
Solution to the Exercises of Lecture 10

Team Salerno

Exercise 10.1: Prove that for f ∈ FC1
b (X)

∇HEnf(x) =

∫
X
Pn∇Hf(Pnx+ (I − Pn)y)γ(dy), ∀x ∈ X,

holds.

Proof: Let us recall, by (7.4.1), that

Enf(x) =

∫
X
f(Pnx+ (I − Pn)y) γ(dy), x ∈ X,

where Pnx =
∑n

j=1 ĥj(x)hj , n ∈ N, x ∈ X, with hj = Rγ ĥj an orthonormal
basis of the Cameron-Martin space H.
So, by the dominated convergence theorem, one obtains

∂jEnf(x) =

∫
X

∂f

∂hj
(Pnx+ (I − Pn)y)γ(dy)

for j ≤ n. Since for every y ∈ X the directional derivatives along all hj of
the function f(Pn ·+(I−Pn)y) vanish for j > n, it follows from (9.3.2) that

∇HEnf(x) =
∞∑
j=1

∂jEnf(x)hj

=
n∑
j=1

∫
X

∂f

∂hj
(Pnx+ (I − Pn)y)hjγ(dy)

=

∫
X

n∑
j=1

∂f

∂hj
(Pnx+ (I − Pn)y)hjγ(dy)

=

∫
X
Pn∇Hf(Pnx+ (I − Pn)y)γ(dy), x ∈ X.

Exercise 10.2: Prove that if f ∈ FC1(X) ∩ Lp(X, γ), 1 ≤ p < ∞ and
∇Hf ∈ Lp(X, γ,H) then f ∈W 1,p(X, γ).
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Proof: There exists ϕ ∈ C1(Rn), n ≥ 1, l1, . . . , ln ∈ X∗ such that

f(x) = ϕ(l1(x), . . . , ln(x)), x ∈ X.

Consider η ∈ C1
c (Rn) such that χB(1) ≤ η ≤ χB(2) where B(1) and B(2) are

the centred open balls of radius 1 and 2 respectively. Now, for m ≥ 1 and
y ∈ Rn, we set ηm(y) = η( ym) and ϕm(y) = ηm(y)ϕ(y). It is obvious that
ϕm ∈ C1

b (Rn), and hence

fm(·) = ϕm(l1(·), . . . , ln(·)) ∈ FC1
b (X).

Since lim
m→∞

ηm(y) = 1 and 0 ≤ ηm(y) ≤ 1, it follows that for every x ∈ X,

lim
m→∞

fm(x) = f(x) and

|fm(x)| ≤ |f(x)|.

So, by the dominated convergence theorem one obtains fm −→ f in Lp(X, γ).
On the other hand, for v ∈ X, we have

f ′m(x)(v) = 〈∇ϕm(l(x)), l(v)〉Rn

=
ϕ(l(x))

m
〈∇η(l(x)/m), l(v)〉Rn + ηm(l(x))〈∇ϕ(l(x)), l(v)〉Rn

=
f(x)

m
〈∇η(l(x)/m), l(v)〉Rn + ηm(l(x))f ′(x)(v),

where l(v) = (l1(v), . . . , ln(v)). Thus, by Lemma 9.3.4, we have

|∇Hfm(x)−∇Hf(x)|H
= |f ′m(x)(·)− f ′(x)(·)|L2(X,γ)

=

∣∣∣∣(ηm(l(x))− 1)f ′(x)(·) +
f(x)

m
〈∇η(l(x)/m), l(·)〉Rn

∣∣∣∣
L2(X,γ)

≤ |ηm(l(x))− 1||f ′(x)|L2(X,γ) +
M‖∇η‖∞

m
|f(x)|,

where M2 =
∫
Rn |y|2(γ ◦ l−1)(dy) <∞. Hence, ∇Hfm(x) −→ ∇Hf(x) in H.

Moreover

|∇Hfm(x)|H = |f ′m(x)|L2(X,γ) ≤ ηm(l(x))|f ′(x)|L2(X,γ) +
M‖∇η‖∞

m
|f(x)|

≤ |∇Hf(x)|H +M‖∇η‖∞|f(x)|

Applying the dominated convergence theorem one obtains that ∇Hfm con-
verges to ∇Hf in Lp(X, γ,H). Thus, f ∈W 1,p(X, γ).
Exercise 10.3: Prove that if f ∈W 1,p(X, γ) then f+, f−, |f | ∈W 1,p(X, γ)
as well. Compute ∇Hf+, ∇Hf−, ∇H |f | and deduce that ∇Hf = 0 a.e. on
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{f = c} for every c ∈ R.

Proof: Let us recall first that f+ = sup(f, 0) and f− = sup(−f, 0). Con-
sider the functions

θε(s) =

{ √
s2 + ε2 − ε if s > 0,
0 if s ≤ 0,

where ε > 0, and η ∈ C∞c (R) with 0 ≤ η ≤ 1, η(s) = 1 for |s| ≤ 1, and
η(s) = 0 if |s| ≥ 2.
So, the function ψn(s) := ηn(s)θε(s) belongs to C1

b (R), where ηn(s) :=
η(s/n). Applying Proposition 9.3.10.(ii), we deduce that ψn◦f ∈W 1,p(X, γ),
and

∇H(ψn ◦ f) = ψ′n(f)∇Hf = (η′n(f)θε(f) + ηn(f)θ′ε(f))∇Hf.

Thus,

lim
n→∞

(ψn ◦ f)(x) = (θε ◦ f)(x), and lim
n→∞

∇H(ψn ◦ f)(x) = θ′ε(f(x))∇Hf(x)

for γ-a.e. x ∈ X. Moreover, |ψn ◦ f | ≤ |θε ◦ f | ≤ |f |, and

|∇H(ψn ◦ f)|H ≤ ‖η′‖∞
n

χ[n<|f |<2n]θε(f)|∇Hf |H + θ′ε(f)|∇Hf |H

≤ (2‖η′‖∞ + 1)|∇Hf |H .

Hence, by the dominated convergence theorem, we have θε ◦ f ∈W 1,p(X, γ)
and

∇H(θε ◦ f) = θ′ε(f)∇Hf =

{
f√
f2+ε2

∇Hf if f > 0,

0 if f ≤ 0.

Since limε→0 θε(f) = f+ and limε→0∇H(θε◦f) =

{
∇Hf if f > 0,
0 if f ≤ 0.

γ-a.e.,

and |θε ◦ f | ≤ |f |, |∇H(θε ◦ f)|H ≤ |∇Hf |H , it follows from the dominated
convergence theorem that f+ ∈W 1,p(X, γ) and

∇Hf+ =

{
∇Hf if f > 0,
0 if f ≤ 0.

Now, by noting that f− = (−f)+ and |f | = f+ + f− we deduce that
f−, |f | ∈W 1,p(X, γ) and

∇Hf− =

{
−∇Hf if f < 0,
0 if f ≥ 0,

∇H |f | =


∇Hf if f > 0,
0 if f = 0,
−∇Hf if f < 0.
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We prove now that ∇Hf = 0 a.e. on {f = c} for every c ∈ R. Without
loss of generality one can assume that c = 0. The claim follows from the
expressions of ∇Hf+ and ∇Hf− since ∇Hf = ∇Hf+ −∇Hf−.

Exercise 10.4: Let ϕ ∈W 1,p(Rn, γn) and let l1, . . . , ln ∈ X∗, with
〈li, lj〉L2(X,γ) = δij . Prove that the function f : X → R defined by f(x) =
ϕ(l1(x), . . . , ln(x)) belongs to W 1,p(X, γ).

Proof: Since ϕ ∈ W 1,p(RN , γn), by Definition 9.1.4, there is (ϕm) ⊂
C1
b (Rn) such that ϕm → ϕ in Lp(Rn, γn) and ∇ϕm → ∇ϕ in Lp(Rn, γn,Rn).

Define the function fm ∈ FC1
b (X) by

fm(x) = ϕm(Tn(x)), x ∈ X,

where Tn(x) = (l1(x), . . . , ln(x)). Using γn = γ ◦ T−1n , see Exercise 2.4, we
have ∫

X
|f(x)− fm(x)|p γ(dx) =

∫
Rn

|ϕ(z)− ϕm(z)|p γn(dz).

This implies that fm → f in Lp(X, γ). On the other hand, since 〈li, lj〉L2(X,γ) =
δij , we have

|∇Hfm(x)|2H = |∇ϕm(Tn(x))|2Rn .

Thus, ∫
X
|∇Hfm(x)−∇Hfm′(x)|pHγ(dx)

=

∫
X
|∇ϕm(Tn(x))−∇ϕm′(Tn(x))|pRnγ(dx)

=

∫
Rn

|∇ϕm(z)−∇ϕm′(z)|pRnγn(dx),

where we apply again that γn = γ ◦ T−1n . So, (fm) is a Cauchy sequence in
W 1,p(X, γ). Hence, there is g ∈W 1,p(X, γ) such that fm → g in W 1,p(X, γ).
Since fm → f in Lp(X, γ), we deduce that f = g.

Exercise 10.5: Let f ∈ Lp(X, γ), p > 1, be such that Enf ∈W 1,p(X, γ) for
every n ∈ N, with supn ‖∇HEnf‖Lp(X,γ;H) <∞. Prove that f ∈W 1,p(X, γ).

Proof: If follows from the assumption supn ‖∇HEnf‖Lp(X,γ;H) < ∞ and
(7.4.2) that the sequence (Enf) is bounded in W 1,p(X, γ). So, by reflexivity,
there is a subsequence (Enk

f) converging weakly to some g ∈W 1,p(X, γ) as
k → ∞. Since, by Proposition 7.4.5, Enk

f → f in Lp(X, γ), it follows that
g = f . Hence f ∈W 1,p(X, γ).

Exercise 10.6: Prove that FC2
b (X) is dense in W 1,2(X, γ).
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Proof: By the definition of W 1,2(X, γ) we have only to prove that FC2
b (X)

is dense in FC1
b (X) with respect to the W 1,2(X, γ)-norm. Let f ∈ FC1

b (X).
So, f(·) = ϕ(l1(·), . . . , ln(·)) for some ϕ ∈ C1

b (Rn) and l1, . . . , ln ∈ X∗. Let
(ρm) be a sequence of mollifiers and ϕm = ρm ∗ ϕ, m ∈ N. It is well known
that ρm ∈ C∞c (Rn), which implies, in particular, that ϕm ∈ C2

b (Rn) and
hence fm = ϕm(l1(·), . . . , ln(·)) ∈ FC2

b (X). Moreover, for any y ∈ Rn,

|ϕm(y)| =
∣∣∣∣∫

Rn

ρm(z)ϕ(y − z)dz
∣∣∣∣ ≤ ‖ϕ‖∞ ∫

Rn

ρm(z)dz = ‖ϕ‖∞, (1)

|∇ϕm(y)| =
∣∣∣∣∫

Rn

ρm(z)∇ϕ(y − z)dz
∣∣∣∣ ≤ ‖∇ϕ‖∞. (2)

On the other hand, we know that lim
m→∞

ϕm(y) = ϕ(y) for any y ∈ Rn, and

hence,
lim
m→∞

fm(x) = f(x), x ∈ X.

Taking into account the estimate (1), one can apply the dominated conver-
gence theorem to get that fm converges to f in L2(X, γ).
Similarly, since lim

m→∞
∇ϕm(y) = ∇ϕ(y), y ∈ Rn, as in Exercise 10.2 one has,

for x ∈ X,

|∇Hfm(x)−∇Hf(x)|H = |f ′m(x)(·)− f ′(x)(·)|L2(X,γ)

≤ M |∇ϕm(l(x))−∇ϕ(l(x))|Rn ,

where M is as in Exercise 10.2. Hence, ∇Hfm(x) −→ ∇Hf(x) in H. Using
now (2) one obtains, by the dominated convergence theorem, that ∇Hfm
converges to ∇Hf in L2(X, γ,H). This ends the proof.
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