Lecture 10

Sobolev Spaces 11

In this Lecture we go on in the description of the Sobolev spaces W (X, ~), and we define
the Sobolev spaces W2P(X,v). We give approximation results through the cylindrical
functions E,, f, and we introduce the divergence of vector fields; formally, the divergence
operator is adjoint of the H-gradient. We use the notation of Lecture 9. So, X is a
separable Banach space endowed with a centred nondegenerate Gaussian measure -, and
if {hj: j € N} C R,(X™) is an orthonormal basis of the Cameron-Martin space H, then
for every f € WIP(X,~) we denote by 9, f(x) = [V f(z), hj]lm the generalised derivative
of f in the direction h;.

10.1 Further properties of W' spaces

Let f € WYP(X,~). For every h € H, 9),f plays the role of weak derivative of f in the
h direction. Indeed, by Proposition 9.3.10, for every f € WhP(X,v) and ¢ € C}(X),
applying formula (9.3.3) to the product fy we get

| @rrar== [ vonav+ [ orii

The Sobolev spaces may be defined through the weak derivatives. Given f € LP(X, )
and h € H, a function g € L'(X,~) is called weak derivative of f in the direction of h if

/(8h90)fd7:_/ wgdwr/ ¢ fhdy, Ve CpX).
X X X

The weak derivative is unique, because if [y ¢ gdy = 0 for every ¢ € Cl} (X), then g =0
a.e. by Lemma 9.3.6.
We set

GYP(X,) = {f € LP(X,~): 3V € LP(X,~; H) such that for each h € H,

[¥(-), h]g is the weak derivative of f in the direction h}.
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118 Lecture 10

If f € G'?(X,~) and ¥ is the function in the definition, we set

Duf =9, |fllarrixq) = Ifllzecxq + 1 oexqy;m)-

Theorem 10.1.1. For every p > 1, G*?(X,~) = WYP(X,5) and Dy f = Vg f for every
f e WLP(X, 7).

The proof may be found e.g. in [B, Cor. 5.4.7].

Let us come back to the approximation by conditional expectations introduced in
Subsection 7.4. We already know that if f € LP(X,v) then E,f — f in LP(X,~) as
n — 0.

Proposition 10.1.2. Let 1 < p < oo and let f € WIP(X,v). Then, E,f € WHP(X )
for alln € N and:

(i) for every j € N
E.(0;f) ifj<n,
O;(Enf) :{ 0 (9) ifi>n (10.1.1)
(i) [[Evnfllwiexqy < Ifllwiecxqys
(i) lim E,f = f in WP (X, 7).
Proof. Let f € FCL(X). Since Pz =Y 1, hi(z)h; and g—ﬁ;(:):) = §;; for every x, for every

y € X the function  — f(P,x + (I — P,)y) has directional derivatives along all h;, that
vanish for 7 > n and are equal to g—}{;(an + (I — Py)y) for j <n.

Since z — g—,{j(Pna: + ({ — P,)y) is continuous and bounded by a constant independent of
y, for 7 < n we get

O f(z) = ai /X F(Pa 1 (I — Ba)y)(dy) = /X 5,{j<m+ (I — P)y)(dy).

In other words, (i) holds, and it yields

ViEnf(z) = / PoVirf(Pat + (I — Pa)y)y(dy),  Va € X. (10.1.2)
X
So we have
V4
IV HEnf = Vi S oy = / \ / (PaVirf (P + (I — Po)y) — Vi f(@)y(dy)| ~(dz)
X X H

< / / PV it (P + (I — Po)y) — Vi f(2), ~(dy)y (de).
XJX
Notice that

lim |P,.Vgf(Pwx+ (I—-P,)y)—Vuf(z)g =0, YRy —ae. (z,y).

n—-+00
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Indeed, recalling that || P ¢y < 1,

’anHf(an + (I - Pn)y) — VHf(x)]H
Po(Vatd (Pa+ (I = Pa)y) = Varf @) )|+ 1PuVaif (@) = Viaf (@)
< |Vaf(Por + (I = Po)y) = Vaf(@)la +[(Po = DV f(2)|a

and the first addendum vanishes as n — +oo for v ® y-a.e. (x,y) since

<

lim P+ (I —-P)y==

n—-+o0o

for v ® y-a.e. (z,y) and Vg f is continuous; the second addendum goes to 0 as n — oo
for every x € X. Moreover,

|PaV i f(Pa + (I = Po)y) = Vi f(x)|n < 2sup [V f(2)|a-

zeX
By the Dominated Convergence Theorem,
lim VHE,f =Vgf
n——+o0o
in LP(X,~; H), and taking into account Proposition 7.4.5,
lim E,f=f
n——+00
in WlP(X,v). So, f satisfies (iii). Moreover,
P
HVH]Ean][?,P(X H) = anHf(an + (I - Pn)y)fY(dy) V(dx)
7’Y7 X X H

S/X/X!PnVHf(Pn:H(I—Pn)y)\%v(dy)v(dx)
< /X /X Vaf(Puz + (I = P)y)(dy)y(de)

- /X IV 0 £ () () (10.1.3)

where the last equality follows from Proposition 7.3.2.

Estimate (10.1.3) and (7.4.2) yield (ii) for f € FCL(X).

Let now f € W'P(X,v), and let (f;) C FC!(X) be a sequence converging to f in
WP(X,~). By estimate (7.4.2), for every n € N the sequence (E,f;); converges to
E,f in LP(X,~), and by (i) (E,fi)r is a Cauchy sequence in W1P(X v). Therefore,
E,f € WHP(X,~) and

VHETLf = lim VHEnfk
k——+o00

in LP(X,~; H) so that
HvHEﬂf”LP(X,A/;H) :kgr—ir-loo ||vH]Enfk||LP(X,'y;H) < kll)rfoo HvakHLP(X,'y;H)

=IVaflloexq:m)-
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Therefore (ii) holds for every f € W1P(X,~) and then (iii) follows from (ii) and from the
density of FC}(X) in WIP(X,~).

(i) follows as well and in fact we have
VHE,f =E,.(P,Vuf) Vn €N,

where the right-hand side has to be understood as a Bochner H-valued integral. Indeed,
by (10.1.2) we have

ViEn fi(z) = / PV fe(Paz + (I — Po)y)y(dy)

for every k € N. The left hand side converges to VyE,, f in LP(X,~v; H) as k — +oo. The
right hand side converges to E,, P, Vg f as k — 400 since

/‘/Pvak P (Paz + (I - Pyl <dy> +(dx)
< /X /X va<fk—f)(an+<I—Pn>y>|%v<dy>v<dx>
_ /X Vaf — F)@)(de)

by Proposition (7.3.2). O

Regular LP cylindrical functions with L? gradient are in WP(X, ), see Exercise 10.2.
The simplest nontrivial examples of Sobolev functions are the elements of X7J.

Lemma 10.1.3. XX C W'(X,7) for every p € [1,400), and Vih = h (constant) for
every he X3

Proof. Fix p > 1. For every h € X7, there exists a sequence £, € X* such that
limy, o0 £, = h in L?(X,v). For every n, m € N we have

la=Cnlly = [ 167 Ot )(@E) = [ 1A (0.1 (@)=l

so that (£,) is a Cauchy sequence in LP(X,~). Its L2-limit & coincides with its LP-limit,
if p #£ 2.

As ¢, is in X*, Vgl, is constant and it coincides with R./,, see (9.3.1). Since
lim,, oo £, = h in L?*(X,7) and R, is an isometry from X7 to H, H — lim,_00 Ry ly =
RJL = h. Therefore,

/ \Vil, — hlbdy =Ry, — b}, - 0 asn — oo.
b

It follows that h € W'?(X,~) and Vgh = h. O
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An important example of Sobolev functions is given by Lipschitz functions. Since a
Lipschitz function is continuous, then it is Borel measurable.

Proposition 10.1.4. If f : X — R is Lipschitz continuous, then f € WYP(X,~) for any
1<p<+o0.

Proof. Let L > 0 be such that

fle)—fWI <Ljz—y| VazyeX

Since | f(z)| < |f(0)|+L||z||, by Theorem 2.3.1 (Fernique) f € LP(X,~) forany 1 < p < oc.
Let us consider the conditional expectation E,, f.
Let us notice that

Enf(m) = Un(ill(x)a ceey iln(x))v
with v, : R — R an Li—Lipschitz function since

n

Enf (Zn: zihi + z": Th'hi) - Enf(z Zihi)
i=1 :

1=1 ) 1=

< /X ’f<§”: zih; + 2": 77@'h7;> + (I - Pn)Z/) - f(z zih; + (I — Pn)l»/) ‘w(dy)
i=1 i=1 —

imhi

i—1

where we have used (3.1.3), |||l < c|h|g for h € H, and we have set L; := cL. By the
Rademacher Theorem, v, is differentiable A\,—a.e. in R™ and |Vu,(z)|gn < L for a.e.
z € R™. Hence v, € W' (R"), and

loc

(2 +n) = va(2)] =

—_

<Ly = Li|n|gn,

H

/R IV 0n(2)Bn(d2) < L.

A~

We use now the map T}, : X — R", T,(z) = (hi(x), ..., hy(z)). If z € X is a point such
that v, is differentiable at T),(z), then

0 if h e Ff
ahEnf(:E) =
Vun(Tp(2)) - Tn(h) if h € F,.

As a consequence, we can write

IVHEaf (@)|h =) 10Baf(2)* =) |0Enf(2)* = |Vou(Ta(2))[Zn-
=1 =1

We claim that for y—a.e. = v, is differentiable at T, (x). Indeed, let A C R™ be such that
An(A) = 0 and v, is differentiable at any point in R™ \ A. Since 7, < An, 7 (A4) = 0 and
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then v(7,1(A)) = 0 because v o T);! = ~,, see exercise 2.4. Hence v, is differentiable at
any point T, (x), where x € X \ T, }(A).
We Know that E,,f — f in LP(X,v) and we have

[ WuEap@) i dn) = [ 1VonTa)Ear(de) = [ 190 Enlde) < L
X X Rn

By Proposition 9.3.10(v) f € WP(X,) for every 1 < p < oo and by inclusion f €
WX, ). 0

Further properties of WP functions are presented in Exercises 10.3, 10.4, 10.5.

10.2 Sobolev spaces of H-valued functions

We recall the definition of Hilbert—Schmidt operators, see e.g. [DS2, §XI.6] for more
information.

Definition 10.2.1. Let Hy, Ho be separable Hilbert spaces. A linear operator A €
L(Hy, H) is called a Hilbert-Schmidt operator if there exists an orthonormal basis {h; :
j € N} of Hy such that

oo
> AR |17, < oo (10.2.1)
j=1
If A is a Hilbert-Schmidt operator and {e; : j € N} is any orthonormal basis of Hj,
{y; : j € N} is any orthonormal basis of Ha, then

o [o.¢]
1Ae;l17, = (Aej, )i, = D (e A yi)
k=1 k=1
so that
o oo oo
> N Aejll, = ZZ ej, A ZZ e A yr) i Z 1A |7, -
j=1 Jj=1k=1 k=1 j=1

So, the convergence of the series (10.2.1) and the value of its sum are independent of the
basis of H;. We denote by H(H;, Hs) the space of the Hilbert—Schmidt operators from

H; to Hs, and we set
(9] 1/2
Al = (3 1AnlE )

j=1
for every orthonormal basis {h; : j € N} of H;. Notice that if H; = R", Hy = R™, the
Hilbert—Schmidt norm of any linear operator coincides with the Euclidean norm of the
associated matrix.
The norm (10.2.1) comes from the inner product

o0

<A7 B>9{(H1,H2) = Z<Ahj7 th>H27
j=1
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where for every couple of Hilbert—Schmidt operators A, B, the series in the right-hand side
converges for every orthonormal basis {h; : j € N} of Hy, and its value is independent of
the basis. The space H(H;, H) is a separable Hilbert space with the above inner product.
If Hf = Hy = H, where H is the Cameron—Martin space of (X,~), we set H :=
H(H,H).
It is useful to generalise the notion of Sobolev space to H-valued functions. To this
aim, we define the cylindrical E-valued functions as follows, where F is any normed space.

Definition 10.2.2. For k € N we define FCF(X, E) (respectively, FC°(X, F)) as the
linear span of the functions x — v(x)y, with v € FCF(X) (respectively, v € FC°(X)) and
yeELl.

Therefore, every element of FCF(X, E) may be written as

= v(x)yr (10.2.2)
k=1

for some n € N, and v, € FOF(X), yr € E. Such functions are Fréchet differentiable
at every x € X, with v(z) € L(X, E) defined by v'(z)(h) = > }_; vi.(x)(h)yy for every
heX.

Similarly to the scalar case, we introduce the notion of H-differentiable function.

Definition 10.2.3. A function v : X — FE is called H-differentiable at T € X if there
exists L € L(H, E) such that

|lv(Z + h) —v(®) — L(h)||g = o(|hlg) as h— 0in H.
In this case we set L =: Dyv(T).

If v € FCHX, E) is given by (10.2.2), then it is H-differentiable at every T € X, and

n

Dpv(@)(h) =Y _[Vor(), hlu y.
k=1

In particular, if E = H and {h; : j € N} is any orthonormal basis of H we have

n

|Dpo(T) <Z| HUE(T ']HH%lH) < [Vaor(E Zlyk\H

k=1

so that Dyv(Z) is a Hilbert—Schmidt operator, and we have

o
|Dyv(T)|5, = Z [Dav(®), hylu|?* < ZZ! V uvg(T), hyla|? Z lykl%

k=1 j=1

IV Hok(T ’H Z |ykz|H

I
M= T

b
Il

1
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Moreover, x — V gui(z) is continuous and bounded for every k, therefore x — Dyv(z) is
continuous and bounded from X to H. In particular, it belongs to LP(X,~;H) for every
p=>1

The procedure to define Sobolev spaces of H-valued functions is similar to the proce-
dure for scalar functions. Namely, we show that the operator Dy, seen as an unbounded
operator from LP(X,~; H) to LP(X,~;H) with domain FCL(X, H), is closable.

Lemma 10.2.4. For everyp > 1, the operator Dy : FCL(X, H) — LP(X,~; H) is closable
in LP(X,~v; H).
Proof. Let (V,,) be a sequence in FC} (X, H) such that V;, — 0 in LP(X,v; H), with
DV, — @ in LP(X,~;H). We have to show that ®(z) = 0 a.e., namely that
[(I)(.%')hj,hz‘][{ = O,Vi,j € N,

a.e. in X.

Let V,,(x) = Zk 1 vk(az) yi. For every j € N let us consider the functions z — fp,(x) :
Va(x), hjlg = Zk 1 ) o, (z)[yk, hjlu. Each of them belongs to FCL(X), and f, — 0
in LP(X,), since |fn(z)] < |Vo(z)|g. Moreover, Vg fn(z) = Z,]fv:(?) V uvi (@) Yk, hila

converges in LP(X,~; H) to the vector field ¢(x) = > 2, [®(x)hi, hj]hi. Indeed,
e’} N(n) e’}
Vifa@) = [Vuor(), il ahilyr, hila = (D Va(@)(hi), hylm
i=1 k=1 i=1
so that
o) p/2
[ vnsi@) = oy = [ (Lioavi@n) - elm k) @
i=1
oo p/2
< [ (X o)) - winli )
X \ji=1

- /X (i (Di V() — ®(a)) (h:) %)pmdv

that vanishes as n — oo. Since Vi is a closed operator in LP(X,~), ¢ vanishes a.e. so
that [®(z)hi, hjlg = 0 a.e. for every i, j € N. O

Definition 10.2.5. For every p > 1 we define WYP(X,~; H) as the domain of the closure
of the operator Dy : FCH(X, H) — LP(X,~; H) (still denoted by Dy ) in LP(X,~; H).

Therefore, WP (X, ~; H) is a Banach space with the graph norm

Vo com / V@l d7 /” (/ \DHV(x)\gfd’Y>l/p
= (/X(jz;[‘/(x)’hj]ff)p/zd’o 1/i</)(<i§:1[DHV(I)(hi),hjﬁ{)p/d%o 1/p.
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Let v € FCL(X, H),
v(@) = er(@)yr,

k=1

with ¢ € FCL(X) and y; € H. Then v may be written in the form
v(@) =Y wvi(x)h;,
j=1

where the series converges in WP(X,~; H). Indeed, setting

n

vj(z) = [v(z), hjlg = Z@k(ﬁ)[?/k,h]’]m jeN
k=1

the sequence sp,(v) = > 0, vj(2)h; converges to v in WLP(X,~; H), because for each
k = 1,...,n, the sequence > "', p(7)[yk, hj]ln converges to gx(z)y in WP (X, v, H).
Moreover,
oo
Dyv(x)(h) =) _[Viv;(), hlmh;
j=1

so that, as in finite dimension,
[Drv(z)(hi), hjln = [Vavj(2), hilg = O, ().

10.2.1 The divergence operator

Let us recall the definition of adjoint operators. If X;, Xo are Hilbert spaces and T :
D(T) ¢ X; — Xy is a linear densely defined operator, an element v € X3 belongs to
D(T™) iff the function D(T) — R, f +— (T f,v)x, has a linear continuous extension to the
whole X7, namely there exists g € X; such that

<Tfav>X2 = <fvg>X17 fED(T)
In this case g is unique (because D(T') is dense in X;) and we set
g=T".

We are interested now in the case X; = L?(X,v), Xo = L*(X,v;H) and T = V. For
feWbt3(X,v), v e L*(X,~; H) we have

(TS0 = [ [Vinf@). o)l (do)
so that v € D(T*) if and only if there exists g € L?(X,~) such that

/ Vo f(2), v(@)] i y(dx) = / f(@)g(x)y(d), | e W2(X,). (10.2.3)
X X
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In this case, in analogy to the finite dimensional case, we set
g = —divyv

and we call —g divergence or Gaussian divergence of v. As FCL(X) is dense in WH2(X, ),
(10.2.3) is equivalent to

| Fus@). vl = [ @) fesCix)
The main achievement of this section is the embedding W'2(X,~; H) C D(T*). For its
proof, we use the following lemma.

Lemma 10.2.6. For every f € WY2(X,v) and h € H, fhe L*(X,v) and
[ hpar<a [ @praveong [ £a (10.2.4
X X X

Proof. We already know that A € W2(X,~). Then, for every f € FCHX) we have
f?h e WH2(X,~) and

7\2 _ 27\ 1 _ 27
/X(fh) dv—/x(f h)hdv—/xah(f h) dvy

- /X @F Onf b+ Pon(R)dy
=2/Xff33hfd7+|h|?{/xf2dv

<2( | (fh)dy v (Onf)*dy 1/2+!h!?{ f2dn.
X X X

Using the inequality ab < a?/4 + b%, we get

512 1 512 2 2 2
J iy < 5 [ a2 [ @unpan i [ o

so that f satisfies (10.2.4). Since FC}(X) is dense in W'2(X,v), (10.2.4) holds for every
f e WX, 7). 0

Theorem 10.2.7. The Sobolev space WH2(X,~; H) is continuously embedded in D(div.,)
and the estimate

HdiVWUHLZ(X,v) < HUHWIvZ(Xq;H)
holds. Moreover, fixing an orthonormal basis {h, : n € N} of H contained in R(X"),
and setting vy, (z) = [v(z), hy)g for every v € WH2(X,y; H) and n € N, we have

o0

din’U(CL‘) = Z(anvn(x) - Un(x)iln(x))7

n=1

where the series converges in L*(X,7).



Sobolev spaces 11 127
Proof. Consider a function v € W12(X,~v; H) of the type
n
v(x) = Zvi(:p)hi, x e X. (10.2.5)
i=1

with v; € WhH2(X, ).
For every f € WH2(X,~) we have [V f(x),v(x)]lg = >, 0;f(z)vi(x), so that

/X[VHf,v]Hdvz/X<§8¢fvi>d7:/Xg(—awi—kvifzi)fd*y

which yields

n

diV»YU == Z(aﬂ)l - iLﬂ)Z)

i=1
Now we prove that

/X(divyv)zd’y:/x|v|%d’y+/ Z 0;v; 0jv; d, (10.2.6)

ij=1

n

showing, more generally, that if u(z) = )" ; u;(x)h; is another function of this type, then

/X(divvvdivvu)d'y:/X[U,U]Hd’y—i-/x Z Oiuj 0jv; dy. (10.2.7)

ij=1

By linearity, it is sufficient to prove that (10.2.7) holds if the sums in u and v consist of a
single addendum, u(x) = f(x)h;, v(xz) = g(z)h; for some f, g € WI?(X,~) and i, j € N.
In this case, (10.2.7) reads

[ @1 = hip)@sg ~ gy = [ sasizar+ [ o5t 0i9a. (10.28)
X X X
First, let f, g € FCZ(X). Then,

[ @ =iun@a—hortr == [ fouoi0-lsa)in

——/ faz‘jgdwr/ fg5ijdv+/ fhjdig dy

X X X
— [[@r~hipdrgdr+ [ sassav+ [ fhoigd
X X X

so that (10.2.8) holds. Since FCZ(X) is dense in W?(X,~), see Exercise 10.6, (10.2.8)
holds for f, g € W2(X,~). Summing up, (10.2.7) follows, and taking u = v, (10.2.6)

follows as well. Since the linear span of functions in (10.2.5) is dense in W12(X,~; H)
both equalities hold in the whole W12(X,~; H). Notice also that (10.2.6) implies

/(div,yv)2d7§/ \U|%{d’y+/ | Dgv|3 dy. (10.2.9)
X X X
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If v € WH2(X,~; H) we approximate it by the sequence

n

vn(z) = [v(@), hil mhi.

=1

For every f € WH2(X,~) we have

/[VHf,vn]Hd’y:—/ fdivyv, dy. (10.2.10)
X X

By estimate (10.2.9), (div,vy,) is a Cauchy sequence in L?*(X,7), so that it converges in
L*(X,7) to g(x) = > 521 (05v5(x) — vj(z)h;(x)). Letting n — oo in (10.2.10), we get

[ utidudy == [ sqar

so that v € D(T™) and div,v = g. O

Note that the domain of the divergence is larger than W12(X, ~; H), even in finite
dimension. For instance, if X = R? is endowed with the standard Gaussian measure,
any vector field v(z,y) = (a1(x) + Bi(y),az(z) + B2(y)) with a1, B2 € WH2(R, 1),
B1, az € L*(R,71) belongs to the domain of the divergence, but it does not belong to
W12(R2, ~5; R?) unless also 1, az € WH2(R, ).

The divergence may be defined, still as a dual operator, also in a L? context with
q # 2. We recall that if X;, X5 are Banach spaces and : D(T) C X; — Xs is a linear
densely defined operator, an element v € X3 belongs to D(T™) iff the function D(T') — R,
f — v(Tf) has a linear continuous extension to the whole Xj. Such extension is an
element of X7; denoting it by ¢ we have ¢(f) = v(Tf) for every f € D(T).

We are interested in the case X1 = LY(X,~), Xo = LY(X,~; H), with 1 < ¢ < oo, and
T :D(T) = WH(X,~), Tf = Vi f. The dual space X consists of all the functions of
the type

w = / ['lU,'U]Hd"}/,
X
ve LV (X,v;H), ¢ =q/(g—1), see [DU, §IV.1], so we canonically identify LI (X,~; H)

as LY(X,~; H)*. We also identify (L(X,~))* with L% (X,~). After these identifications,
a function v € LY (X,~; H) belongs to D(T*) iff there exists g € LY (X,~) such that

/[VHf(x),v(:E)]H'y(dx):/ f(@)g(z)y(dz), ¥ feWh(X,7),
X X

which is equivalent to
[ War@)o@luntdn) = [ @i, ¥ eTCix)
X X

since FCL (X)) is dense in W4(X,~). So, this is similar to the case ¢ = 2, see (10.2.3).
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Theorem 10.2.8. Let 1 < ¢ < oo, and let T : D(T) = W(X,~y) — LY(X,v; H),
Tf=Vyf. Then WHi(X, ~; H) C D(T*), and for every orthonormal basis {h, : n € N}
of H we have

T*v(z) = = Y (Onvn(z) — vn(2)hn(x)), vE WX, ~; H)

n=1
where vy, (x) = [v(x), hyn|g, and the series converges in LI(X, 7).
The proof of Theorem 10.2.8 for ¢ # 2 is not as easy as in the case ¢ = 2. See [B,
Prop. 5.8.8]. The difficult part is the estimate
1T La(x ) < Cllvllwa(x ;i)

even for good vector fields v = 1 | v;(@)h;, with v; € FOL(X).
We may still call “Gaussian divergence” the operator 1.

10.3 The Sobolev spaces W%*?(X, )

Let us start with regular functions, recalling the definition of the second order derivative
f"(z) given in Lecture 9. If f : X — R is differentiable at any x € X, we consider the
function X — X*, x — f’(x). If this function is differentiable at T, we say that f is twice
(Fréchet) differentiable at Z. In this case there exists L € £(X, X*) such that

If(+ h) — f' () — Lh|x- =o(|h]|) ash—0 in X,

and we set L =: f"(T).

In our setting we are interested in increments h € H, and in H-differentiable functions.
If f: X — R is H-differentiable at any « € X, we say that f is twice H-differentiable at
T if there exists a linear operator Ly € L(H) such that

’va(f-i- h) — VHf(f) — LHh’H = O(VL‘H) ash — 0in H.

The operator Ly is denoted by D% f ().

We recall that if f is differentiable at z, it is also H-differentiable and we have
Vuf(z) = Ry f'(z). So, if f is twice differentiable at 7, with f”(z) = L, then D% f(Z)h =
R, Lh. Indeed,

[Ryf'(T + h) = Ry f'(Z) = RyLhly < ||Ry |l ox-m) | /(@ + h) = f'(@) = Lh|lx- = o(|[R]])
as h — 0in X, and therefore,
|R,f'(+h) — Ryf () — RyLh|g = o(Jh|g) ash — 0in H.
If feFCHX), fl@) = o(li(x),...,ly(z)) with p € CZ(R"), ¢y € X*, then f is twice
differentiable at any T € X and
0%
8:1:2-8:5]-

(f@v)w) =Y

i,7=1

(l(Z),... . bh(@)l; (V) (w), v, weX
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so that

D% f(Z Z 8% 8% (@) R, W (R4, K, h, k€ H.

D? f(%) is a Hilbert-Schmidt operator, since for any orthonormal basis {h; : j € N} of
H we have

00 2 n n
2 2 2
(Dt f @)han, a1y Z < Z axlax] ><Z[R7€iahm]H> <Z[R’Y£j7hk]H>
m,k=1 m,k=1 “i,5=1 =1 j=1
= | Dy ellaccen mmy [Roli, ]2 [R5, bl
mk=1 i=1 =1
= HDZSOHS-C(R”,R”) Z Z [R’\/Eia hm ZZ R fj, hk
i=1 m=1 G=1 k=1
= ||D2(10||9'C(R",]R") Z |R’y€1|%{ Z |R7£J|%_]
i=1
where the derivatives of ¢ are evaluated at (£1(Z),...,¢n(T)). Since ||D?*¢|lgrn gny is

bounded, z — || D% f(z)||s¢ is bounded in X.
The next lemma is similar to Lemma 9.3.7. We omit the proof.

Lemma 10.3.1. For every p > 1, the operator
(Vi DF) : FOH(X) — LP(X, v H) x LP(X,7; 5)

is closable in LP(X,~).

Definition 10.3.2. For every p > 1, WP(X,~) is the domain of the closure of
(Vi DY) : FCHX) = LP(X, v H) x LP(X, ;)

in LP(X,7). Therefore, f € LP(X,~) belongs to W?P(X,~) iff there exists a sequence
(fn) C FCE(X) such that f, — f in LP(X,v), Vi fn converges in LP(X,~; H) and D% f,
converges in LP(X,~;H). In this case we set D2 f = limp 00 D% fn.

W2P(X,~) is a Banach space with the graph norm

I fllwee = 1fllexq) + IV f e x ) + I DEFI Lo (x50 (10.3.1)

1/p 1/p 1/p
- < / Ifl”d7> +( / |va|%d7> +( / |D§{f|§(d7> |
X X X

Fixed any orthonormal basis {h; : j € N} of H, for every f € W?P(X, ) we set

i f(x) = [Df f(@)hy, hilg
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For every sequence of approximating functions f,, we have

then the equality
9ijf(x) = 0 f(x), ae.

holds. Therefore, the WP norm may be rewritten as

(/X‘f |pd7> ", ( /X (i(ajff)mdy) . < /X (i o, f>2>p/2d7> e

Jj=1 4,j=1

Let X be a Hilbert space and assume that ~ is nondegenerate. Then, another class of
W?2P spaces looks more natural. As in Remark 9.3.11, we may replace (Vg f, D% f) in
Definition 10.3.2 by (Vf, f”). The proof of Lemma 10.3.1 works as well with this choice.
So, we define WQJ’(X,v) as the domain of the closure of the operator T : FCZ(X) —
LP(X,v; X) x LP(X,v; H(X, X)), f— (Vf, ") in LP(X,~) (still denoted by T'), and we
endow it with the graph norm of 7. This space is much smaller than W2P(X,~) if X
is infinite dimensional. Indeed, fix as usual any orthonormal basis {e; : j € N} of X
consisting of eigenvectors of Q Qe; = \jej, and set h = \/>ej Then {h;: j€N}isa
orthonormal basis of H, 0; f(x f@f/@e], 0ij f(x) = \/AiXjO* f | De;De;, and

ee} a 2\ p/2 1/p
1 lw2exq) =1 ey + < /X (ZAf<6efj> ) d”>
PF O\ NP
(/ <Z Aidj <8€1863) > dv) ’

7,7=1

2\ p/2 1/p

115720 ) =N lr ) + </ ( (m)) ‘”>
p/2 1/p
< < (86186]>> dv) .

Since limj_oo Aj = 0, the W2P(X,~) norm is stronger than the W2P(X,~) norm. In
particular, the function f(z) = ||z||?> belongs to W2P(X,~) for every p > 1 but it does
not belong to WQ’p(X, v) for any p > 1, because f”(x) = 2I for every z € X and
82]('/862‘8%' = 2(5@'.

while

10.4 Exercises

Exercise 10.1. Prove that (10.1.2) holds.
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Exercise 10.2. Prove that if f € FCY(X)NLP(X,7), 1 <p < oo and Vg f € LP(X,7)
then f € WhP(X, ).

Exercise 10.3. Prove that if f € WP(X,~) then f+ f=,|f] € W'P(X,~) as well.
Compute Vg f*,Vyf~,Vu|f| and deduce that Vi f = 0 a.e. on {f = c} for every
ceR.

Exercise 10.4. Let o € WIP(R" ~,) and let ¢1,...,4, € X*, with Wi ly) r2(x ) = Oij-
Prove that the function f : X — R defined by f(z) = @(hi(x),...,hn(z)) belongs to
WhP(X, 7).

Exercise 10.5. Let f € LP(X,), p > 1, be such that E, f € W'P(X,~) for every n € N,
with sup, ||V By f|| o (x 4;0) < 00. Prove that f € W'P(X,~).

Exercise 10.6. Prove that FCZ(X) is dense in W2(X, )
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