
Lecture 10

Sobolev Spaces II

In this Lecture we go on in the description of the Sobolev spaces W 1,p(X, �), and we define
the Sobolev spaces W 2,p(X, �). We give approximation results through the cylindrical
functions Enf , and we introduce the divergence of vector fields; formally, the divergence
operator is adjoint of the H-gradient. We use the notation of Lecture 9. So, X is a
separable Banach space endowed with a centred nondegenerate Gaussian measure �, and
if {hj : j 2 N} ⇢ R�(X

⇤) is an orthonormal basis of the Cameron-Martin space H, then
for every f 2 W 1,p(X, �) we denote by @jf(x) = [rHf(x), hj ]H the generalised derivative
of f in the direction hj .

10.1 Further properties of W 1,p
spaces

Let f 2 W 1,p(X, �). For every h 2 H, @hf plays the role of weak derivative of f in the
h direction. Indeed, by Proposition 9.3.10, for every f 2 W 1,p(X, �) and ' 2 C1

b (X),
applying formula (9.3.3) to the product f' we get

Z

X
(@h')f d� = �

Z

X
'(@hf) d� +

Z

X
' f ĥ d�.

The Sobolev spaces may be defined through the weak derivatives. Given f 2 Lp(X, �)
and h 2 H, a function g 2 L1(X, �) is called weak derivative of f in the direction of h if

Z

X
(@h')f d� = �

Z

X
' g d� +

Z

X
' f ĥ d�, 8' 2 C1

b (X).

The weak derivative is unique, because if
R

X ' g d� = 0 for every ' 2 C1

b (X), then g = 0
a.e. by Lemma 9.3.6.

We set

G1,p(X, �) =
n

f 2 Lp(X, �) : 9 2 Lp(X, �;H) such that for each h 2 H,

[ (·), h]H is the weak derivative of f in the direction h
o

.
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If f 2 G1,p(X, �) and  is the function in the definition, we set

DHf :=  , kfkG1,p
(X,�) = kfkLp

(X,�) + k kLp
(X,�;H)

.

Theorem 10.1.1. For every p > 1, G1,p(X, �) = W 1,p(X, �) and DHf = rHf for every
f 2 W 1,p(X, �).

The proof may be found e.g. in [B, Cor. 5.4.7].
Let us come back to the approximation by conditional expectations introduced in

Subsection 7.4. We already know that if f 2 Lp(X, �) then Enf ! f in Lp(X, �) as
n ! 1.

Proposition 10.1.2. Let 1  p < 1 and let f 2 W 1,p(X, �). Then, Enf 2 W 1,p(X, �)
for all n 2 N and:

(i) for every j 2 N

@j(Enf) =

⇢

En(@jf) if j  n,
0 if j > n;

(10.1.1)

(ii) kEnfkW 1,p
(X,�)  kfkW 1,p

(X,�);

(iii) lim
n!1

Enf = f in W 1,p(X, �).

Proof. Let f 2 FC1

b (X). Since Pnx =
Pn

i=1

ĥi(x)hi and
@ˆhi
@hj

(x) = �ij for every x, for every

y 2 X the function x 7! f(Pnx+ (I � Pn)y) has directional derivatives along all hj , that

vanish for j > n and are equal to @f
@hj

(Pnx+ (I � Pn)y) for j  n.

Since x 7!

@f
@hj

(Pnx+ (I � Pn)y) is continuous and bounded by a constant independent of

y, for j  n we get

@jEnf(x) =
@

@hj

Z

X
f(Pnx+ (I � Pn)y)�(dy) =

Z

X

@f

@hj
(Pnx+ (I � Pn)y)�(dy).

In other words, (i) holds, and it yields

rHEnf(x) =

Z

X
PnrHf(Pnx+ (I � Pn)y)�(dy), 8x 2 X. (10.1.2)

So we have

krHEnf �rHfkpLp
(X,�;H)

=

Z

X

�

�

�

�

Z

X
(PnrHf(Pnx+ (I � Pn)y)�rHf(x))�(dy)

�

�

�

�

p

H

�(dx)



Z

X

Z

X
|PnrHf(Pnx+ (I � Pn)y)�rHf(x)|pH �(dy)�(dx).

Notice that

lim
n!+1

|PnrHf(Pnx+ (I � Pn)y)�rHf(x)|H = 0, � ⌦ � � a.e. (x, y).



Sobolev spaces II 119

Indeed, recalling that kPnkL(H)

 1,

|PnrHf(Pnx+ (I � Pn)y)�rHf(x)|H



�

�

�

Pn

⇣

rHf(Pnx+ (I � Pn)y)�rHf(x)
⌘

�

�

�

H
+ |PnrHf(x)�rHf(x)|H

 |rHf(Pnx+ (I � Pn)y)�rHf(x)|H + |(Pn � I)rHf(x)|H

and the first addendum vanishes as n ! +1 for � ⌦ �–a.e. (x, y) since

lim
n!+1

Pnx+ (I � Pn)y = x

for � ⌦ �-a.e. (x, y) and rHf is continuous; the second addendum goes to 0 as n ! 1

for every x 2 X. Moreover,

|PnrHf(Pnx+ (I � Pn)y)�rHf(x)|H  2 sup
z2X

|rHf(z)|H .

By the Dominated Convergence Theorem,

lim
n!+1

rHEnf = rHf

in Lp(X, �;H), and taking into account Proposition 7.4.5,

lim
n!+1

Enf = f

in W 1,p(X, �). So, f satisfies (iii). Moreover,

krHEnfk
p
Lp

(X,�;H)

=

Z

X

�

�

�

�

Z

X
PnrHf(Pnx+ (I � Pn)y)�(dy)

�

�

�

�

p

H

�(dx)



Z

X

Z

X
|PnrHf(Pnx+ (I � Pn)y)|

p
H �(dy)�(dx)



Z

X

Z

X
|rHf(Pnx+ (I � Pn)y)|

p
H�(dy)�(dx)

=

Z

X
|rHf(x)|pH�(dx) (10.1.3)

where the last equality follows from Proposition 7.3.2.
Estimate (10.1.3) and (7.4.2) yield (ii) for f 2 FC1

b (X).
Let now f 2 W 1,p(X, �), and let (fk) ⇢ FC1

b (X) be a sequence converging to f in
W 1,p(X, �). By estimate (7.4.2), for every n 2 N the sequence (Enfk)k converges to
Enf in Lp(X, �), and by (ii) (Enfk)k is a Cauchy sequence in W 1,p(X, �). Therefore,
Enf 2 W 1,p(X, �) and

rHEnf = lim
k!+1

rHEnfk

in Lp(X, �;H) so that

krHEnfkLp
(X,�;H)

= lim
k!+1

krHEnfkkLp
(X,�;H)

 lim
k!+1

krHfkkLp
(X,�;H)

=krHfkLp
(X,�;H)

.
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Therefore (ii) holds for every f 2 W 1,p(X, �) and then (iii) follows from (ii) and from the
density of FC1

b (X) in W 1,p(X, �).

(i) follows as well and in fact we have

rHEnf = En(PnrHf) 8n 2 N,

where the right-hand side has to be understood as a Bochner H-valued integral. Indeed,
by (10.1.2) we have

rHEnfk(x) =

Z

X
PnrHfk(Pnx+ (I � Pn)y)�(dy)

for every k 2 N. The left hand side converges to rHEnf in Lp(X, �;H) as k ! +1. The
right hand side converges to EnPnrHf as k ! +1 since

Z

X

�

�

�

�

Z

X
PnrH(fk � f)(Pnx+ (I � Pn)y)�(dy)

�

�

�

�

p

H

�(dx)



Z

X

Z

X
|rH(fk � f)(Pnx+ (I � Pn)y)|

p
H �(dy)�(dx)

=

Z

X
|rH(fk � f)(x)|pH�(dx)

by Proposition (7.3.2).

Regular Lp cylindrical functions with Lp gradient are in W 1,p(X, �), see Exercise 10.2.
The simplest nontrivial examples of Sobolev functions are the elements of X⇤

� .

Lemma 10.1.3. X⇤
� ⇢ W 1,p(X, �) for every p 2 [1,+1), and rH ĥ = h (constant) for

every ĥ 2 X⇤
� .

Proof. Fix p � 1. For every ĥ 2 X⇤
� , there exists a sequence `n 2 X⇤ such that

limn!1 `n = ĥ in L2(X, �). For every n, m 2 N we have

k`n�`mk

p
Lp

(X,�) =

Z

R
|⇠|pN (0, k`n�`mk

2

L2
(X,�))(d⇠) =

Z

R
|⌧ |pN (0, 1) (d⌧)k`n�`mk

p
L2

(X,�)

so that (`n) is a Cauchy sequence in Lp(X, �). Its L2-limit ĥ coincides with its Lp-limit,
if p 6= 2.

As `n is in X⇤, rH`n is constant and it coincides with R�`n, see (9.3.1). Since

limn!1 `n = ĥ in L2(X, �) and R� is an isometry from X⇤
� to H, H � limn!1R�`n =

R� ĥ = h. Therefore,

Z

X
|rH`n � h|pHd� = |R�`n � h|pH ! 0 as n ! 1.

It follows that ĥ 2 W 1,p(X, �) and rH ĥ = h.
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An important example of Sobolev functions is given by Lipschitz functions. Since a
Lipschitz function is continuous, then it is Borel measurable.

Proposition 10.1.4. If f : X ! R is Lipschitz continuous, then f 2 W 1,p(X, �) for any
1  p < +1.

Proof. Let L > 0 be such that

|f(x)� f(y)|  Lkx� yk 8 x, y 2 X.

Since |f(x)|  |f(0)|+Lkxk, by Theorem 2.3.1 (Fernique) f 2 Lp(X, �) for any 1  p < 1.
Let us consider the conditional expectation Enf .
Let us notice that

Enf(x) = vn(ĥ1(x), . . . , ĥn(x)),

with vn : Rn
! R an L

1

–Lipschitz function since

|vn(z + ⌘)� vn(z)| =

�

�

�

�

�

Enf
⇣

n
X

i=1

zihi +
n
X

i=1

⌘ihi

⌘

� Enf
⇣

n
X

i=1

zihi

⌘

�

�

�

�

�



Z

X

�

�

�

f
⇣

n
X

i=1

zihi +

n
X

i=1

⌘ihi

⌘

+ (I � Pn)y
⌘

� f
⇣

n
X

i=1

zihi + (I � Pn)y
⌘

�

�

�

�(dy)

L
1

�

�

�

�

�

n
X

i=1

⌘ihi

�

�

�

�

�

H

= L
1

|⌘|Rn ,

where we have used (3.1.3), khk  c|h|H for h 2 H, and we have set L
1

:= cL. By the
Rademacher Theorem, vn is di↵erentiable �n–a.e. in Rn and |rvn(z)|Rn

 L
1

for a.e.
z 2 Rn. Hence vn 2 W 1,1

loc

(Rn), and

Z

Rn
|rvn(z)|

p
Rn�n(dz)  Lp

1

.

We use now the map Tn : X ! Rn, Tn(x) = (ĥ
1

(x), . . . , ĥn(x)). If x 2 X is a point such
that vn is di↵erentiable at Tn(x), then

@hEnf(x) =

8

<

:

0 if h 2 F?
n

rvn(Tn(x)) · Tn(h) if h 2 Fn.

As a consequence, we can write

|rHEnf(x)|
2

H =

1
X

i=1

|@iEnf(x)|
2 =

n
X

i=1

|@iEnf(x)|
2 = |rvn(Tn(x))|

2

Rn .

We claim that for �–a.e. x vn is di↵erentiable at Tn(x). Indeed, let A ⇢ Rn be such that
�n(A) = 0 and vn is di↵erentiable at any point in Rn

\A. Since �n ⌧ �n, �n(A) = 0 and



122 Lecture 10

then �(T�1

n (A)) = 0 because � � T�1

n = �n, see exercise 2.4. Hence vn is di↵erentiable at
any point Tn(x), where x 2 X \ T�1

n (A).
We Know that Enf ! f in Lp(X, �) and we have
Z

X
|rHEnf(x)|

p
H�(dx) =

Z

X
|rvn(Tnx)|

p
Rn�(dx) =

Z

Rn
|rvn(z)|

p
Rn�n(dz)  Lp

1

.

By Proposition 9.3.10(v) f 2 W 1,p(X, �) for every 1 < p < 1 and by inclusion f 2

W 1,1(X, �).

Further properties of W 1,p functions are presented in Exercises 10.3, 10.4, 10.5.

10.2 Sobolev spaces of H-valued functions

We recall the definition of Hilbert–Schmidt operators, see e.g. [DS2, §XI.6] for more
information.

Definition 10.2.1. Let H
1

, H
2

be separable Hilbert spaces. A linear operator A 2

L(H
1

, H
2

) is called a Hilbert–Schmidt operator if there exists an orthonormal basis {hj :
j 2 N} of H

1

such that
1
X

j=1

kAhjk
2

H2
< 1. (10.2.1)

If A is a Hilbert–Schmidt operator and {ej : j 2 N} is any orthonormal basis of H
1

,
{yj : j 2 N} is any orthonormal basis of H

2

, then

kAejk
2

H2
=

1
X

k=1

hAej , yki
2

H2
=

1
X

k=1

hej , A
⇤yki

2

H2

so that
1
X

j=1

kAejk
2

H2
=

1
X

j=1

1
X

k=1

hej , A
⇤yki

2

H2
=

1
X

k=1

1
X

j=1

hej , A
⇤yki

2

H2
=

1
X

k=1

kA⇤ykk
2

H1
.

So, the convergence of the series (10.2.1) and the value of its sum are independent of the
basis of H

1

. We denote by H(H
1

, H
2

) the space of the Hilbert–Schmidt operators from
H

1

to H
2

, and we set

kAkH(H1,H2)
=

✓ 1
X

j=1

kAhjk
2

H2

◆

1/2

,

for every orthonormal basis {hj : j 2 N} of H
1

. Notice that if H
1

= Rn, H
2

= Rm, the
Hilbert–Schmidt norm of any linear operator coincides with the Euclidean norm of the
associated matrix.

The norm (10.2.1) comes from the inner product

hA,BiH(H1,H2)
=

1
X

j=1

hAhj , BhjiH2 ,
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where for every couple of Hilbert–Schmidt operators A, B, the series in the right-hand side
converges for every orthonormal basis {hj : j 2 N} of H

1

, and its value is independent of
the basis. The space H(H

1

, H
2

) is a separable Hilbert space with the above inner product.
If H

1

= H
2

= H, where H is the Cameron–Martin space of (X, �), we set H :=
H(H,H).

It is useful to generalise the notion of Sobolev space to H-valued functions. To this
aim, we define the cylindrical E-valued functions as follows, where E is any normed space.

Definition 10.2.2. For k 2 N we define FCk
b (X,E) (respectively, FC1

b (X,E)) as the
linear span of the functions x 7! v(x)y, with v 2 FCk

b (X) (respectively, v 2 FC1
b (X)) and

y 2 E.

Therefore, every element of FCk
b (X,E) may be written as

v(x) =

n
X

k=1

vk(x)yk (10.2.2)

for some n 2 N, and vk 2 FCk
b (X), yk 2 E. Such functions are Fréchet di↵erentiable

at every x 2 X, with v0(x) 2 L(X,E) defined by v0(x)(h) =
Pn

k=1

v0k(x)(h)yk for every
h 2 X.

Similarly to the scalar case, we introduce the notion of H-di↵erentiable function.

Definition 10.2.3. A function v : X ! E is called H-di↵erentiable at x 2 X if there
exists L 2 L(H,E) such that

kv(x+ h)� v(x)� L(h)kE = o(|h|H) as h ! 0 in H.

In this case we set L =: DHv(x).

If v 2 FC1

b (X,E) is given by (10.2.2), then it is H-di↵erentiable at every x 2 X, and

DHv(x)(h) =

n
X

k=1

[rHvk(x), h]H yk.

In particular, if E = H and {hj : j 2 N} is any orthonormal basis of H we have

|DHv(x)(hj)|
2

H 

✓ n
X

k=1

|[rHvk(x), hj ]H | |yk|H

◆

2



n
X

k=1

[rHvk(x), hj ]
2

H

n
X

k=1

|yk|
2

H

so that DHv(x) is a Hilbert–Schmidt operator, and we have

|DHv(x)|2H =
1
X

j=1

|[DHv(x), hj ]H |

2



n
X

k=1

1
X

j=1

|[rHvk(x), hj ]H |

2

n
X

k=1

|yk|
2

H

=

n
X

k=1

|rHvk(x)|
2

H

n
X

k=1

|yk|
2

H .
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Moreover, x 7! rHvk(x) is continuous and bounded for every k, therefore x 7! DHv(x) is
continuous and bounded from X to H. In particular, it belongs to Lp(X, �;H) for every
p � 1.

The procedure to define Sobolev spaces of H-valued functions is similar to the proce-
dure for scalar functions. Namely, we show that the operator DH , seen as an unbounded
operator from Lp(X, �;H) to Lp(X, �;H) with domain FC1

b (X,H), is closable.

Lemma 10.2.4. For every p � 1, the operator DH : FC1

b (X,H) ! Lp(X, �;H) is closable
in Lp(X, �;H).

Proof. Let (Vn) be a sequence in FC1

b (X,H) such that Vn ! 0 in Lp(X, �;H), with
DHVn ! � in Lp(X, �;H). We have to show that �(x) = 0 a.e., namely that

[�(x)hj , hi]H = 0, 8i, j 2 N,
a.e. in X.

Let Vn(x) =
PN(n)

k=1

vk(x)yk. For every j 2 N let us consider the functions x 7! fn(x) :

[Vn(x), hj ]H =
PN(n)

k=1

vk(x)[yk, hj ]H . Each of them belongs to FC1

b (X), and fn ! 0

in Lp(X, �), since |fn(x)|  |Vn(x)|H . Moreover, rHfn(x) =
PN(n)

k=1

rHvk(x)[yk, hj ]H
converges in Lp(X, �;H) to the vector field �(x) =

P1
i=1

[�(x)hi, hj ]Hhi. Indeed,

rHfn(x) =

1
X

i=1

N(n)
X

k=1

[rHvk(x), hi]Hhi[yk, hj ]H =

1
X

i=1

[DHVn(x)(hi), hj ]H

so that
Z

X
|rHfn(x)� �(x)|pHd� =

Z

X

✓ 1
X

i=1

[DHVn(x)(hi)� �(x)hi, hj ]
2

H

◆p/2

d�



Z

X

✓ 1
X

i,l=1

[DHVn(x)(hi)� �(x)hi, hl]
2

H

◆p/2

d�

=

Z

X

✓ 1
X

i=1

|(DHVn(x)� �(x))(hi)|
2

H

◆p/2

d�

=

Z

X
|DHVn � �|pHd�

that vanishes as n ! 1. Since rH is a closed operator in Lp(X, �), � vanishes a.e. so
that [�(x)hi, hj ]H = 0 a.e. for every i, j 2 N.

Definition 10.2.5. For every p � 1 we define W 1,p(X, �;H) as the domain of the closure
of the operator DH : FC1

b (X,H) ! Lp(X, �;H) (still denoted by DH) in Lp(X, �;H).

Therefore, W 1,p(X, �;H) is a Banach space with the graph norm

kV kW 1,p
(X,�;H)

=
⇣

Z

X
|V (x)|pHd�

⌘

1/p
+
⇣

Z

X
|DHV (x)|pHd�

⌘

1/p

=
⇣

Z

X

⇣

1
X

j=1

[V (x), hj ]
2

H

⌘p/2
d�

⌘

1/p
+
⇣

Z

X

⇣

1
X

i,j=1

[DHV (x)(hi), hj ]
2

H

⌘p/2
d�

⌘

1/p
.
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Let v 2 FC1

b (X,H),

v(x) =
n
X

k=1

'k(x)yk,

with 'k 2 FC1

b (X) and yk 2 H. Then v may be written in the form

v(x) =

1
X

j=1

vj(x)hj ,

where the series converges in W 1,p(X, �;H). Indeed, setting

vj(x) = [v(x), hj ]H =
n
X

k=1

'k(x)[yk, hj ]H , j 2 N

the sequence sm(x) =
Pm

j=1

vj(x)hj converges to v in W 1,p(X, �;H), because for each

k = 1, . . . , n, the sequence
Pm

j=1

'k(x)[yk, hj ]H converges to 'k(x)y in W 1,p(X, �;H).
Moreover,

DHv(x)(h) =
1
X

j=1

[rHvj(x), h]Hhj

so that, as in finite dimension,

[DHv(x)(hi), hj ]H = [rHvj(x), hi]H = @ivj(x).

10.2.1 The divergence operator

Let us recall the definition of adjoint operators. If X
1

, X
2

are Hilbert spaces and T :
D(T ) ⇢ X

1

! X
2

is a linear densely defined operator, an element v 2 X
2

belongs to
D(T ⇤) i↵ the function D(T ) ! R, f 7! hTf, viX2 has a linear continuous extension to the
whole X

1

, namely there exists g 2 X
1

such that

hTf, viX2 = hf, giX1 , f 2 D(T ).

In this case g is unique (because D(T ) is dense in X
1

) and we set

g = T ⇤v.

We are interested now in the case X
1

= L2(X, �), X
2

= L2(X, �;H) and T = rH . For
f 2 W 1,2(X, �), v 2 L2(X, �;H) we have

hTf, viL2
(X,�;H)

=

Z

X
[rHf(x), v(x)]H �(dx)

so that v 2 D(T ⇤) if and only if there exists g 2 L2(X, �) such that

Z

X
[rHf(x), v(x)]H �(dx) =

Z

X
f(x)g(x) �(dx), f 2 W 1,2(X, �). (10.2.3)
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In this case, in analogy to the finite dimensional case, we set

g = �div�v

and we call �g divergence or Gaussian divergence of v. As FC1

b (X) is dense in W 1,2(X, �),
(10.2.3) is equivalent to

Z

X
[rHf(x), v(x)]H �(dx) =

Z

X
f(x)g(x) �(dx), f 2 FC1

b (X).

The main achievement of this section is the embedding W 1,2(X, �;H) ⇢ D(T ⇤). For its
proof, we use the following lemma.

Lemma 10.2.6. For every f 2 W 1,2(X, �) and h 2 H, fĥ 2 L2(X, �) and
Z

X
(fĥ)2d�  4

Z

X
(@hf)

2d� + 2|h|2H

Z

X
f2 d�. (10.2.4)

Proof. We already know that ĥ 2 W 1,2(X, �). Then, for every f 2 FC1

b (X) we have

f2ĥ 2 W 1,2(X, �) and
Z

X
(fĥ)2d� =

Z

X
(f2ĥ) ĥ d� =

Z

X
@h(f

2ĥ) d�

=

Z

X
(2f @hf ĥ+ f2@h(ĥ))d�

= 2

Z

X
f ĥ @hf d� + |h|2H

Z

X
f2 d�

 2

✓

Z

X
(fĥ)2d�

◆

1/2✓Z

X
(@hf)

2d�

◆

1/2

+ |h|2H

Z

X
f2 d�.

Using the inequality ab  a2/4 + b2, we get
Z

X
(fĥ)2d� 

1

2

Z

X
(fĥ)2d� + 2

Z

X
(@hf)

2d� + |h|2H

Z

X
f2 d�

so that f satisfies (10.2.4). Since FC1

b (X) is dense in W 1,2(X, �), (10.2.4) holds for every
f 2 W 1,2(X, �).

Theorem 10.2.7. The Sobolev space W 1,2(X, �;H) is continuously embedded in D(div�)
and the estimate

kdiv�vkL2
(X,�)  kvkW 1,2

(X,�;H)

holds. Moreover, fixing an orthonormal basis {hn : n 2 N} of H contained in R�(X
⇤),

and setting vn(x) = [v(x), hn]H for every v 2 W 1,2(X, �;H) and n 2 N, we have

div�v(x) =

1
X

n=1

�

@nvn(x)� vn(x)ĥn(x)
�

,

where the series converges in L2(X, �).
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Proof. Consider a function v 2 W 1,2(X, �;H) of the type

v(x) =

n
X

i=1

vi(x)hi, x 2 X. (10.2.5)

with vi 2 W 1,2(X, �).
For every f 2 W 1,2(X, �) we have [rHf(x), v(x)]H =

Pn
i=1

@if(x)vi(x), so that

Z

X
[rHf, v]Hd� =

Z

X

✓ n
X

i=1

@if vi

◆

d� =

Z

X

n
X

i=1

(�@ivi + viĥi)f d�

which yields

div�v =

n
X

i=1

(@ivi � ĥivi).

Now we prove that

Z

X
(div�v)

2d� =

Z

X
|v|2Hd� +

Z

X

n
X

i,j=1

@ivj @jvi d�, (10.2.6)

showing, more generally, that if u(x) =
Pn

i=1

ui(x)hi is another function of this type, then

Z

X
(div�v div�u)d� =

Z

X
[u, v]Hd� +

Z

X

n
X

i,j=1

@iuj @jvi d�. (10.2.7)

By linearity, it is su�cient to prove that (10.2.7) holds if the sums in u and v consist of a
single addendum, u(x) = f(x)hi, v(x) = g(x)hj for some f , g 2 W 1,2(X, �) and i, j 2 N.
In this case, (10.2.7) reads

Z

X
(@if � ĥif)(@jg � ĥjg)d� =

Z

X
fg�ij d� +

Z

X
@jf @ig d�. (10.2.8)

First, let f , g 2 FC2

b (X). Then,
Z

X
(@if � ĥif)(@jg � ĥjg)d� = �

Z

X
f@i(@jg � ĥjg)d�

= �

Z

X
f@ijg d� +

Z

X
fg�ij d� +

Z

X
fĥj@ig d�

=

Z

X
(@jf � ĥjf)@ig d� +

Z

X
fg�ij d� +

Z

X
fĥj@ig d�

so that (10.2.8) holds. Since FC2

b (X) is dense in W 1,2(X, �), see Exercise 10.6, (10.2.8)
holds for f , g 2 W 1,2(X, �). Summing up, (10.2.7) follows, and taking u = v, (10.2.6)
follows as well. Since the linear span of functions in (10.2.5) is dense in W 1,2(X, �;H)
both equalities hold in the whole W 1,2(X, �;H). Notice also that (10.2.6) implies

Z

X
(div�v)

2d� 

Z

X
|v|2Hd� +

Z

X
kDHvk2H d�. (10.2.9)
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If v 2 W 1,2(X, �;H) we approximate it by the sequence

vn(x) =
n
X

i=1

[v(x), hi]Hhi.

For every f 2 W 1,2(X, �) we have

Z

X
[rHf, vn]Hd� = �

Z

X
fdiv�vn d�. (10.2.10)

By estimate (10.2.9), (div�vn) is a Cauchy sequence in L2(X, �), so that it converges in

L2(X, �) to g(x) :=
P1

j=1

(@jvj(x)� vj(x)ĥj(x)). Letting n ! 1 in (10.2.10), we get

Z

X
[rHf, v]Hd� = �

Z

X
f g d�,

so that v 2 D(T ⇤) and div�v = g.

Note that the domain of the divergence is larger than W 1,2(X, �;H), even in finite
dimension. For instance, if X = R2 is endowed with the standard Gaussian measure,
any vector field v(x, y) = (↵

1

(x) + �
1

(y),↵
2

(x) + �
2

(y)) with ↵
1

, �
2

2 W 1,2(R, �
1

),
�
1

, ↵
2

2 L2(R, �
1

) belongs to the domain of the divergence, but it does not belong to
W 1,2(R2, �

2

;R2) unless also �
1

, ↵
2

2 W 1,2(R, �
1

).
The divergence may be defined, still as a dual operator, also in a Lq context with

q 6= 2. We recall that if X
1

, X
2

are Banach spaces and : D(T ) ⇢ X
1

! X
2

is a linear
densely defined operator, an element v 2 X⇤

2

belongs to D(T ⇤) i↵ the function D(T ) ! R,
f 7! v(Tf) has a linear continuous extension to the whole X

1

. Such extension is an
element of X⇤

1

; denoting it by ` we have `(f) = v(Tf) for every f 2 D(T ).
We are interested in the case X

1

= Lq(X, �), X
2

= Lq(X, �;H), with 1 < q < 1, and
T : D(T ) = W 1,q(X, �), Tf = rHf . The dual space X⇤

2

consists of all the functions of
the type

w 7!

Z

X
[w, v]Hd�,

v 2 Lq0(X, �;H), q0 = q/(q � 1), see [DU, §IV.1], so we canonically identify Lq0(X, �;H)
as Lq(X, �;H)⇤. We also identify (Lq(X, �))⇤ with Lq0(X, �). After these identifications,
a function v 2 Lq0(X, �;H) belongs to D(T ⇤) i↵ there exists g 2 Lq0(X, �) such that

Z

X
[rHf(x), v(x)]H�(dx) =

Z

X
f(x)g(x)�(dx), 8 f 2 W 1,q(X, �),

which is equivalent to

Z

X
[rHf(x), v(x)]H�(dx) =

Z

X
f(x)g(x)�(dx), 8 f 2 FC1

b (X),

since FC1

b (X) is dense in W 1,q(X, �). So, this is similar to the case q = 2, see (10.2.3).
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Theorem 10.2.8. Let 1 < q < 1, and let T : D(T ) = W 1,q(X, �) ! Lq(X, �;H),
Tf = rHf . Then W 1,q(X, �;H) ⇢ D(T ⇤), and for every orthonormal basis {hn : n 2 N}
of H we have

T ⇤v(x) = �

1
X

n=1

(@nvn(x)� vn(x)ĥn(x)), v 2 W 1,q(X, �;H)

where vn(x) = [v(x), hn]H , and the series converges in Lq(X, �).

The proof of Theorem 10.2.8 for q 6= 2 is not as easy as in the case q = 2. See [B,
Prop. 5.8.8]. The di�cult part is the estimate

kT ⇤vkLq
(X,�)  CkvkW 1,q

(X,�;H)

,

even for good vector fields v =
Pn

i=1

vi(x)hi, with vi 2 FC1

b (X).
We may still call “Gaussian divergence” the operator T ⇤.

10.3 The Sobolev spaces W 2,p(X, �)

Let us start with regular functions, recalling the definition of the second order derivative
f 00(x) given in Lecture 9. If f : X ! R is di↵erentiable at any x 2 X, we consider the
function X ! X⇤, x 7! f 0(x). If this function is di↵erentiable at x, we say that f is twice
(Fréchet) di↵erentiable at x. In this case there exists L 2 L(X,X⇤) such that

kf 0(x+ h)� f 0(x)� LhkX⇤ = o(khk) as h ! 0 in X,

and we set L =: f 00(x).
In our setting we are interested in increments h 2 H, and in H-di↵erentiable functions.

If f : X ! R is H-di↵erentiable at any x 2 X, we say that f is twice H-di↵erentiable at
x if there exists a linear operator LH 2 L(H) such that

|rHf(x+ h)�rHf(x)� LHh|H = o(|h|H) as h ! 0 in H.

The operator LH is denoted by D2

Hf(x).
We recall that if f is di↵erentiable at x, it is also H-di↵erentiable and we have

rHf(x) = R�f
0(x). So, if f is twice di↵erentiable at x, with f 00(x) = L, then D2

Hf(x)h =
R�Lh. Indeed,

|R�f
0(x+ h)�R�f

0(x)�R�Lh|H  kR�kL(X⇤,H)

kf 0(x+ h)� f 0(x)� LhkX⇤ = o(khk)

as h ! 0 in X, and therefore,

|R�f
0(x+ h)�R�f

0(x)�R�Lh|H = o(|h|H) as h ! 0 in H.

If f 2 FC2

b (X), f(x) = '(`
1

(x), . . . , `n(x)) with ' 2 C2

b (Rn), `k 2 X⇤, then f is twice
di↵erentiable at any x 2 X and

(f 00(x)v)(w) =
n
X

i,j=1

@2'

@xi@xj
(`

1

(x), . . . , `n(x)`i(v)`j(w), v, w 2 X
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so that

[D2

Hf(x)h, k]H =
n
X

i,j=1

@2'

@xi@xj
(`

1

(x), . . . , `n(x)[R�`i, h]H [R�`j , k]H , h, k 2 H.

D2

Hf(x) is a Hilbert–Schmidt operator, since for any orthonormal basis {hj : j 2 N} of
H we have

1
X

m,k=1

[D2

Hf(x)hm, hk]
2

H 

1
X

m,k=1

✓ n
X

i,j=1

@2'

@xi@xj

2

◆✓ n
X

i=1

[R�`i, hm]2H

◆✓ n
X

j=1

[R�`j , hk]
2

H

◆

= kD2

H'kH(Rn,Rn
)

1
X

m,k=1

n
X

i=1

[R�`i, hm]2H

n
X

j=1

[R�`j , hk]
2

H

= kD2'kH(Rn,Rn
)

n
X

i=1

1
X

m=1

[R�`i, hm]2H

n
X

j=1

1
X

k=1

[R�`j , hk]
2

H

= kD2'kH(Rn,Rn
)

n
X

i=1

|R�`i|
2

H

n
X

j=1

|R�`j |
2

H

where the derivatives of ' are evaluated at (`
1

(x), . . . , `n(x)). Since kD2'kH(Rn,Rn
)

is
bounded, x ! kD2

Hf(x)kH is bounded in X.
The next lemma is similar to Lemma 9.3.7. We omit the proof.

Lemma 10.3.1. For every p � 1, the operator

(rH , D2

H) : FC2

b (X) ! Lp(X, �;H)⇥ Lp(X, �;H)

is closable in Lp(X, �).

Definition 10.3.2. For every p � 1, W 2,p(X, �) is the domain of the closure of

(rH , D2

H) : FC2

b (X) ! Lp(X, �;H)⇥ Lp(X, �;H)

in Lp(X, �). Therefore, f 2 Lp(X, �) belongs to W 2,p(X, �) i↵ there exists a sequence
(fn) ⇢ FC2

b (X) such that fn ! f in Lp(X, �), rHfn converges in Lp(X, �;H) and D2

Hfn
converges in Lp(X, �;H). In this case we set D2

Hf := limn!1D2

Hfn.

W 2,p(X, �) is a Banach space with the graph norm

kfkW 2,p := kfkLp
(X,�) + krHfkLp

(X,�;H)

+ kD2

HfkLp
(X,�;H)

(10.3.1)

=

✓

Z

X
|f |pd�

◆

1/p

+

✓

Z

X
|rHf |pHd�

◆

1/p

+

✓

Z

X
|D2

Hf |pHd�

◆

1/p

.

Fixed any orthonormal basis {hj : j 2 N} of H, for every f 2 W 2,p(X, �) we set

@ijf(x) = [D2

Hf(x)hj , hi]H .
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For every sequence of approximating functions fn we have

[D2

Hfn(x)hj , hi]H = [D2

Hfn(x)hi, hj ]H , x 2 X, i, j 2 N,

then the equality

@ijf(x) = @jif(x), a.e.

holds. Therefore, the W 2,p norm may be rewritten as

✓

Z

X
|f |pd�

◆

1/p

+

✓

Z

X

✓ 1
X

j=1

(@jf)
2

◆p/2

d�

◆

1/p

+

✓

Z

X

✓ 1
X

i,j=1

(@ijf)
2

◆p/2

d�

◆

1/p

.

Let X be a Hilbert space and assume that � is nondegenerate. Then, another class of
W 2,p spaces looks more natural. As in Remark 9.3.11, we may replace (rHf,D2

Hf) in
Definition 10.3.2 by (rf, f 00). The proof of Lemma 10.3.1 works as well with this choice.

So, we define fW 2,p(X, �) as the domain of the closure of the operator T : FC2

b (X) !

Lp(X, �;X) ⇥ Lp(X, �;H(X,X)), f 7! (rf, f 00) in Lp(X, �) (still denoted by T ), and we
endow it with the graph norm of T . This space is much smaller than W 2,p(X, �) if X
is infinite dimensional. Indeed, fix as usual any orthonormal basis {ej : j 2 N} of X
consisting of eigenvectors of Q, Qej = �jej , and set hj =

p

�jej . Then {hj : j 2 N} is a
orthonormal basis of H, @jf(x) =

p

�j@f/@ej , @ijf(x) =
p

�i�j@
2f/@ei@ej , and

kfkW 2,p
(X,�) =kfkLp

(X,�) +

✓

Z

X

✓ 1
X

j=1

�j

✓

@f

@ej

◆

2

◆p/2

d�

◆

1/p

+

✓

Z

X

✓ 1
X

i,j=1

�i�j

✓

@2f

@ei@ej

◆

2

◆p/2

d�

◆

1/p

,

while

kfkfW 2,p
(X,�)

=kfkLp
(X,�) +

✓

Z

X

✓ 1
X

j=1

✓

@f

@ek

◆

2

◆p/2

d�

◆

1/p

+

✓

Z

X

✓ 1
X

i,j=1

✓

@2f

@ei@ej

◆

2

◆p/2

d�

◆

1/p

.

Since limj!1 �j = 0, the fW 2,p(X, �) norm is stronger than the W 2,p(X, �) norm. In
particular, the function f(x) = kxk2 belongs to W 2,p(X, �) for every p � 1 but it does

not belong to fW 2,p(X, �) for any p � 1, because f 00(x) = 2I for every x 2 X and
@2f/@ei@ej = 2�ij .

10.4 Exercises

Exercise 10.1. Prove that (10.1.2) holds.
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Exercise 10.2. Prove that if f 2 FC1(X) \ Lp(X, �), 1  p < 1 and rHf 2 Lp(X, �)
then f 2 W 1,p(X, �).

Exercise 10.3. Prove that if f 2 W 1,p(X, �) then f+, f�, |f | 2 W 1,p(X, �) as well.
Compute rHf+,rHf�,rH |f | and deduce that rHf = 0 a.e. on {f = c} for every
c 2 R.

Exercise 10.4. Let ' 2 W 1,p(Rn, �n) and let `
1

, . . . , `n 2 X⇤, with h`i, `jiL2
(X,�) = �ij .

Prove that the function f : X ! R defined by f(x) = '(ĥ
1

(x), . . . , ĥn(x)) belongs to
W 1,p(X, �).

Exercise 10.5. Let f 2 Lp(X, �), p > 1, be such that Enf 2 W 1,p(X, �) for every n 2 N,
with supn krHEnfkLp

(X,�;H)

< 1. Prove that f 2 W 1,p(X, �).

Exercise 10.6. Prove that FC2

b (X) is dense in W 1,2(X, �)
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