proposition 11.1.6. The generator L of any strongly continuous semigroup is a closed operator.

Proof. Let (x_n) be a sequence in $D(L)$, and let $x, y \in X$ be such that $x_n \to x$, $Lx_n =$: $y_n \to y$. By Proposition 11.1.5 the function $t \mapsto T(t)x_n$ is continuously differentiable in $[0, \infty)$. Hence for $0 < h < 1$ we have (see Exercise 11.1)

$$
\frac{T(h) - I}{h}x_n = \frac{1}{h} \int_0^h LT(t)x_n dt = \frac{1}{h} \int_0^h T(t)y_n dt,
$$

and then

$$
\left\| \frac{T(h) - I}{h} x - y \right\| \le \left\| \frac{T(h) - I}{h} (x - x_n) \right\| + \left\| \frac{1}{h} \int_0^h T(t) (y_n - y) dt \right\| + \left\| \frac{1}{h} \int_0^h T(t) y dt - y \right\|
$$

$$
\le \frac{C + 1}{h} \|x - x_n\| + C \|y_n - y\| + \left\| \frac{1}{h} \int_0^h T(t) y dt - y \right\|,
$$

where $C = \sup_{0 \le t \le 1} ||T(t)||$. Given $\varepsilon > 0$, there is h_0 such that for $0 < h \le h_0$ we have $\| \int_0^h T(t)ydt/h - y \| \leq \varepsilon/3$. For $h \in (0, h_0]$, take n such that $\|x - x_n\| \leq \varepsilon h/3(C+1)$ and $||y_n - y|| \leq \varepsilon/3C$: we get $||\frac{T(h)-I}{h}||$ $\frac{y-1}{h}x - y$ $\leq \varepsilon$ and therefore $x \in D(L)$ and $y = Lx$, i.e., the operator L is closed. \Box

Proposition 11.1.5 implies that for any $x \in D(L)$ the function $u(t) = T(t)x$ is differentiable for $t \geq 0$ and it solves the Cauchy problem

$$
\begin{cases}\n u'(t) = Lu(t), & t \ge 0, \\
 u(0) = x.\n\end{cases}
$$
\n(11.1.3)

Lemma 11.1.7. For every $x \in D(L)$, the function $u(t) := T(t)x$ is the unique solution of (11.1.3) belonging to $C([0, +\infty); D(L)) \cap C^1([0, +\infty); X)$.

Proof. From Proposition 11.1.5 we know that $u'(t) = T(t)Lx$ for every $t \geq 0$, and then $u' \in C([0, +\infty); X)$. Therefore, $u \in C^1([0, +\infty); X)$. Since $D(L)$ is endowed with the graph norm, a function $u : [0, +\infty) \to D(L)$ is continuous iff both u and Lu are continuous. In our case, both u and $Lu = u'$ belong to $C([0, +\infty); X)$, and then $u \in C([0, +\infty); D(L))$.

Let us prove that (11.1.3) has a unique solution in $C([0, +\infty); D(L)) \cap C^1([0, +\infty); X)$. If $u \in C([0,+\infty); D(L)) \cap C^1([0,+\infty);X)$ is any solution, we fix $t > 0$ and define the function

$$
v(s) := T(t - s)u(s), \quad 0 \le s \le t.
$$

Then (Exercise 11.2) v is differentiable, and $v'(s) = -T(t-s)Lu(s) + T(t-s)u'(s) = 0$ for $0 \leq s \leq t$, whence $v(t) = v(0)$, i.e., $u(t) = T(t)x$. \Box

Remark 11.1.8. If $\{T(t): t \geq 0\}$ is a C_0 -semigroup with generator L, then for every $\lambda \in \mathbb{C}$ the family of operators

$$
S(t) = e^{\lambda t} T(t), \quad t \ge 0,
$$

is a C_0 -semigroup as well, with generator $L + \lambda I : D(L) \to X$. The semigroup property is obvious. Concerning the generator, for every $x \in X$ we have

$$
\frac{S(h)x - x}{h} = e^{\lambda h} \frac{T(h) - x}{h} + \frac{e^{\lambda h}x - x}{h}
$$

and then

$$
\lim_{h \to 0^+} \frac{S(h)x - x}{h} = \lim_{h \to 0^+} e^{\lambda h} \frac{T(h) - x}{h} + \frac{e^{\lambda h} x - x}{h} = Lx + \lambda x
$$

iff $x \in D(L)$.

Semigroups of Operators 137

Let $\{T(t): t \geq 0\}$ be a strongly continuous semigroup. Characterising the domain of its generator L may be difficult. However, for many proofs it is enough to know that "good" elements x are dense in $D(L)$. A subspace $D \subset D(L)$ is called a *core* of L if D is dense in $D(L)$ with respect to the graph norm. The following proposition gives an easily checkable sufficient condition in order that D is a core.

Lemma 11.1.9. If $D \subset D(L)$ is a dense subspace of X and $T(t)(D) \subset D$ for every $t \geq 0$, then D is a core.

Proof. Let M, ω be such that $||T(t)|| \le Me^{\omega t}$ for every $t > 0$. For $x \in D(L)$ we have

$$
Lx = \lim_{t \to 0} \frac{1}{t} \int_0^t T(s) Lx \, ds.
$$

Let $(x_n) \subset D$ be a sequence such that $\lim_{n \to \infty} x_n = x$. Set

$$
y_{n,t} = \frac{1}{t} \int_0^t T(s)x_n \, ds = \frac{1}{t} \int_0^t T(s)(x_n - x) \, ds + \frac{1}{t} \int_0^t T(s)x \, ds.
$$

As the $D(L)$ -valued function $s \mapsto T(s)x_n$ is continuous in $[0, +\infty)$, the vector $\int_0^t T(s)x_n ds$ belongs to $D(L)$. Moreover, it is the limit of the Riemann sums of elements of D (see Exercise 11.1), hence it belongs to the closure of D in $D(L)$. Therefore, $y_{n,t}$ belongs to the closure of D in $D(L)$ for every n and t. Furthermore,

$$
||y_{n,t} - x|| \le ||\frac{1}{t} \int_0^t T(s)(x_n - x) ds|| + ||\frac{1}{t} \int_0^t T(s)x ds - x||
$$

tends to 0 as $t \to 0$, $n \to \infty$. By (11.1.2) we have

$$
Ly_{n,t} - Lx = \frac{T(t)(x_n - x) - (x_n - x)}{t} + \frac{1}{t} \int_0^t T(s) Lx \, ds - Lx.
$$

Given $\varepsilon > 0$, fix $\tau > 0$ such that

$$
\left\|\frac{1}{\tau}\int_0^\tau T(s)Lx\,ds - Lx\right\| \leq \varepsilon,
$$

and then take $n \in \mathbb{N}$ such that $(Me^{\omega \tau} + 1) \|x_n - x\| / \tau \leq \varepsilon$. Therefore, $||Ly_{n,\tau} - Lx|| \leq 2\varepsilon$ and the statement follows. \Box

11.2 Generation Theorems

In this section we recall the main generation theorems for C_0 -semigroups. The most general result is the classical Hille–Yosida Theorem, which gives a complete characterisation of the generators. For *contractive* semigroups, i.e., semigroups verifying the estimate $||T(t)|| \le$ 1 for all $t \geq 0$, the characterisation of the generators provided by the Lumer-Phillips Theorem is often useful. We do not present here the proofs of these results, referring e.g. to [EN, §II.3].

First, we recall the definition of *spectrum* and *resolvent*. The natural setting for spectral theory is that of complex Banach spaces, hence if X is real we replace it by its complexification $X = \{x + iy : x, y \in X\}$ endowed with the norm

$$
||x+iy||_{\tilde{X}} := \sup_{-\pi \le \theta \le \pi} ||x \cos \theta + y \sin \theta||
$$

(notice that the seemingly more natural "Euclidean norm" $(\|x\|^2 + \|y\|^2)^{1/2}$ is not a norm in general).

Definition 11.2.1. Let $L : D(L) \subset X \to X$ be a linear operator. The resolvent set $\rho(L)$ and the spectrum $\sigma(L)$ of L are defined by

$$
\rho(L) = \{ \lambda \in \mathbb{C} : \exists (\lambda I - L)^{-1} \in \mathcal{L}(X) \}, \ \sigma(L) = \mathbb{C} \backslash \rho(L). \tag{11.2.1}
$$

The complex numbers $\lambda \in \sigma(L)$ such that $\lambda I - L$ is not injective are the eigenvalues, and the vectors $x \in D(L)$ such that $Lx = \lambda x$ are the eigenvectors (or eigenfunctions, when X is a function space). The set $\sigma_p(L)$ whose elements are all the eigenvalues of L is the point spectrum.

For $\lambda \in \rho(L)$, we set

$$
R(\lambda, L) := (\lambda I - L)^{-1}.\tag{11.2.2}
$$

The operator $R(\lambda, L)$ is the *resolvent operator* or briefly *resolvent*.

We ask to check (Exercise 11.3) that if the resolvent set $\rho(L)$ is not empty, then L is a closed operator. We also ask to check (Exercise 11.4) the following equality, known as the resolvent identity

$$
R(\lambda, L) - R(\mu, L) = (\mu - \lambda)R(\lambda, L)R(\mu, L), \quad \forall \lambda, \mu \in \rho(L). \tag{11.2.3}
$$

Theorem 11.2.2 (Hille–Yosida). The linear operator $L : D(L) \subset X \to X$ is the generator of a C_0 -semigroup verifying estimate (11.1.1) iff the following conditions hold:

$$
\begin{cases}\n(i) & D(L) \text{ is dense in } X, \\
(ii) & \rho(L) \supset \{\lambda \in \mathbb{R} : \lambda > \omega\}, \\
(iii) & \|(R(\lambda, L))^k\|_{\mathcal{L}(X)} \le \frac{M}{(\lambda - \omega)^k} \quad \forall \ k \in \mathbb{N}, \ \forall \ \lambda > \omega.\n\end{cases}
$$
\n(11.2.4)

Before stating the Lumer–Phillips Theorem, we define the *dissipative* operators.

Definition 11.2.3. A linear operator $(L, D(L))$ is called dissipative if

$$
\|(\lambda I - L)x\| \ge \lambda \|x\|
$$

for all $\lambda > 0$, $x \in D(L)$.

Theorem 11.2.4 (Lumer–Phillips). A densely defined and dissipative operator L on X is closable and its closure is dissipative. Moreover, the following statements are equivalent.

- (i) The closure of L generates a contraction C_0 -semigroup.
- (ii) The range of $\lambda I L$ is dense in X for some (hence all) $\lambda > 0$.

11.3 Invariant measures

In our lectures we shall encounter semigroups defined in L^p spaces, i.e., $X = L^p(\Omega)$ where $(\Omega, \mathscr{F}, \mu)$ is a measure space, with $\mu(\Omega) < \infty$. A property that will play an important role is the conservation of the mean value, namely

$$
\int_{\Omega} T(t) f d\mu = \int_{\Omega} f d\mu \qquad \forall t > 0, \ \forall f \in L^{p}(\Omega).
$$

In this case μ is called *invariant* for $T(t)$. The following proposition gives an equivalent condition for invariance, in terms of the generator of the semigroup rather than the semigroup itself.

Proposition 11.3.1. Let $\{T(t): t \geq 0\}$ be a strongly continuous semigroup with generator L in $L^p(\Omega,\mu)$, where (Ω,μ) is a measure space, $p \in [1,+\infty)$, and $\mu(\Omega) < \infty$. Then

$$
\int_{\Omega} T(t) f d\mu = \int_{\Omega} f d\mu \ \forall t > 0, \ \forall f \in L^{p}(\Omega, \mu) \ \iff \int_{\Omega} Lf d\mu = 0 \ \forall f \in D(L).
$$

Proof. " \Rightarrow " Let $f \in D(L)$. Then $\lim_{t\to 0}(T(t)f - f)/t = Lf$ in $L^p(\Omega, \mu)$ and consequently in $L^1(\Omega,\mu)$. Integrating we obtain

$$
\int_{\Omega} Lf d\mu = \lim_{t \to 0} \frac{1}{t} \int_{\Omega} (T(t)f - f) d\mu = 0.
$$

" \Leftarrow " Let $f \in D(L)$. Then the function $t \mapsto T(t)f$ belongs to $C^1([0, +\infty); L^p(\Omega, \mu))$ and $d/dt T(t) f = LT(t) f$, so that for every $t \geq 0$,

$$
\frac{d}{dt} \int_X T(t) f \, d\mu = \int_{\Omega} LT(t) f \, d\mu = 0.
$$

Therefore the function $t \mapsto \int_X T(t)f d\mu$ is constant, and equal to $\int_X f d\mu$. The operator $L^p(\Omega,\mu) \to \mathbb{R}, f \mapsto \int_{\Omega} (T(t)\tilde{f} - f)d\mu$, is bounded and vanishes on the dense subset $D(L)$; hence it vanishes in the whole $L^p(\Omega,\mu)$. \Box

11.4 Analytic semigroups

We recall now an important class of semigroups, the analytic semigroups generated by sectorial operators. For the definition of sectorial operators we need that X is a complex Banach space.

Definition 11.4.1. A linear operator $L : D(L) \subset X \to X$ is called sectorial if there are $\omega \in \mathbb{R}, \theta \in (\pi/2, \pi), M > 0$ such that

$$
\begin{cases}\n(i) & \rho(L) \supset S_{\theta,\omega} := \{\lambda \in \mathbb{C} : \lambda \neq \omega, |\arg(\lambda - \omega)| < \theta\}, \\
(ii) & \|R(\lambda, L)\|_{\mathcal{L}(X)} \le \frac{M}{|\lambda - \omega|} \quad \forall \lambda \in S_{\theta,\omega}.\n\end{cases}
$$
\n(11.4.1)

Sectorial operators with dense domains are infinitesimal generators of semigroups with noteworthy smoothing properties. The proof of the following theorem may be found in [EN, Chapter 2], [L, Chapter 2].

Theorem 11.4.2. Let L be a sectorial operator with dense domain. Then it is the infinitesimal generator of a semigroup $\{T(t): t \geq 0\}$ that enjoys the following properties.

- (i) $T(t)x \in D(L^k)$ for every $t > 0$, $x \in X$, $k \in \mathbb{N}$.
- (ii) There are M_0 , M_1 , M_2 , ..., such that

$$
\begin{cases}\n(a) & \|T(t)\|_{\mathcal{L}(X)} \le M_0 e^{\omega t}, \ t > 0, \\
(b) & \|t^k (L - \omega I)^k T(t)\|_{\mathcal{L}(X)} \le M_k e^{\omega t}, \ t > 0,\n\end{cases}
$$
\n(11.4.2)

where ω is the constant in (11.4.1).

(iii) The function $t \mapsto T(t)$ belongs to $C^{\infty}((0, +\infty); \mathcal{L}(X))$, and the equality

$$
\frac{d^k}{dt^k}T(t) = L^k T(t), \ \ t > 0,\tag{11.4.3}
$$

holds.

(iv) The function $t \mapsto T(t)$ has a $\mathcal{L}(X)$ -valued holomorphic extension in a sector $S_{\beta,0}$ with $\beta > 0$.

The name "analytic semigroup" comes from property (iv). If $\mathcal O$ is an open set in $\mathbb C$, and Y is a complex Banach space, a function $f: \mathcal{O} \to Y$ is called holomorphic if it is differentiable at every $z_0 \in \mathcal{O}$ in the usual complex sense, i.e. there exists the limit

$$
\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0).
$$

As in the scalar case, such functions are infinitely many times differentiable at every $z_0 \in \mathcal{O}$, and the Taylor series $\sum_{k=0}^{\infty} f^{(k)}(z_0)(z-z_0)^k/k!$ converges to $f(z)$ for every z in a neighborhood of z_0 .

We do not present the proof of this theorem, because in the case of Ornstein-Uhlenbeck semigroup that will be discussed in the next lectures we shall provide direct proofs of the relevant properties without relying on the above general results. A more general theory of analytic semigroups, not necessarily strongly continuous at $t = 0$, is available, see [L].

11.4.1 Self-adjoint operators in Hilbert spaces

If X is a Hilbert space (inner product $\langle \cdot, \cdot \rangle$, norm $\|\cdot\|$) then we can say more on semigroups and generators in connection to self-adjointness. Notice also that the dissipativity condition can be rephrased in the Hilbert space as follows. An operator $L : D(L) \to X$ is dissipative iff (see Exercise 11.5)

$$
Re \langle Lx, x \rangle \le 0, \quad \forall x \in D(L). \tag{11.4.4}
$$

Let us prove that any self-adjoint dissipative operator is sectorial.

Proposition 11.4.3. Let $L : D(L) \subset X \to X$ be a self-adjoint dissipative operator. Then L is sectorial with $\theta < \pi$ arbitrary and $\omega = 0$.

Proof. Let us first show that the spectrum of L is real. If $\lambda = a + ib \in \mathbb{C}$, for every $x \in D(L)$ we have

$$
\|(\lambda I - L)x\|^2 = (a^2 + b^2)\|x\|^2 - 2a\langle x, Lx \rangle + \|Lx\|^2 \ge b^2\|x\|^2,\tag{11.4.5}
$$

hence if $b \neq 0$ then $\lambda I - L$ is injective. Let us check that in this case it is also surjective, showing that its range is closed and dense in X. Let $(x_n) \subset D(L)$ be a sequence such that the sequence $(\lambda x_n - Lx_n)$ is convergent. From the inequality

$$
||(\lambda I - L)(x_n - x_m)||^2 \ge b^2 ||x_n - x_m||^2, \ \ n, m \in \mathbb{N},
$$

it follows that the sequence (x_n) is a Cauchy sequence, hence (Lx_n) as well. Therefore, there are $x, y \in X$ such that $x_n \to x$ and $Lx_n \to y$. Since L is closed, $x \in D(L)$ and $Lx = y$, hence $\lambda x_n - Lx_n$ converges to $\lambda x - Lx \in$ rg $(\lambda I - L)$ and the range of $\lambda I - L$ is closed.

Let now y be orthogonal to the range of $(\lambda I - L)$. Then, for every $x \in D(L)$ we have $\langle y, \lambda x - Lx \rangle = 0$, whence $y \in D(L^*) = D(L)$ and $\overline{\lambda}y - L^*y = \overline{\lambda}y - Ly = 0$. As $\overline{\lambda}I - L$ injective, $y = 0$ follows. Therefore the range of $(\lambda I - L)$ is dense in X.

From the dissipativity of L it follows that the spectrum of L is contained in $(-\infty, 0]$. Indeed, if $\lambda > 0$ then for every $x \in D(L)$ we have, instead of (11.4.5),

$$
\|(\lambda I - L)x\|^2 = \lambda^2 \|x\|^2 - 2\lambda \langle x, Lx \rangle + \|Lx\|^2 \ge \lambda^2 \|x\|^2,
$$
 (11.4.6)

and arguing as above we deeduce $\lambda \in \rho(L)$.

Let us now estimate $||R(\lambda, L)||$, for $\lambda = \rho e^{i\theta}$, with $\rho > 0$, $-\pi < \theta < \pi$. For $x \in X$, set $u = R(\lambda, L)x$. Multiplying the equality $\lambda u - Lu = x$ by $e^{-i\theta/2}$ and then taking the inner product with u , we get

$$
\rho e^{i\theta/2} \|u\|^2 - e^{-i\theta/2} \langle Lu, u \rangle = e^{-i\theta/2} \langle x, u \rangle,
$$

whence, taking the real part,

$$
\rho \cos(\theta/2) \|u\|^2 - \cos(\theta/2) \langle Lu, u \rangle = \text{Re}(e^{-i\theta/2} \langle x, u \rangle) \le \|x\| \|u\|
$$

and then, as $\cos(\theta/2) > 0$, also

$$
||u|| \le \frac{||x||}{|\lambda|\cos(\theta/2)},
$$

with $\theta = \arg \lambda$.

Proposition 11.4.4. Let $\{T(t): t \geq 0\}$ be a C_0 -semigroup. The family of operators ${T[*](t): t \ge 0}$ is a C_0 -semigroup whose generator is $L[*]$.

 \Box

Proof. The semigroup law is immediately checked. Let us prove the strong continuity. Possibly considering the rescaled semigroup $e^{-\omega t}T(t)$ with M, ω as in (11.1.1), see Remark 11.1.8, we may assume that $||T(t)||_{\mathcal{L}(X)} \leq M$ for every $t \geq 0$, without loss of generality, $||T(t)|| = ||T(t)^*|| \le 1$ (see Exercise 11.6). For $x \in X$ we have

$$
||T(t)^{\star}x - x||^{2} = \langle T(t)^{\star}x - x, T(t)^{\star}x - x \rangle
$$

\n
$$
= ||T(t)^{\star}x||^{2} + ||x||^{2} - \langle x, T(t)^{\star}x \rangle - \langle T(t)^{\star}x, x \rangle
$$

\n
$$
\leq 2||x||^{2} - (\langle x, T(t)^{\star}x \rangle + \langle T(t)^{\star}x, x \rangle)
$$

\n
$$
= 2||x||^{2} - (\langle T(t)x, x \rangle + \langle x, T(t)x \rangle)
$$

whence

$$
\limsup_{t \to 0} ||T(t)^{\star}x - x|| = 0
$$

by the strong continuity of $T(t)$, and then $T(\cdot) \star x$ is continuous at 0. By Lemma 11.1.2, $t \mapsto T(t)^{\star}x$ is continuous on $[0,\infty)$ and $\{T(t)^{\star}: t \geq 0\}$ is a C_0 -semigroup. Denoting by A its generator, for $x \in D(L)$ and $y \in D(A)$ we have

$$
\langle Lx, y \rangle = \lim_{t \to 0} \langle t^{-1}(T(t) - I)x, y \rangle = \lim_{t \to 0} \langle x, t^{-1}(T(t)^{\star} - I)y \rangle = \langle x, Ay \rangle,
$$

so that $A \subset L^*$. Conversely, for $y \in D(L^*)$, $x \in D(L)$ we have

$$
\langle x, T(t)^{\star}y - y \rangle = \langle T(t)x - x, y \rangle = \int_0^t \langle LT(s)x, y \rangle ds
$$

=
$$
\int_0^t \langle T(s)x, L^{\star}y \rangle ds = \int_0^t \langle x, T(s)^{\star}L^{\star}y \rangle ds.
$$

We deduce

$$
T(t)^{\star}y - y = \int_0^t T(s)^{\star} L^{\star}y \, ds,
$$

whence, dividing by t and letting $t \to 0$ we get $Ay = L^*y$ for every $y \in D(L^*)$ and consequently $L^* \subset A$. \Box

The following result is an immediate consequence of Proposition 11.4.4.

Corollary 11.4.5. The generator L is self-adjoint if and only if $T(t)$ is self-adjoint for every $t > 0$.

11.5 Exercises

Exercise 11.1. Let R be endowed with the Lebesgue measure λ_1 , and let $f : [a, b] \to X$ be a continuous function. Prove that it is Bochner integrable, that

$$
\int_{a}^{b} f(t) dt = \lim_{n \to \infty} \sum_{i=1}^{n} f(\tau_i) \frac{b-a}{n}
$$

Semigroups of Operators 143

for any choice of $\tau_i \in \left[a + \frac{(b-a)(i-1)}{n}\right]$ $\frac{a}{n}, a + \frac{(b-a)i}{n}$ $\left\lfloor \frac{-a}{n} \right\rfloor$, $i = 1, \ldots, n$ (the sums in this approximation are the usual Riemann sums in the real-valued case) and that, setting

$$
F(t) = \int_{a}^{t} f(s)ds, \quad a \le t \le b,
$$

the function F is continuously differentiable, with

$$
F'(t) = f(t), \quad a \le t \le b.
$$

Exercise 11.2. Prove that if $u \in C([0, +\infty); D(L)) \cap C^1([0, +\infty); X)$ is a solution of problem (11.1.3), then for $t > 0$ the function $v(s) = T(t - s)u(s)$ is continuously differentiable in [0, t] and it verifies $v'(s) = -T(t-s)Lu(s) + T(t-s)u'(s) = 0$ for $0 \le s \le t$.

Exercise 11.3. Let $L : D(L) \subset X \to X$ be a linear operator. Prove that if $\rho(L) \neq \emptyset$ then L is closed.

Exercise 11.4. Prove the resolvent identity (11.2.3).

Exercise 11.5. Prove that in Hilbert spaces the dissipativity condition in Definition 11.2.3 is equivalent to (11.4.4).

Exercise 11.6. Let $\{T(t): t \geq 0\}$ be a bounded strongly continuous semigroup. Prove that the norm

$$
|x|:=\sup_{t\geq 0}\|T(t)x\|
$$

is equivalent to $\|\cdot\|$ and that $T(t)$ is contractive on $(X, |\cdot|)$.

Bibliography

- [Br] H. Brezis: Functional Analysis, Sobolev spaces and partial differential equations, Springer, 2011.
- [DS1] N. DUNFORD, J. T. SCHWARTZ: Linear operators I, Wiley, 1958.
- [EN] K. Engel, R. Nagel: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 1999.
- [L] A. LUNARDI: Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, 1995. Second edition, Modern Birkhäuser Classics, 2013.
- [Y] K. YOSIDA: Functional Analysis, 6^{th} ed., Springer, 1980.