Lecture 10

Sobolev Spaces II

In this Lecture we go on in the description of the Sobolev spaces $W^{1,p}(X, \gamma)$, and we define the Sobolev spaces $W^{2,p}(X,\gamma)$. We give approximation results through the cylindrical functions $\mathbb{E}_n f$, and we introduce the divergence of vector fields; formally, the divergence operator is adjoint of the *H*-gradient. We use the notation of Lecture 9. So, *X* is a separable Banach space endowed with a centred nondegenerate Gaussian measure γ , and if $\{h_j : j \in \mathbb{N}\}\subset R_\gamma(X^*)$ is an orthonormal basis of the Cameron-Martin space *H*, then for every $f \in W^{1,p}(X, \gamma)$ we denote by $\partial_i f(x) = [\nabla_H f(x), h_i]_H$ the generalised derivative of f in the direction h_j .

10.1 Further properties of $W^{1,p}$ spaces

Let $f \in W^{1,p}(X, \gamma)$. For every $h \in H$, $\partial_h f$ plays the role of weak derivative of f in the *h* direction. Indeed, by Proposition 9.3.10, for every $f \in W^{1,p}(X, \gamma)$ and $\varphi \in C_b^1(X)$, applying formula (9.3.3) to the product $f\varphi$ we get

$$
\int_X (\partial_h \varphi) f \, d\gamma = - \int_X \varphi(\partial_h f) \, d\gamma + \int_X \varphi \, f \, \hat{h} \, d\gamma.
$$

The Sobolev spaces may be defined through the weak derivatives. Given $f \in L^p(X, \gamma)$ and $h \in H$, a function $g \in L^1(X, \gamma)$ is called *weak derivative* of f in the direction of h if

$$
\int_X (\partial_h \varphi) f \, d\gamma = -\int_X \varphi \, g \, d\gamma + \int_X \varphi \, f \, \hat{h} \, d\gamma, \quad \forall \varphi \in C_b^1(X).
$$

The weak derivative is unique, because if $\int_X \varphi g \, d\gamma = 0$ for every $\varphi \in C_b^1(X)$, then $g = 0$ a.e. by Lemma 9.3.6.

We set

$$
G^{1,p}(X,\gamma) = \Big\{ f \in L^p(X,\gamma) : \exists \Psi \in L^p(X,\gamma;H) \text{ such that for each } h \in H,
$$

$$
[\Psi(\cdot),h]_H \text{ is the weak derivative of } f \text{ in the direction } h \Big\}.
$$

If $f \in G^{1,p}(X,\gamma)$ and Ψ is the function in the definition, we set

$$
D_H f := \Psi, \quad ||f||_{G^{1,p}(X,\gamma)} = ||f||_{L^p(X,\gamma)} + ||\Psi||_{L^p(X,\gamma;H)}.
$$

Theorem 10.1.1. For every $p > 1$, $G^{1,p}(X, \gamma) = W^{1,p}(X, \gamma)$ and $D_H f = \nabla_H f$ for every $f \in W^{1,p}(X,\gamma)$.

The proof may be found e.g. in [B, Cor. 5.4.7].

Let us come back to the approximation by conditional expectations introduced in Subsection 7.4. We already know that if $f \in L^p(X, \gamma)$ then $\mathbb{E}_n f \to f$ in $L^p(X, \gamma)$ as $n \rightarrow \infty.$

Proposition 10.1.2. Let $1 \leq p < \infty$ and let $f \in W^{1,p}(X, \gamma)$. Then, $\mathbb{E}_n f \in W^{1,p}(X, \gamma)$ *for all* $n \in \mathbb{N}$ *and:*

(i) *for every* $j \in \mathbb{N}$

$$
\partial_j(\mathbb{E}_n f) = \begin{cases} \mathbb{E}_n(\partial_j f) & \text{if } j \le n, \\ 0 & \text{if } j > n; \end{cases}
$$
 (10.1.1)

- (ii) $\|\mathbb{E}_n f\|_{W^{1,p}(X,\gamma)} \leq \|f\|_{W^{1,p}(X,\gamma)}$;
- (iii) $\lim_{n \to \infty} \mathbb{E}_n f = f$ *in* $W^{1,p}(X, \gamma)$ *.*

Proof. Let $f \in \mathcal{F}C_b^1(X)$. Since $P_n x = \sum_{i=1}^n \hat{h}_i(x)h_i$ and $\frac{\partial \hat{h}_i}{\partial h_j}(x) = \delta_{ij}$ for every x, for every $y \in X$ the function $x \mapsto f(P_n x + (I - P_n)y)$ has directional derivatives along all h_j , that vanish for $j > n$ and are equal to $\frac{\partial f}{\partial h_j}(P_n x + (I - P_n)y)$ for $j \leq n$.

Since $x \mapsto \frac{\partial f}{\partial h_j}(P_n x + (I - P_n)y)$ is continuous and bounded by a constant independent of *y*, for $j \leq n$ we get

$$
\partial_j \mathbb{E}_n f(x) = \frac{\partial}{\partial h_j} \int_X f(P_n x + (I - P_n) y) \gamma(dy) = \int_X \frac{\partial f}{\partial h_j} (P_n x + (I - P_n) y) \gamma(dy).
$$

In other words, (i) holds, and it yields

$$
\nabla_H \mathbb{E}_n f(x) = \int_X P_n \nabla_H f(P_n x + (I - P_n)y) \gamma(dy), \qquad \forall x \in X.
$$
 (10.1.2)

So we have

$$
\|\nabla_H \mathbb{E}_n f - \nabla_H f\|_{L^p(X,\gamma;H)}^p = \int_X \left| \int_X (P_n \nabla_H f(P_n x + (I - P_n)y) - \nabla_H f(x)) \gamma(dy) \right|_H^p \gamma(dx)
$$

$$
\leq \int_X \int_X |P_n \nabla_H f(P_n x + (I - P_n)y) - \nabla_H f(x)|_H^p \gamma(dy) \gamma(dx).
$$

Notice that

$$
\lim_{n \to +\infty} |P_n \nabla_H f(P_n x + (I - P_n) y) - \nabla_H f(x)|_H = 0, \qquad \gamma \otimes \gamma - a.e. \ (x, y).
$$

Indeed, recalling that $||P_n||_{\mathcal{L}(H)} \leq 1$,

$$
|P_n \nabla_H f(P_n x + (I - P_n)y) - \nabla_H f(x)|_H
$$

\n
$$
\leq |P_n \left(\nabla_H f(P_n x + (I - P_n)y) - \nabla_H f(x) \right)|_H + |P_n \nabla_H f(x) - \nabla_H f(x)|_H
$$

\n
$$
\leq |\nabla_H f(P_n x + (I - P_n)y) - \nabla_H f(x)|_H + |(P_n - I) \nabla_H f(x)|_H
$$

and the first addendum vanishes as $n \to +\infty$ for $\gamma \otimes \gamma$ -a.e. (x, y) since

$$
\lim_{n \to +\infty} P_n x + (I - P_n) y = x
$$

for $\gamma \otimes \gamma$ -a.e. (x, y) and $\nabla_H f$ is continuous; the second addendum goes to 0 as $n \to \infty$ for every $x \in X$. Moreover,

$$
|P_n \nabla_H f(P_n x + (I - P_n) y) - \nabla_H f(x)|_H \leq 2 \sup_{z \in X} |\nabla_H f(z)|_H.
$$

By the Dominated Convergence Theorem,

$$
\lim_{n \to +\infty} \nabla_H \mathbb{E}_n f = \nabla_H f
$$

in $L^p(X, \gamma; H)$, and taking into account Proposition 7.4.5,

$$
\lim_{n \to +\infty} \mathbb{E}_n f = f
$$

in $W^{1,p}(X,\gamma)$. So, *f* satisfies (iii). Moreover,

$$
\|\nabla_H \mathbb{E}_n f\|_{L^p(X,\gamma;H)}^p = \int_X \left| \int_X P_n \nabla_H f(P_n x + (I - P_n)y) \gamma(dy) \right|_H^p \gamma(dx)
$$

\n
$$
\leq \int_X \int_X |P_n \nabla_H f(P_n x + (I - P_n)y)|_H^p \gamma(dy) \gamma(dx)
$$

\n
$$
\leq \int_X \int_X |\nabla_H f(P_n x + (I - P_n)y)|_H^p \gamma(dy) \gamma(dx)
$$

\n
$$
= \int_X |\nabla_H f(x)|_H^p \gamma(dx) \qquad (10.1.3)
$$

where the last equality follows from Proposition 7.3.2.

Estimate (10.1.3) and (7.4.2) yield (ii) for $f \in \mathcal{F}C_b^1(X)$.

Let now $f \in W^{1,p}(X,\gamma)$, and let $(f_k) \subset \mathcal{F}C_b^1(X)$ be a sequence converging to f in $W^{1,p}(X,\gamma)$. By estimate (7.4.2), for every $n \in \mathbb{N}$ the sequence $(\mathbb{E}_n f_k)_k$ converges to $\mathbb{E}_n f$ in $L^p(X, \gamma)$, and by (ii) $(\mathbb{E}_n f_k)_k$ is a Cauchy sequence in $W^{1,p}(X, \gamma)$. Therefore, $\mathbb{E}_n f \in W^{1,p}(X,\gamma)$ and

$$
\nabla_H \mathbb{E}_n f = \lim_{k \to +\infty} \nabla_H \mathbb{E}_n f_k
$$

in $L^p(X, \gamma; H)$ so that

$$
\|\nabla_H \mathbb{E}_n f\|_{L^p(X,\gamma;H)} = \lim_{k \to +\infty} \|\nabla_H \mathbb{E}_n f_k\|_{L^p(X,\gamma;H)} \le \lim_{k \to +\infty} \|\nabla_H f_k\|_{L^p(X,\gamma;H)}
$$

=
$$
\|\nabla_H f\|_{L^p(X,\gamma;H)}.
$$

Therefore (ii) holds for every $f \in W^{1,p}(X, \gamma)$ and then (iii) follows from (ii) and from the density of $\mathfrak{F}C_b^1(X)$ in $W^{1,p}(X,\gamma)$.

(i) follows as well and in fact we have

$$
\nabla_H \mathbb{E}_n f = \mathbb{E}_n (P_n \nabla_H f) \qquad \forall n \in \mathbb{N},
$$

where the right-hand side has to be understood as a Bochner *H*-valued integral. Indeed, by $(10.1.2)$ we have

$$
\nabla_H \mathbb{E}_n f_k(x) = \int_X P_n \nabla_H f_k(P_n x + (I - P_n)y)\gamma(dy)
$$

for every $k \in \mathbb{N}$. The left hand side converges to $\nabla_H \mathbb{E}_n f$ in $L^p(X, \gamma; H)$ as $k \to +\infty$. The right hand side converges to $\mathbb{E}_n P_n \nabla_H f$ as $k \to +\infty$ since

$$
\int_X \left| \int_X P_n \nabla_H (f_k - f)(P_n x + (I - P_n) y) \gamma(dy) \right|_H^p \gamma(dx)
$$

\n
$$
\leq \int_X \int_X |\nabla_H (f_k - f)(P_n x + (I - P_n) y)|_H^p \gamma(dy) \gamma(dx)
$$

\n
$$
= \int_X |\nabla_H (f_k - f)(x)|_H^p \gamma(dx)
$$

by Proposition (7.3.2).

Regular L^p cylindrical functions with L^p gradient are in $W^{1,p}(X, \gamma)$, see Exercise 10.2. The simplest nontrivial examples of Sobolev functions are the elements of X^*_{γ} .

Lemma 10.1.3. $X^*_{\gamma} \subset W^{1,p}(X, \gamma)$ for every $p \in [1, +\infty)$, and $\nabla_H \hat{h} = h$ (constant) for *every* $\hat{h} \in X^*_{\gamma}$.

Proof. Fix $p \geq 1$. For every $\hat{h} \in X^*$, there exists a sequence $\ell_n \in X^*$ such that $\lim_{n\to\infty} \ell_n = \hat{h}$ in $L^2(X, \gamma)$. For every $n, m \in \mathbb{N}$ we have

$$
\|\ell_n-\ell_m\|_{L^p(X,\gamma)}^p=\int_{\mathbb{R}}|\xi|^p\mathcal{N}(0,\|\ell_n-\ell_m\|_{L^2(X,\gamma)}^2)(d\xi)=\int_{\mathbb{R}}|\tau|^p\mathcal{N}(0,1)\,(d\tau)\|\ell_n-\ell_m\|_{L^2(X,\gamma)}^p
$$

so that (ℓ_n) is a Cauchy sequence in $L^p(X, \gamma)$. Its L^2 -limit \hat{h} coincides with its L^p -limit, if $p \neq 2$.

As ℓ_n is in X^* , $\nabla_H \ell_n$ is constant and it coincides with $R_\gamma \ell_n$, see (9.3.1). Since $\lim_{n\to\infty}$ $\ell_n = \hat{h}$ in $L^2(X,\gamma)$ and R_γ is an isometry from X^*_{γ} to H , $H - \lim_{n\to\infty} R_\gamma \ell_n =$ $R_{\gamma} \hat{h} = h$. Therefore,

$$
\int_X |\nabla_H \ell_n - h|_H^p d\gamma = |R_\gamma \ell_n - h|_H^p \to 0 \quad \text{as } n \to \infty.
$$

It follows that $\hat{h} \in W^{1,p}(X, \gamma)$ and $\nabla_H \hat{h} = h$.

 \Box

An important example of Sobolev functions is given by Lipschitz functions. Since a Lipschitz function is continuous, then it is Borel measurable.

Proposition 10.1.4. *If* $f: X \to \mathbb{R}$ *is Lipschitz continuous, then* $f \in W^{1,p}(X, \gamma)$ *for any* $1 \leq p < +\infty$.

Proof. Let *L >* 0 be such that

$$
|f(x) - f(y)| \le L||x - y|| \quad \forall \ x, y \in X.
$$

Since $|f(x)| \leq |f(0)| + L \|x\|$, by Theorem 2.3.1 (Fernique) $f \in L^p(X, \gamma)$ for any $1 \leq p < \infty$.

Let us consider the conditional expectation $\mathbb{E}_n f$.

Let us notice that

$$
\mathbb{E}_n f(x) = v_n(\hat{h}_1(x), \dots, \hat{h}_n(x)),
$$

with $v_n : \mathbb{R}^n \to \mathbb{R}$ an L_1 -Lipschitz function since

$$
|v_n(z + \eta) - v_n(z)| = \left| \mathbb{E}_n f\left(\sum_{i=1}^n z_i h_i + \sum_{i=1}^n \eta_i h_i\right) - \mathbb{E}_n f\left(\sum_{i=1}^n z_i h_i\right) \right|
$$

\n
$$
\leq \int_X \left| f\left(\sum_{i=1}^n z_i h_i + \sum_{i=1}^n \eta_i h_i\right) + (I - P_n) y \right) - f\left(\sum_{i=1}^n z_i h_i + (I - P_n) y\right) \left| \gamma (dy) \right|
$$

\n
$$
\leq L_1 \left| \sum_{i=1}^n \eta_i h_i \right|_H = L_1 |\eta|_{\mathbb{R}^n},
$$

where we have used (3.1.3), $||h|| \le c|h|_H$ for $h \in H$, and we have set $L_1 := cL$. By the Rademacher Theorem, v_n is differentiable λ_n –a.e. in \mathbb{R}^n and $|\nabla v_n(z)|_{\mathbb{R}^n} \leq L_1$ for a.e. $z \in \mathbb{R}^n$. Hence $v_n \in W^{1,1}_{loc}(\mathbb{R}^n)$, and

$$
\int_{\mathbb{R}^n} |\nabla v_n(z)|_{\mathbb{R}^n}^p \gamma_n(dz) \leq L_1^p.
$$

We use now the map $T_n: X \to \mathbb{R}^n$, $T_n(x) = (\hat{h}_1(x), \ldots, \hat{h}_n(x))$. If $x \in X$ is a point such that v_n is differentiable at $T_n(x)$, then

$$
\partial_h \mathbb{E}_n f(x) = \begin{cases} 0 & \text{if } h \in F_n^{\perp} \\ \nabla v_n(T_n(x)) \cdot T_n(h) & \text{if } h \in F_n. \end{cases}
$$

As a consequence, we can write

$$
|\nabla_H \mathbb{E}_n f(x)|_H^2 = \sum_{i=1}^{\infty} |\partial_i \mathbb{E}_n f(x)|^2 = \sum_{i=1}^n |\partial_i \mathbb{E}_n f(x)|^2 = |\nabla v_n(T_n(x))|_{\mathbb{R}^n}^2.
$$

We claim that for γ -a.e. *x* v_n is differentiable at $T_n(x)$. Indeed, let $A \subset \mathbb{R}^n$ be such that $\lambda_n(A) = 0$ and v_n is differentiable at any point in $\mathbb{R}^n \setminus A$. Since $\gamma_n \ll \lambda_n$, $\gamma_n(A) = 0$ and then $\gamma(T_n^{-1}(A)) = 0$ because $\gamma \circ T_n^{-1} = \gamma_n$, see exercise 2.4. Hence v_n is differentiable at any point $T_n(x)$, where $x \in X \setminus T_n^{-1}(A)$.

We Know that $\mathbb{E}_n f \to f$ in $L^p(X, \gamma)$ and we have

$$
\int_X |\nabla_H \mathbb{E}_n f(x)|_H^p \gamma(dx) = \int_X |\nabla v_n(T_n x)|_{\mathbb{R}^n}^p \gamma(dx) = \int_{\mathbb{R}^n} |\nabla v_n(z)|_{\mathbb{R}^n}^p \gamma_n(dz) \le L_1^p.
$$

By Proposition 9.3.10(v) $f \in W^{1,p}(X, \gamma)$ for every $1 < p < \infty$ and by inclusion $f \in W^{1,1}(X, \gamma)$. $W^{1,1}(X,\gamma).$

Further properties of $W^{1,p}$ functions are presented in Exercises 10.3, 10.4, 10.5.

10.2 Sobolev spaces of *H*-valued functions

We recall the definition of Hilbert–Schmidt operators, see e.g. [DS2, *§*XI.6] for more information.

Definition 10.2.1. Let H_1 , H_2 be separable Hilbert spaces. A linear operator $A \in$ $\mathcal{L}(H_1, H_2)$ *is called a Hilbert–Schmidt operator if there exists an orthonormal basis* $\{h_i:$ $j \in \mathbb{N}$ *of* H_1 *such that*

$$
\sum_{j=1}^{\infty} \|Ah_j\|_{H_2}^2 < \infty. \tag{10.2.1}
$$

If *A* is a Hilbert–Schmidt operator and $\{e_j : j \in \mathbb{N}\}\)$ is any orthonormal basis of H_1 , $\{y_j : j \in \mathbb{N}\}\$ is any orthonormal basis of *H*₂, then

$$
||Ae_j||_{H_2}^2 = \sum_{k=1}^{\infty} \langle Ae_j, y_k \rangle_{H_2}^2 = \sum_{k=1}^{\infty} \langle e_j, A^*y_k \rangle_{H_2}^2
$$

so that

$$
\sum_{j=1}^{\infty} \|Ae_j\|_{H_2}^2 = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \langle e_j, A^* y_k \rangle_{H_2}^2 = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \langle e_j, A^* y_k \rangle_{H_2}^2 = \sum_{k=1}^{\infty} \|A^* y_k\|_{H_1}^2.
$$

So, the convergence of the series (10.2.1) and the value of its sum are independent of the basis of H_1 . We denote by $\mathcal{H}(H_1, H_2)$ the space of the Hilbert–Schmidt operators from H_1 to H_2 , and we set

$$
||A||_{\mathcal{H}(H_1, H_2)} = \left(\sum_{j=1}^{\infty} ||Ah_j||_{H_2}^2\right)^{1/2},
$$

for every orthonormal basis $\{h_j : j \in \mathbb{N}\}\$ of H_1 . Notice that if $H_1 = \mathbb{R}^n$, $H_2 = \mathbb{R}^m$, the Hilbert–Schmidt norm of any linear operator coincides with the Euclidean norm of the associated matrix.

The norm (10.2.1) comes from the inner product

$$
\langle A, B \rangle_{\mathfrak{H}(H_1, H_2)} = \sum_{j=1}^{\infty} \langle Ah_j, Bh_j \rangle_{H_2},
$$

where for every couple of Hilbert–Schmidt operators *A*, *B*, the series in the right-hand side converges for every orthonormal basis $\{h_i: j \in \mathbb{N}\}\$ of H_1 , and its value is independent of the basis. The space $\mathcal{H}(H_1, H_2)$ is a separable Hilbert space with the above inner product.

If $H_1 = H_2 = H$, where *H* is the Cameron–Martin space of (X, γ) , we set $\mathcal{H} :=$ $\mathcal{H}(H,H)$.

It is useful to generalise the notion of Sobolev space to *H*-valued functions. To this aim, we define the cylindrical *E*-valued functions as follows, where *E* is any normed space.

Definition 10.2.2. For $k \in \mathbb{N}$ we define $\mathfrak{F}C_b^k(X, E)$ (respectively, $\mathfrak{F}C_b^{\infty}(X, E)$) as the *linear span of the functions* $x \mapsto v(x)y$ *, with* $v \in \mathcal{F}C_b^k(X)$ (respectively, $v \in \mathcal{F}C_b^{\infty}(X)$) and $y \in E$ *.*

Therefore, every element of $\mathcal{F}C_b^k(X, E)$ may be written as

$$
v(x) = \sum_{k=1}^{n} v_k(x) y_k
$$
 (10.2.2)

for some $n \in \mathbb{N}$, and $v_k \in \mathcal{F}C_b^k(X)$, $y_k \in E$. Such functions are Fréchet differentiable at every $x \in X$, with $v'(x) \in \mathcal{L}(X, E)$ defined by $v'(x)(h) = \sum_{k=1}^n v'_k(x)(h)y_k$ for every $h \in X$.

Similarly to the scalar case, we introduce the notion of *H*-differentiable function.

Definition 10.2.3. A function $v: X \to E$ is called H-differentiable at $\overline{x} \in X$ if there *exists* $L \in \mathcal{L}(H, E)$ *such that*

$$
||v(\overline{x}+h)-v(\overline{x})-L(h)||_E = o(|h|_H) \quad \text{as } h \to 0 \text{ in } H.
$$

In this case we set $L =: D_H v(\overline{x})$ *.*

If $v \in \mathcal{F}C_b^1(X, E)$ is given by (10.2.2), then it is *H*-differentiable at every $\overline{x} \in X$, and

$$
D_H v(\overline{x})(h) = \sum_{k=1}^n [\nabla_H v_k(\overline{x}), h]_H y_k.
$$

In particular, if $E = H$ and $\{h_j : j \in \mathbb{N}\}\$ is any orthonormal basis of *H* we have

$$
|D_H v(\overline{x})(h_j)|_H^2 \le \left(\sum_{k=1}^n |[\nabla_H v_k(\overline{x}), h_j]_H| |y_k|_H \right)^2 \le \sum_{k=1}^n [\nabla_H v_k(\overline{x}), h_j]_H^2 \sum_{k=1}^n |y_k|_H^2
$$

so that $D_H v(\overline{x})$ is a Hilbert–Schmidt operator, and we have

$$
|D_H v(\overline{x})|_{\mathcal{H}}^2 = \sum_{j=1}^{\infty} |[D_H v(\overline{x}), h_j]_H|^2 \le \sum_{k=1}^n \sum_{j=1}^{\infty} |[\nabla_H v_k(\overline{x}), h_j]_H|^2 \sum_{k=1}^n |y_k|_H^2
$$

=
$$
\sum_{k=1}^n |\nabla_H v_k(\overline{x})|_H^2 \sum_{k=1}^n |y_k|_H^2.
$$

Moreover, $x \mapsto \nabla_H v_k(x)$ is continuous and bounded for every *k*, therefore $x \mapsto D_H v(x)$ is continuous and bounded from *X* to \mathcal{H} . In particular, it belongs to $L^p(X, \gamma; \mathcal{H})$ for every $p \geq 1$.

The procedure to define Sobolev spaces of *H*-valued functions is similar to the procedure for scalar functions. Namely, we show that the operator D_H , seen as an unbounded operator from $L^p(X, \gamma; H)$ to $L^p(X, \gamma; \mathcal{H})$ with domain $\mathfrak{F}C_b^1(X, H)$, is closable.

Lemma 10.2.4. For every $p \geq 1$, the operator $D_H : \mathcal{F}C_b^1(X, H) \to L^p(X, \gamma; \mathcal{H})$ is closable *in* $L^p(X, \gamma; H)$ *.*

Proof. Let (V_n) be a sequence in $\mathcal{F}C_b^1(X, H)$ such that $V_n \to 0$ in $L^p(X, \gamma; H)$, with $D_H V_n \to \Phi$ in $L^p(X, \gamma; \mathcal{H})$. We have to show that $\Phi(x) = 0$ a.e., namely that

$$
[\Phi(x)h_j, h_i]_H = 0, \forall i, j \in \mathbb{N},
$$

a.e. in *X*.

Let $V_n(x) = \sum_{k=1}^{N(n)} v_k(x) y_k$. For every $j \in \mathbb{N}$ let us consider the functions $x \mapsto f_n(x)$: $[V_n(x), h_j]_H = \sum_{k=1}^{N(n)} v_k(x)[y_k, h_j]_H$. Each of them belongs to $\mathfrak{F}^{1}_{\mathcal{L}_p}(X)$, and $f_n \to 0$ in $L^p(X, \gamma)$, since $|f_n(x)| \leq |V_n(x)|_H$. Moreover, $\nabla_H f_n(x) = \sum_{k=1}^{N(n)} \nabla_H v_k(x)[y_k, h_j]_H$ converges in $L^p(X, \gamma; H)$ to the vector field $\phi(x) = \sum_{i=1}^{\infty} [\Phi(x)h_i, h_j]_H h_i$. Indeed,

$$
\nabla_H f_n(x) = \sum_{i=1}^{\infty} \sum_{k=1}^{N(n)} [\nabla_H v_k(x), h_i]_H h_i[y_k, h_j]_H = \sum_{i=1}^{\infty} [D_H V_n(x)(h_i), h_j]_H
$$

so that

$$
\int_X |\nabla_H f_n(x) - \phi(x)|_H^p d\gamma = \int_X \left(\sum_{i=1}^{\infty} [D_H V_n(x)(h_i) - \Phi(x) h_i, h_j]_H^2 \right)^{p/2} d\gamma
$$

\n
$$
\leq \int_X \left(\sum_{i,l=1}^{\infty} [D_H V_n(x)(h_i) - \Phi(x) h_i, h_l]_H^2 \right)^{p/2} d\gamma
$$

\n
$$
= \int_X \left(\sum_{i=1}^{\infty} |(D_H V_n(x) - \Phi(x))(h_i)|_H^2 \right)^{p/2} d\gamma
$$

\n
$$
= \int_X |D_H V_n - \Phi|_H^p d\gamma
$$

that vanishes as $n \to \infty$. Since ∇_H is a closed operator in $L^p(X, \gamma)$, ϕ vanishes a.e. so that $[\Phi(x)h_i, h_i]_H = 0$ a.e. for every $i, j \in \mathbb{N}$. that $[\Phi(x)h_i, h_j]_H = 0$ a.e. for every $i, j \in \mathbb{N}$.

Definition 10.2.5. For every $p \geq 1$ we define $W^{1,p}(X, \gamma; H)$ as the domain of the closure *of the operator* $D_H: \mathcal{F}C_b^1(X, H) \to L^p(X, \gamma; \mathcal{H})$ (still denoted by D_H) in $L^p(X, \gamma; H)$.

Therefore, $W^{1,p}(X, \gamma; H)$ is a Banach space with the graph norm

$$
||V||_{W^{1,p}(X,\gamma;H)} = \left(\int_X |V(x)|_H^p d\gamma\right)^{1/p} + \left(\int_X |D_H V(x)|_{\mathcal{H}}^p d\gamma\right)^{1/p}
$$

=
$$
\left(\int_X \left(\sum_{j=1}^\infty [V(x), h_j]_H^2\right)^{p/2} d\gamma\right)^{1/p} + \left(\int_X \left(\sum_{i,j=1}^\infty [D_H V(x)(h_i), h_j]_H^2\right)^{p/2} d\gamma\right)^{1/p}.
$$

Let $v \in \mathfrak{F}C_b^1(X, H)$,

$$
v(x) = \sum_{k=1}^{n} \varphi_k(x) y_k,
$$

with $\varphi_k \in \mathcal{F}C_b^1(X)$ and $y_k \in H$. Then *v* may be written in the form

$$
v(x) = \sum_{j=1}^{\infty} v_j(x)h_j,
$$

where the series converges in $W^{1,p}(X, \gamma; H)$. Indeed, setting

$$
v_j(x) = [v(x), h_j]_H = \sum_{k=1}^n \varphi_k(x)[y_k, h_j]_H, \quad j \in \mathbb{N}
$$

the sequence $s_m(x) = \sum_{j=1}^m v_j(x)h_j$ converges to *v* in $W^{1,p}(X, \gamma; H)$, because for each $k = 1, \ldots, n$, the sequence $\sum_{j=1}^{m} \varphi_k(x)[y_k, h_j]_H$ converges to $\varphi_k(x)y$ in $W^{1,p}(X, \gamma; H)$. Moreover,

$$
D_H v(x)(h) = \sum_{j=1}^{\infty} [\nabla_H v_j(x), h]_H h_j
$$

so that, as in finite dimension,

$$
[D_Hv(x)(h_i),h_j]_H=[\nabla_Hv_j(x),h_i]_H=\partial_iv_j(x).
$$

10.2.1 The divergence operator

Let us recall the definition of adjoint operators. If X_1 , X_2 are Hilbert spaces and T : $D(T) \subset X_1 \to X_2$ is a linear densely defined operator, an element $v \in X_2$ belongs to $D(T^*)$ iff the function $D(T) \to \mathbb{R}$, $f \mapsto \langle Tf, v \rangle_{X_2}$ has a linear continuous extension to the whole X_1 , namely there exists $g \in X_1$ such that

$$
\langle Tf, v \rangle_{X_2} = \langle f, g \rangle_{X_1}, \quad f \in D(T).
$$

In this case *g* is unique (because $D(T)$ is dense in X_1) and we set

$$
g = T^* v.
$$

We are interested now in the case $X_1 = L^2(X, \gamma)$, $X_2 = L^2(X, \gamma; H)$ and $T = \nabla_H$. For $f \in W^{1,2}(X,\gamma), v \in L^2(X,\gamma;H)$ we have

$$
\langle Tf, v \rangle_{L^2(X,\gamma;H)} = \int_X [\nabla_H f(x), v(x)]_H \gamma(dx)
$$

so that $v \in D(T^*)$ if and only if there exists $g \in L^2(X, \gamma)$ such that

$$
\int_X [\nabla_H f(x), v(x)]_H \gamma(dx) = \int_X f(x)g(x)\gamma(dx), \quad f \in W^{1,2}(X, \gamma). \tag{10.2.3}
$$

In this case, in analogy to the finite dimensional case, we set

$$
g = -\mathrm{div}_{\gamma}v
$$

and we call $-g$ *divergence* or *Gaussian divergence* of *v*. As $\mathcal{F}C_b^1(X)$ is dense in $W^{1,2}(X,\gamma)$, (10.2.3) is equivalent to

$$
\int_X [\nabla_H f(x), v(x)]_H \gamma(dx) = \int_X f(x)g(x) \gamma(dx), \quad f \in \mathcal{F}C_b^1(X).
$$

The main achievement of this section is the embedding $W^{1,2}(X,\gamma;H) \subset D(T^*)$. For its proof, we use the following lemma.

Lemma 10.2.6. For every $f \in W^{1,2}(X, \gamma)$ and $h \in H$, $f\hat{h} \in L^2(X, \gamma)$ and

$$
\int_X (f\hat{h})^2 d\gamma \le 4 \int_X (\partial_h f)^2 d\gamma + 2|h|_H^2 \int_X f^2 d\gamma.
$$
\n(10.2.4)

Proof. We already know that $\hat{h} \in W^{1,2}(X,\gamma)$. Then, for every $f \in \mathcal{F}C_b^1(X)$ we have $f^2\hat{h} \in W^{1,2}(X,\gamma)$ and

$$
\int_X (f\hat{h})^2 d\gamma = \int_X (f^2 \hat{h}) \hat{h} d\gamma = \int_X \partial_h (f^2 \hat{h}) d\gamma
$$

=
$$
\int_X (2f \partial_h f \hat{h} + f^2 \partial_h (\hat{h})) d\gamma
$$

=
$$
2 \int_X f \hat{h} \partial_h f d\gamma + |h|_H^2 \int_X f^2 d\gamma
$$

$$
\leq 2 \left(\int_X (f \hat{h})^2 d\gamma \right)^{1/2} \left(\int_X (\partial_h f)^2 d\gamma \right)^{1/2} + |h|_H^2 \int_X f^2 d\gamma.
$$

Using the inequality $ab \leq a^2/4 + b^2$, we get

$$
\int_X (f\hat{h})^2 d\gamma \le \frac{1}{2} \int_X (f\hat{h})^2 d\gamma + 2 \int_X (\partial_h f)^2 d\gamma + |h|_H^2 \int_X f^2 d\gamma
$$

so that *f* satisfies (10.2.4). Since $\mathcal{F}C_b^1(X)$ is dense in $W^{1,2}(X,\gamma)$, (10.2.4) holds for every $f \in W^{1,2}(X,\gamma).$

Theorem 10.2.7. *The Sobolev space* $W^{1,2}(X, \gamma; H)$ *is continuously embedded in* $D(\text{div}_{\gamma})$ *and the estimate*

$$
\|\mathrm{div}_{\gamma}v\|_{L^2(X,\gamma)} \le \|v\|_{W^{1,2}(X,\gamma;H)}
$$

holds. Moreover, fixing an orthonormal basis $\{h_n : n \in \mathbb{N}\}\$ *of H contained in* $R_\gamma(X^*),$ *and setting* $v_n(x) = [v(x), h_n]$ *H for every* $v \in W^{1,2}(X, \gamma; H)$ *and* $n \in \mathbb{N}$ *, we have*

$$
\mathrm{div}_{\gamma}v(x) = \sum_{n=1}^{\infty} (\partial_n v_n(x) - v_n(x)\hat{h}_n(x)),
$$

where the series converges in $L^2(X, \gamma)$ *.*

Proof. Consider a function $v \in W^{1,2}(X, \gamma; H)$ of the type

$$
v(x) = \sum_{i=1}^{n} v_i(x)h_i, \quad x \in X.
$$
 (10.2.5)

with $v_i \in W^{1,2}(X, \gamma)$.

For every $f \in W^{1,2}(X, \gamma)$ we have $[\nabla_H f(x), v(x)]_H = \sum_{i=1}^n \partial_i f(x)v_i(x)$, so that

$$
\int_X [\nabla_H f, v]_H d\gamma = \int_X \bigg(\sum_{i=1}^n \partial_i f v_i \bigg) d\gamma = \int_X \sum_{i=1}^n (-\partial_i v_i + v_i \hat{h}_i) f d\gamma
$$

which yields

$$
\mathrm{div}_{\gamma} v = \sum_{i=1}^{n} (\partial_i v_i - \hat{h}_i v_i).
$$

Now we prove that

$$
\int_{X} (\text{div}_{\gamma} v)^2 d\gamma = \int_{X} |v|_{H}^2 d\gamma + \int_{X} \sum_{i,j=1}^{n} \partial_i v_j \, \partial_j v_i \, d\gamma,\tag{10.2.6}
$$

showing, more generally, that if $u(x) = \sum_{i=1}^{n} u_i(x)h_i$ is another function of this type, then

$$
\int_{X} (\text{div}_{\gamma} v \, \text{div}_{\gamma} u) d\gamma = \int_{X} [u, v]_{H} d\gamma + \int_{X} \sum_{i,j=1}^{n} \partial_{i} u_{j} \, \partial_{j} v_{i} d\gamma.
$$
 (10.2.7)

By linearity, it is sufficient to prove that $(10.2.7)$ holds if the sums in *u* and *v* consist of a single addendum, $u(x) = f(x)h_i$, $v(x) = g(x)h_j$ for some $f, g \in W^{1,2}(X, \gamma)$ and $i, j \in \mathbb{N}$. In this case, (10.2.7) reads

$$
\int_{X} (\partial_{i}f - \hat{h}_{i}f)(\partial_{j}g - \hat{h}_{j}g)d\gamma = \int_{X} fg\delta_{ij} d\gamma + \int_{X} \partial_{j}f \partial_{i}g d\gamma.
$$
\n(10.2.8)

First, let $f, g \in \mathfrak{F}C_b^2(X)$. Then,

$$
\int_X (\partial_i f - \hat{h}_i f)(\partial_j g - \hat{h}_j g) d\gamma = -\int_X f \partial_i (\partial_j g - \hat{h}_j g) d\gamma
$$

=
$$
-\int_X f \partial_{ij} g d\gamma + \int_X f g \delta_{ij} d\gamma + \int_X f \hat{h}_j \partial_i g d\gamma
$$

=
$$
\int_X (\partial_j f - \hat{h}_j f) \partial_i g d\gamma + \int_X f g \delta_{ij} d\gamma + \int_X f \hat{h}_j \partial_i g d\gamma
$$

so that (10.2.8) holds. Since $\mathcal{F}C_b^2(X)$ is dense in $W^{1,2}(X,\gamma)$, see Exercise 10.6, (10.2.8) holds for $f, g \in W^{1,2}(X, \gamma)$. Summing up, (10.2.7) follows, and taking $u = v$, (10.2.6) follows as well. Since the linear span of functions in (10.2.5) is dense in $W^{1,2}(X, \gamma; H)$ both equalities hold in the whole $W^{1,2}(X,\gamma;H)$. Notice also that (10.2.6) implies

$$
\int_{X} (\text{div}_{\gamma} v)^2 d\gamma \le \int_{X} |v|_{H}^2 d\gamma + \int_{X} \|D_H v\|_{\mathcal{H}}^2 d\gamma.
$$
\n(10.2.9)

If $v \in W^{1,2}(X, \gamma; H)$ we approximate it by the sequence

$$
v_n(x) = \sum_{i=1}^n [v(x), h_i]_H h_i.
$$

For every $f \in W^{1,2}(X,\gamma)$ we have

$$
\int_{X} [\nabla_{H} f, v_{n}]_{H} d\gamma = -\int_{X} f \operatorname{div}_{\gamma} v_{n} d\gamma.
$$
\n(10.2.10)

By estimate (10.2.9), $(\text{div}_{\gamma}v_n)$ is a Cauchy sequence in $L^2(X, \gamma)$, so that it converges in $L^2(X,\gamma)$ to $g(x) := \sum_{j=1}^{\infty} (\partial_j v_j(x) - v_j(x)\hat{h}_j(x))$. Letting $n \to \infty$ in (10.2.10), we get

$$
\int_X [\nabla_H f, v]_H d\gamma = -\int_X f g d\gamma,
$$

so that $v \in D(T^*)$ and div_{γ} $v = g$.

Note that the domain of the divergence is larger than $W^{1,2}(X,\gamma;H)$, even in finite dimension. For instance, if $X = \mathbb{R}^2$ is endowed with the standard Gaussian measure, any vector field $v(x, y) = (\alpha_1(x) + \beta_1(y), \alpha_2(x) + \beta_2(y))$ with $\alpha_1, \beta_2 \in W^{1,2}(\mathbb{R}, \gamma_1)$, $\beta_1, \alpha_2 \in L^2(\mathbb{R}, \gamma_1)$ belongs to the domain of the divergence, but it does not belong to $W^{1,2}(\mathbb{R}^2, \gamma_2; \mathbb{R}^2)$ unless also $\beta_1, \alpha_2 \in W^{1,2}(\mathbb{R}, \gamma_1)$.

The divergence may be defined, still as a dual operator, also in a *L^q* context with $q \neq 2$. We recall that if X_1, X_2 are Banach spaces and : $D(T) \subset X_1 \to X_2$ is a linear densely defined operator, an element $v \in X_2^*$ belongs to $D(T^*)$ iff the function $D(T) \to \mathbb{R}$, $f \mapsto v(Tf)$ has a linear continuous extension to the whole X_1 . Such extension is an element of X^*_1 ; denoting it by ℓ we have $\ell(f) = v(Tf)$ for every $f \in D(T)$.

We are interested in the case $X_1 = L^q(X, \gamma)$, $X_2 = L^q(X, \gamma; H)$, with $1 < q < \infty$, and $T: D(T) = W^{1,q}(X, \gamma)$, $Tf = \nabla_H f$. The dual space X_2^* consists of all the functions of the type

$$
w\mapsto \int_X [w,v]_H d\gamma,
$$

 $v \in L^{q'}(X, \gamma; H), q' = q/(q-1)$, see [DU, *§IV.1*], so we canonically identify $L^{q'}(X, \gamma; H)$ as $L^q(X, \gamma; H)^*$. We also identify $(L^q(X, \gamma))^*$ with $L^{q'}(X, \gamma)$. After these identifications, a function $v \in L^{q'}(X, \gamma; H)$ belongs to $D(T^*)$ iff there exists $g \in L^{q'}(X, \gamma)$ such that

$$
\int_X [\nabla_H f(x), v(x)]_H \gamma(dx) = \int_X f(x)g(x)\gamma(dx), \quad \forall \ f \in W^{1,q}(X, \gamma),
$$

which is equivalent to

$$
\int_X [\nabla_H f(x), v(x)]_H \gamma(dx) = \int_X f(x)g(x)\gamma(dx), \quad \forall \ f \in \mathcal{F}C_b^1(X),
$$

since $\mathcal{F}C_b^1(X)$ is dense in $W^{1,q}(X,\gamma)$. So, this is similar to the case $q=2$, see (10.2.3).

Theorem 10.2.8. Let $1 < q < \infty$, and let $T : D(T) = W^{1,q}(X, \gamma) \to L^q(X, \gamma; H)$, $T f = \nabla_H f$ *. Then* $W^{1,q}(X, \gamma; H) \subset D(T^*)$ *, and for every orthonormal basis* $\{h_n : n \in \mathbb{N}\}\$ *of H we have*

$$
T^*v(x) = -\sum_{n=1}^{\infty} (\partial_n v_n(x) - v_n(x)\hat{h}_n(x)), \quad v \in W^{1,q}(X, \gamma; H)
$$

where $v_n(x) = [v(x), h_n]_H$ *, and the series converges in* $L^q(X, \gamma)$ *.*

The proof of Theorem 10.2.8 for $q \neq 2$ is not as easy as in the case $q = 2$. See [B, Prop. 5.8.8. The difficult part is the estimate

$$
||T^*v||_{L^q(X,\gamma)} \leq C||v||_{W^{1,q}(X,\gamma;H)},
$$

even for good vector fields $v = \sum_{i=1}^{n} v_i(x)h_i$, with $v_i \in \mathcal{F}C_b^1(X)$.

We may still call "Gaussian divergence" the operator T^* .

10.3 The Sobolev spaces $W^{2,p}(X, \gamma)$

Let us start with regular functions, recalling the definition of the second order derivative $f''(x)$ given in Lecture 9. If $f: X \to \mathbb{R}$ is differentiable at any $x \in X$, we consider the function $X \to X^*$, $x \mapsto f'(x)$. If this function is differentiable at \overline{x} , we say that *f* is twice (Fréchet) differentiable at \overline{x} . In this case there exists $L \in \mathcal{L}(X, X^*)$ such that

$$
||f'(\overline{x} + h) - f'(\overline{x}) - Lh||_{X^*} = o(||h||)
$$
 as $h \to 0$ in X,

and we set $L =: f''(\overline{x})$.

In our setting we are interested in increments $h \in H$, and in *H*-differentiable functions. If $f: X \to \mathbb{R}$ is *H*-differentiable at any $x \in X$, we say that f is twice *H*-differentiable at \overline{x} if there exists a linear operator $L_H \in \mathcal{L}(H)$ such that

$$
|\nabla_H f(\overline{x} + h) - \nabla_H f(\overline{x}) - L_H h|_H = o(|h|_H) \text{ as } h \to 0 \text{ in } H.
$$

The operator L_H is denoted by $D_H^2 f(\overline{x})$.

We recall that if f is differentiable at x , it is also H -differentiable and we have $\nabla_H f(x) = R_\gamma f'(x)$. So, if *f* is twice differentiable at \overline{x} , with $f''(\overline{x}) = L$, then $D_H^2 f(\overline{x})h =$ $R_{\gamma}Lh$. Indeed,

$$
|R_{\gamma}f'(\overline{x}+h) - R_{\gamma}f'(\overline{x}) - R_{\gamma}Lh|_{H} \leq ||R_{\gamma}||_{\mathcal{L}(X^{*},H)}||f'(\overline{x}+h) - f'(\overline{x}) - Lh||_{X^{*}} = o(||h||)
$$

as $h \to 0$ in X, and therefore,

$$
|R_{\gamma}f'(\overline{x}+h) - R_{\gamma}f'(\overline{x}) - R_{\gamma}Lh|_{H} = o(|h|_{H}) \text{ as } h \to 0 \text{ in } H.
$$

If $f \in \mathcal{F}C_b^2(X)$, $f(x) = \varphi(\ell_1(x), \ldots, \ell_n(x))$ with $\varphi \in C_b^2(\mathbb{R}^n)$, $\ell_k \in X^*$, then *f* is twice differentiable at any $\overline{x} \in X$ and

$$
(f''(\overline{x})v)(w) = \sum_{i,j=1}^n \frac{\partial^2 \varphi}{\partial x_i \partial x_j} (\ell_1(\overline{x}), \dots, \ell_n(\overline{x}) \ell_i(v) \ell_j(w), \quad v, w \in X
$$

130 *Lecture 10*

so that

$$
[D_H^2 f(\overline{x})h, k]_H = \sum_{i,j=1}^n \frac{\partial^2 \varphi}{\partial x_i \partial x_j} (\ell_1(\overline{x}), \dots, \ell_n(\overline{x}) [R_\gamma \ell_i, h]_H [R_\gamma \ell_j, k]_H, \quad h, k \in H.
$$

 $D_H^2 f(\bar{x})$ is a Hilbert–Schmidt operator, since for any orthonormal basis $\{h_j : j \in \mathbb{N}\}\$ of *H* we have

$$
\sum_{m,k=1}^{\infty} [D_H^2 f(\overline{x}) h_m, h_k]_H^2 \leq \sum_{m,k=1}^{\infty} \left(\sum_{i,j=1}^n \frac{\partial^2 \varphi}{\partial x_i \partial x_j}^2 \right) \left(\sum_{i=1}^n [R_\gamma \ell_i, h_m]_H^2 \right) \left(\sum_{j=1}^n [R_\gamma \ell_j, h_k]_H^2 \right)
$$

\n
$$
= \|D_H^2 \varphi\|_{\mathcal{H}(\mathbb{R}^n, \mathbb{R}^n)} \sum_{m,k=1}^{\infty} \sum_{i=1}^n [R_\gamma \ell_i, h_m]_H^2 \sum_{j=1}^n [R_\gamma \ell_j, h_k]_H^2
$$

\n
$$
= \|D^2 \varphi\|_{\mathcal{H}(\mathbb{R}^n, \mathbb{R}^n)} \sum_{i=1}^n \sum_{m=1}^{\infty} [R_\gamma \ell_i, h_m]_H^2 \sum_{j=1}^n \sum_{k=1}^{\infty} [R_\gamma \ell_j, h_k]_H^2
$$

\n
$$
= \|D^2 \varphi\|_{\mathcal{H}(\mathbb{R}^n, \mathbb{R}^n)} \sum_{i=1}^n |R_\gamma \ell_i|_H^2 \sum_{j=1}^n |R_\gamma \ell_j|_H^2
$$

where the derivatives of φ are evaluated at $(\ell_1(\overline{x}),...,\ell_n(\overline{x}))$. Since $||D^2\varphi||_{\mathcal{H}(\mathbb{R}^n,\mathbb{R}^n)}$ is bounded, $x \to \|D_H^2 f(x)\|_{\mathcal{H}}$ is bounded in X.

The next lemma is similar to Lemma 9.3.7. We omit the proof.

Lemma 10.3.1. For every $p \geq 1$, the operator

$$
(\nabla_H, D_H^2) : \mathcal{F}C_b^2(X) \to L^p(X, \gamma; H) \times L^p(X, \gamma; \mathcal{H})
$$

is closable in $L^p(X, \gamma)$ *.*

Definition 10.3.2. For every $p \geq 1$, $W^{2,p}(X, \gamma)$ is the domain of the closure of

$$
(\nabla_H, D_H^2) : \mathcal{F}C_b^2(X) \to L^p(X, \gamma; H) \times L^p(X, \gamma; \mathcal{H})
$$

in $L^p(X, \gamma)$ *. Therefore,* $f \in L^p(X, \gamma)$ belongs to $W^{2,p}(X, \gamma)$ iff there exists a sequence $(f_n) \subset \mathcal{F}C_b^2(X)$ such that $f_n \to f$ in $L^p(X, \gamma)$, $\nabla_H f_n$ converges in $L^p(X, \gamma; H)$ and $D^2_H f_n$ *converges in* $L^p(X, \gamma; \mathcal{H})$ *. In this case we set* $D_H^2 f := \lim_{n \to \infty} D_H^2 f_n$ *.*

 $W^{2,p}(X,\gamma)$ is a Banach space with the graph norm

$$
||f||_{W^{2,p}} := ||f||_{L^p(X,\gamma)} + ||\nabla_H f||_{L^p(X,\gamma;H)} + ||D_H^2 f||_{L^p(X,\gamma;\mathcal{H})}
$$
(10.3.1)

$$
= \left(\int_X |f|^p d\gamma\right)^{1/p} + \left(\int_X |\nabla_H f|_H^p d\gamma\right)^{1/p} + \left(\int_X |D_H^2 f|_{\mathcal{H}}^p d\gamma\right)^{1/p}.
$$

Fixed any orthonormal basis $\{h_j: j \in \mathbb{N}\}$ of *H*, for every $f \in W^{2,p}(X, \gamma)$ we set

$$
\partial_{ij} f(x) = [D_H^2 f(x)h_j, h_i]_H.
$$

For every sequence of approximating functions f_n we have

$$
[D_H^2 f_n(x) h_j, h_i]_H = [D_H^2 f_n(x) h_i, h_j]_H, \quad x \in X, \ i, j \in \mathbb{N},
$$

then the equality

$$
\partial_{ij} f(x) = \partial_{ji} f(x)
$$
, a.e.

holds. Therefore, the $W^{2,p}$ norm may be rewritten as

$$
\bigg(\int_X |f|^p d\gamma\bigg)^{1/p} + \bigg(\int_X \bigg(\sum_{j=1}^\infty (\partial_j f)^2\bigg)^{p/2} d\gamma\bigg)^{1/p} + \bigg(\int_X \bigg(\sum_{i,j=1}^\infty (\partial_{ij} f)^2\bigg)^{p/2} d\gamma\bigg)^{1/p}.
$$

Let X be a Hilbert space and assume that γ is nondegenerate. Then, another class of $W^{2,p}$ spaces looks more natural. As in Remark 9.3.11, we may replace $(\nabla_H f, D_H^2 f)$ in Definition 10.3.2 by $(\nabla f, f'')$. The proof of Lemma 10.3.1 works as well with this choice. So, we define $\widetilde{W}^{2,p}(X,\gamma)$ as the domain of the closure of the operator $T: \mathcal{F}C_b^2(X) \to$ $L^p(X, \gamma; X) \times L^p(X, \gamma; \mathcal{H}(X, X)),$ $f \mapsto (\nabla f, f'')$ in $L^p(X, \gamma)$ (still denoted by *T*), and we endow it with the graph norm of *T*. This space is much smaller than $W^{2,p}(X, \gamma)$ if X is infinite dimensional. Indeed, fix as usual any orthonormal basis $\{e_j : j \in \mathbb{N}\}\$ of X consisting of eigenvectors of *Q*, $Qe_j = \lambda_j e_j$, and set $h_j = \sqrt{\lambda_j e_j}$. Then $\{h_j : j \in \mathbb{N}\}\$ is a orthonormal basis of H , $\partial_j f(x) = \sqrt{\lambda_j} \partial f / \partial e_j$, $\partial_{ij} f(x) = \sqrt{\lambda_i \lambda_j} \partial^2 f / \partial e_i \partial e_j$, and

$$
||f||_{W^{2,p}(X,\gamma)} = ||f||_{L^p(X,\gamma)} + \left(\int_X \left(\sum_{j=1}^{\infty} \lambda_j \left(\frac{\partial f}{\partial e_j}\right)^2\right)^{p/2} d\gamma\right)^{1/p} + \left(\int_X \left(\sum_{i,j=1}^{\infty} \lambda_i \lambda_j \left(\frac{\partial^2 f}{\partial e_i \partial e_j}\right)^2\right)^{p/2} d\gamma\right)^{1/p},
$$

while

$$
||f||_{\widetilde{W}^{2,p}(X,\gamma)} = ||f||_{L^p(X,\gamma)} + \left(\int_X \left(\sum_{j=1}^{\infty} \left(\frac{\partial f}{\partial e_k}\right)^2\right)^{p/2} d\gamma\right)^{1/p} + \left(\int_X \left(\sum_{i,j=1}^{\infty} \left(\frac{\partial^2 f}{\partial e_i \partial e_j}\right)^2\right)^{p/2} d\gamma\right)^{1/p}.
$$

Since $\lim_{j\to\infty}\lambda_j = 0$, the $W^{2,p}(X,\gamma)$ norm is stronger than the $W^{2,p}(X,\gamma)$ norm. In particular, the function $f(x) = ||x||^2$ belongs to $W^{2,p}(X, \gamma)$ for every $p \ge 1$ but it does not belong to $W^{2,p}(X,\gamma)$ for any $p \geq 1$, because $f''(x) = 2I$ for every $x \in X$ and $\frac{\partial^2 f}{\partial e_i \partial e_j} = 2\delta_{ij}.$

10.4 Exercises

Exercise 10.1. Prove that $(10.1.2)$ holds.

Exercise 10.2. Prove that if $f \in \mathcal{F}C^1(X) \cap L^p(X, \gamma)$, $1 \leq p < \infty$ and $\nabla_H f \in L^p(X, \gamma)$ then $f \in W^{1,p}(X, \gamma)$.

Exercise 10.3. Prove that if $f \in W^{1,p}(X, \gamma)$ then $f^+, f^-, |f| \in W^{1,p}(X, \gamma)$ as well. Compute $\nabla_H f^+$, $\nabla_H f^-$, $\nabla_H |f|$ and deduce that $\nabla_H f = 0$ a.e. on $\{f = c\}$ for every $c \in \mathbb{R}$.

Exercise 10.4. Let $\varphi \in W^{1,p}(\mathbb{R}^n, \gamma_n)$ and let $\ell_1, \ldots, \ell_n \in X^*$, with $\langle \ell_i, \ell_j \rangle_{L^2(X, \gamma)} = \delta_{ij}$. Prove that the function $f: X \to \mathbb{R}$ defined by $f(x) = \varphi(\hat{h}_1(x), \ldots, \hat{h}_n(x))$ belongs to $W^{1,p}(X,\gamma).$

Exercise 10.5. Let $f \in L^p(X, \gamma)$, $p > 1$, be such that $\mathbb{E}_n f \in W^{1,p}(X, \gamma)$ for every $n \in \mathbb{N}$, with $\sup_n \|\nabla_H \mathbb{E}_n f\|_{L^p(X,\gamma;H)} < \infty$. Prove that $f \in W^{1,p}(X,\gamma)$.

Exercise 10.6. Prove that $\mathfrak{F}C_b^2(X)$ is dense in $W^{1,2}(X,\gamma)$

Bibliography

- [B] V. I. Bogachev: *Gaussian Measures.* American Mathematical Society, 1998.
- [DU] J. Diestel, J.J. Uhl: *Vector measures,* Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977).
- [DS2] N. Dunford, J. T. Schwartz: *Linear operators II*, Wiley, 1963.