Solution to the Exercises of Lecture 10

Team Salerno

Exercise 10.1: Prove that for $f \in \mathcal{F}C_b^1(X)$

$$\nabla_H \mathbb{E}_n f(x) = \int_X P_n \nabla_H f(P_n x + (I - P_n) y) \gamma(dy), \quad \forall x \in X,$$

holds.

PROOF: Let us recall, by (7.4.1), that

$$\mathbb{E}_n f(x) = \int_X f(P_n x + (I - P_n)y) \,\gamma(dy), \quad x \in X,$$

where $P_n x = \sum_{j=1}^n \hat{h}_j(x) h_j$, $n \in \mathbb{N}$, $x \in X$, with $h_j = R_\gamma \hat{h}_j$ an orthonormal basis of the Cameron-Martin space H.

So, by the dominated convergence theorem, one obtains

$$\partial_j \mathbb{E}_n f(x) = \int_X \frac{\partial f}{\partial h_j} (P_n x + (I - P_n)y) \gamma(dy)$$

for $j \leq n$. Since for every $y \in X$ the directional derivatives along all h_j of the function $f(P_n \cdot + (I - P_n)y)$ vanish for j > n, it follows from (9.3.2) that

$$\nabla_{H}\mathbb{E}_{n}f(x) = \sum_{j=1}^{\infty} \partial_{j}\mathbb{E}_{n}f(x)h_{j}$$

$$= \sum_{j=1}^{n} \int_{X} \frac{\partial f}{\partial h_{j}}(P_{n}x + (I - P_{n})y)h_{j}\gamma(dy)$$

$$= \int_{X} \sum_{j=1}^{n} \frac{\partial f}{\partial h_{j}}(P_{n}x + (I - P_{n})y)h_{j}\gamma(dy)$$

$$= \int_{X} P_{n}\nabla_{H}f(P_{n}x + (I - P_{n})y)\gamma(dy), \quad x \in X.$$

Exercise 10.2: Prove that if $f \in \mathcal{F}C^1(X) \cap L^p(X,\gamma)$, $1 \leq p < \infty$ and $\nabla_H f \in L^p(X,\gamma,H)$ then $f \in W^{1,p}(X,\gamma)$.

PROOF: There exists $\varphi \in C^1(\mathbb{R}^n)$, $n \ge 1, l_1, \ldots, l_n \in X^*$ such that

$$f(x) = \varphi(l_1(x), \dots, l_n(x)), \quad x \in X.$$

Consider $\eta \in C_c^1(\mathbb{R}^n)$ such that $\chi_{B(1)} \leq \eta \leq \chi_{B(2)}$ where B(1) and B(2) are the centred open balls of radius 1 and 2 respectively. Now, for $m \geq 1$ and $y \in \mathbb{R}^n$, we set $\eta_m(y) = \eta(\frac{y}{m})$ and $\varphi_m(y) = \eta_m(y)\varphi(y)$. It is obvious that $\varphi_m \in C_b^1(\mathbb{R}^n)$, and hence

$$f_m(\cdot) = \varphi_m(l_1(\cdot), \dots, l_n(\cdot)) \in \mathcal{F}C_b^1(X).$$

Since $\lim_{m\to\infty} \eta_m(y) = 1$ and $0 \le \eta_m(y) \le 1$, it follows that for every $x \in X$,

$$\lim_{m \to \infty} f_m(x) = f(x) \text{ and}$$
$$|f_m(x)| \leq |f(x)|.$$

So, by the dominated convergence theorem one obtains $f_m \longrightarrow f$ in $L^p(X, \gamma)$. On the other hand, for $v \in X$, we have

$$\begin{aligned} f'_m(x)(v) &= \langle \nabla \varphi_m(l(x)), l(v) \rangle_{\mathbb{R}^n} \\ &= \frac{\varphi(l(x))}{m} \langle \nabla \eta(l(x)/m), l(v) \rangle_{\mathbb{R}^n} + \eta_m(l(x)) \langle \nabla \varphi(l(x)), l(v) \rangle_{\mathbb{R}^n} \\ &= \frac{f(x)}{m} \langle \nabla \eta(l(x)/m), l(v) \rangle_{\mathbb{R}^n} + \eta_m(l(x)) f'(x)(v), \end{aligned}$$

where $l(v) = (l_1(v), \ldots, l_n(v))$. Thus, by Lemma 9.3.4, we have

$$\begin{aligned} |\nabla_{H}f_{m}(x) - \nabla_{H}f(x)|_{H} \\ &= |f'_{m}(x)(\cdot) - f'(x)(\cdot)|_{L^{2}(X,\gamma)} \\ &= \left| (\eta_{m}(l(x)) - 1)f'(x)(\cdot) + \frac{f(x)}{m} \langle \nabla \eta(l(x)/m), l(\cdot) \rangle_{\mathbb{R}^{n}} \right|_{L^{2}(X,\gamma)} \\ &\leq |\eta_{m}(l(x)) - 1| |f'(x)|_{L^{2}(X,\gamma)} + \frac{M \|\nabla \eta\|_{\infty}}{m} |f(x)|, \end{aligned}$$

where $M^2 = \int_{\mathbb{R}^n} |y|^2 (\gamma \circ l^{-1})(dy) < \infty$. Hence, $\nabla_H f_m(x) \longrightarrow \nabla_H f(x)$ in H. Moreover

$$\begin{aligned} |\nabla_H f_m(x)|_H &= |f'_m(x)|_{L^2(X,\gamma)} &\leq \eta_m(l(x))|f'(x)|_{L^2(X,\gamma)} + \frac{M \|\nabla\eta\|_{\infty}}{m} |f(x)| \\ &\leq |\nabla_H f(x)|_H + M \|\nabla\eta\|_{\infty} |f(x)| \end{aligned}$$

Applying the dominated convergence theorem one obtains that $\nabla_H f_m$ converges to $\nabla_H f$ in $L^p(X, \gamma, H)$. Thus, $f \in W^{1,p}(X, \gamma)$. **Exercise 10.3:** Prove that if $f \in W^{1,p}(X, \gamma)$ then f^+ , f^- , $|f| \in W^{1,p}(X, \gamma)$ as well. Compute $\nabla_H f^+$, $\nabla_H f^-$, $\nabla_H |f|$ and deduce that $\nabla_H f = 0$ a.e. on $\{f = c\}$ for every $c \in \mathbb{R}$.

PROOF: Let us recall first that $f^+ = \sup(f, 0)$ and $f^- = \sup(-f, 0)$. Consider the functions

$$\theta_{\epsilon}(s) = \begin{cases} \sqrt{s^2 + \epsilon^2} - \epsilon & \text{if } s > 0, \\ 0 & \text{if } s \le 0, \end{cases}$$

where $\epsilon > 0$, and $\eta \in C_c^{\infty}(\mathbb{R})$ with $0 \le \eta \le 1$, $\eta(s) = 1$ for $|s| \le 1$, and $\eta(s) = 0$ if $|s| \ge 2$.

So, the function $\psi_n(s) := \eta_n(s)\theta_{\epsilon}(s)$ belongs to $C_b^1(\mathbb{R})$, where $\eta_n(s) := \eta(s/n)$. Applying Proposition 9.3.10.(ii), we deduce that $\psi_n \circ f \in W^{1,p}(X,\gamma)$, and

$$\nabla_H(\psi_n \circ f) = \psi'_n(f) \nabla_H f = (\eta'_n(f)\theta_\epsilon(f) + \eta_n(f)\theta'_\epsilon(f)) \nabla_H f.$$

Thus,

$$\lim_{n \to \infty} (\psi_n \circ f)(x) = (\theta_{\epsilon} \circ f)(x), \text{ and } \lim_{n \to \infty} \nabla_H (\psi_n \circ f)(x) = \theta'_{\epsilon}(f(x)) \nabla_H f(x)$$
for γ -a.e. $x \in X$. Moreover, $|\psi_n \circ f| \le |\theta_{\epsilon} \circ f| \le |f|$, and

$$\begin{aligned} |\nabla_H(\psi_n \circ f)|_H &\leq \frac{\|\eta'\|_{\infty}}{n} \chi_{[n < |f| < 2n]} \theta_{\epsilon}(f) |\nabla_H f|_H + \theta_{\epsilon}'(f) |\nabla_H f|_H \\ &\leq (2\|\eta'\|_{\infty} + 1) |\nabla_H f|_H. \end{aligned}$$

Hence, by the dominated convergence theorem, we have $\theta_{\epsilon} \circ f \in W^{1,p}(X,\gamma)$ and

$$\nabla_H(\theta_{\epsilon} \circ f) = \theta_{\epsilon}'(f) \nabla_H f = \begin{cases} \frac{f}{\sqrt{f^2 + \epsilon^2}} \nabla_H f & \text{if } f > 0, \\ 0 & \text{if } f \le 0. \end{cases}$$

Since $\lim_{\epsilon \to 0} \theta_{\epsilon}(f) = f^+$ and $\lim_{\epsilon \to 0} \nabla_H(\theta_{\epsilon} \circ f) = \begin{cases} \nabla_H f & \text{if } f > 0, \\ 0 & \text{if } f \leq 0. \end{cases}$ γ -a.e., and $|\theta_{\epsilon} \circ f| \leq |f|, |\nabla_H(\theta_{\epsilon} \circ f)|_H \leq |\nabla_H f|_H$, it follows from the dominated convergence theorem that $f^+ \in W^{1,p}(X, \gamma)$ and

$$\nabla_H f^+ = \begin{cases} \nabla_H f & \text{if } f > 0, \\ 0 & \text{if } f \le 0. \end{cases}$$

Now, by noting that $f^- = (-f)^+$ and $|f| = f^+ + f^-$ we deduce that $f^-, |f| \in W^{1,p}(X,\gamma)$ and

$$\nabla_H f^- = \begin{cases} -\nabla_H f & \text{if } f < 0, \\ 0 & \text{if } f \ge 0, \end{cases}$$
$$\nabla_H |f| = \begin{cases} \nabla_H f & \text{if } f > 0, \\ 0 & \text{if } f = 0, \\ -\nabla_H f & \text{if } f < 0. \end{cases}$$

We prove now that $\nabla_H f = 0$ a.e. on $\{f = c\}$ for every $c \in \mathbb{R}$. Without loss of generality one can assume that c = 0. The claim follows from the expressions of $\nabla_H f^+$ and $\nabla_H f^-$ since $\nabla_H f = \nabla_H f^+ - \nabla_H f^-$.

Exercise 10.4: Let $\varphi \in W^{1,p}(\mathbb{R}^n, \gamma_n)$ and let $l_1, \ldots, l_n \in X^*$, with $\langle l_i, l_j \rangle_{L^2(X,\gamma)} = \delta_{ij}$. Prove that the function $f: X \to \mathbb{R}$ defined by $f(x) = \varphi(l_1(x), \ldots, l_n(x))$ belongs to $W^{1,p}(X, \gamma)$.

PROOF: Since $\varphi \in W^{1,p}(\mathbb{R}^N, \gamma_n)$, by Definition 9.1.4, there is $(\varphi_m) \subset C_b^1(\mathbb{R}^n)$ such that $\varphi_m \to \varphi$ in $L^p(\mathbb{R}^n, \gamma_n)$ and $\nabla \varphi_m \to \nabla \varphi$ in $L^p(\mathbb{R}^n, \gamma_n, \mathbb{R}^n)$. Define the function $f_m \in \mathcal{F}C_b^1(X)$ by

$$f_m(x) = \varphi_m(T_n(x)), \quad x \in X,$$

where $T_n(x) = (l_1(x), \ldots, l_n(x))$. Using $\gamma_n = \gamma \circ T_n^{-1}$, see Exercise 2.4, we have

$$\int_X |f(x) - f_m(x)|^p \gamma(dx) = \int_{\mathbb{R}^n} |\varphi(z) - \varphi_m(z)|^p \gamma_n(dz).$$

This implies that $f_m \to f$ in $L^p(X, \gamma)$. On the other hand, since $\langle l_i, l_j \rangle_{L^2(X, \gamma)} = \delta_{ij}$, we have

$$|\nabla_H f_m(x)|_H^2 = |\nabla \varphi_m(T_n(x))|_{\mathbb{R}^n}^2.$$

Thus,

$$\int_{X} |\nabla_{H} f_{m}(x) - \nabla_{H} f_{m'}(x)|_{H}^{p} \gamma(dx)$$

$$= \int_{X} |\nabla \varphi_{m}(T_{n}(x)) - \nabla \varphi_{m'}(T_{n}(x))|_{\mathbb{R}^{n}}^{p} \gamma(dx)$$

$$= \int_{\mathbb{R}^{n}} |\nabla \varphi_{m}(z) - \nabla \varphi_{m'}(z)|_{\mathbb{R}^{n}}^{p} \gamma_{n}(dx),$$

where we apply again that $\gamma_n = \gamma \circ T_n^{-1}$. So, (f_m) is a Cauchy sequence in $W^{1,p}(X,\gamma)$. Hence, there is $g \in W^{1,p}(X,\gamma)$ such that $f_m \to g$ in $W^{1,p}(X,\gamma)$. Since $f_m \to f$ in $L^p(X,\gamma)$, we deduce that f = g.

Exercise 10.5: Let $f \in L^p(X, \gamma)$, p > 1, be such that $\mathbb{E}_n f \in W^{1,p}(X, \gamma)$ for every $n \in \mathbb{N}$, with $\sup_n \|\nabla_H \mathbb{E}_n f\|_{L^p(X,\gamma;H)} < \infty$. Prove that $f \in W^{1,p}(X,\gamma)$.

PROOF: If follows from the assumption $\sup_n \|\nabla_H \mathbb{E}_n f\|_{L^p(X,\gamma;H)} < \infty$ and (7.4.2) that the sequence $(\mathbb{E}_n f)$ is bounded in $W^{1,p}(X,\gamma)$. So, by reflexivity, there is a subsequence $(\mathbb{E}_{n_k} f)$ converging weakly to some $g \in W^{1,p}(X,\gamma)$ as $k \to \infty$. Since, by Proposition 7.4.5, $\mathbb{E}_{n_k} f \to f$ in $L^p(X,\gamma)$, it follows that g = f. Hence $f \in W^{1,p}(X,\gamma)$.

Exercise 10.6: Prove that $\mathcal{F}C_b^2(X)$ is dense in $W^{1,2}(X,\gamma)$.

PROOF: By the definition of $W^{1,2}(X,\gamma)$ we have only to prove that $\mathcal{F}C_b^2(X)$ is dense in $\mathcal{F}C_b^1(X)$ with respect to the $W^{1,2}(X,\gamma)$ -norm. Let $f \in \mathcal{F}C_b^1(X)$. So, $f(\cdot) = \varphi(l_1(\cdot), \ldots, l_n(\cdot))$ for some $\varphi \in C_b^1(\mathbb{R}^n)$ and $l_1, \ldots, l_n \in X^*$. Let (ρ_m) be a sequence of mollifiers and $\varphi_m = \rho_m * \varphi, m \in \mathbb{N}$. It is well known that $\rho_m \in C_c^{\infty}(\mathbb{R}^n)$, which implies, in particular, that $\varphi_m \in C_b^2(\mathbb{R}^n)$ and hence $f_m = \varphi_m(l_1(\cdot), \ldots, l_n(\cdot)) \in \mathcal{F}C_b^2(X)$. Moreover, for any $y \in \mathbb{R}^n$,

$$|\varphi_m(y)| = \left| \int_{\mathbb{R}^n} \rho_m(z)\varphi(y-z)dz \right| \le \|\varphi\|_{\infty} \int_{\mathbb{R}^n} \rho_m(z)dz = \|\varphi\|_{\infty}, \quad (1)$$

$$|\nabla\varphi_m(y)| = \left| \int_{\mathbb{R}^n} \rho_m(z) \nabla\varphi(y-z) dz \right| \le \|\nabla\varphi\|_{\infty}.$$
 (2)

On the other hand, we know that $\lim_{m\to\infty}\varphi_m(y)=\varphi(y)$ for any $y\in\mathbb{R}^n$, and hence,

$$\lim_{m \to \infty} f_m(x) = f(x), \qquad x \in X$$

Taking into account the estimate (1), one can apply the dominated convergence theorem to get that f_m converges to f in $L^2(X, \gamma)$. Similarly, since $\lim_{m \to \infty} \nabla \varphi_m(y) = \nabla \varphi(y), y \in \mathbb{R}^n$, as in Exercise 10.2 one has,

for $x \in X$,

$$\begin{aligned} |\nabla_H f_m(x) - \nabla_H f(x)|_H &= |f'_m(x)(\cdot) - f'(x)(\cdot)|_{L^2(X,\gamma)} \\ &\leq M |\nabla \varphi_m(l(x)) - \nabla \varphi(l(x))|_{\mathbb{R}^n}, \end{aligned}$$

where M is as in Exercise 10.2. Hence, $\nabla_H f_m(x) \longrightarrow \nabla_H f(x)$ in H. Using now (2) one obtains, by the dominated convergence theorem, that $\nabla_H f_m$ converges to $\nabla_H f$ in $L^2(X, \gamma, H)$. This ends the proof.