
142 Lecture 11

Proposition 11.4.4. Let {T (t) : t � 0} be a C0-semigroup. The family of operators
{T (t)? : t � 0} is a C0-semigroup whose generator is L

?.

Proof. The semigroup law is immediately checked. Let us prove the strong continuity.
Recall that by (11.1.1) we have kT (t)k = kT (t)?k  Me

!t, where we may assume ! > 0.
First, notice that T (t)?x ! x weakly for every x 2 X as t ! 0. Indeed, by the strong
continuity of T (t) we have hT (t)?x, yi = hx, T (t)yi ! hx, yi as t ! 0 for every y 2 X.
From the estimate
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Therefore, for t > 0 and 0 < h < t we infer
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Taking the supremum on kyk = 1, we deduce

lim
h!0
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k = 0. (11.4.7)

Since by linearity and an "/3 argument the set where (11.4.7) holds is a weakly closed
subspace Y , containing x

t

for all t > 0. Since for any x 2 X, x
t

! x weakly as t ! 0, we
conclude that Y = X and that T (t)? is strongly continuous. Denoting by A its generator,
for x 2 D(L) and y 2 D(A) we have
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so that A ⇢ L

?. Conversely, for y 2 D(L?), x 2 D(L) we have
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We deduce

T (t)?y � y =

Z

t

0
T (s)?L?

y ds,

whence, dividing by t and letting t ! 0 we get Ay = L

?

y for every y 2 D(L?) and
consequently L

?

⇢ A.


