
Exercise 1.1. Let µ be a finite positive measure on (X,F). Then, it satisfies
the monotonicity property, and recall that if A ⊂ B then µ(B \ A) = µ(B) −
µ(A). Indeed B = A ∪ (B \ A), and from the properties of µ it follows that
µ(A ∪ (B \A)) = µ(A) + µ(B \A).

• If {En}n∈N is an increasing sequence of subsets of X, that is En ⊂ En+1,
for any n ∈ N, we have

En =

n⋃
h=1

Fh,

+∞⋃
n=1

En =

+∞⋃
h=1

Fh,

for any n ∈ N, where F1 = E1 and Fh := Eh \Eh−1, for any h ≥ 2. Hence
from the properties of µ

µ(En) =

n∑
h=1

µ(Fh),

and since µ(En) is increasing, the limit of µ(En) as n → +∞ exists.
Passing to the limit we get

lim
n→+∞

µ(En) =

+∞∑
h=1

µ(Fh) = µ

(
+∞⋃
h=1

Fh

)
= µ

(
+∞⋃
h=1

Eh

)
,

where the second equality follows from the σ-additivity of µ.

• Let {En}n∈N be a decreasing sequence of subsets of X, that is En+1 ⊂ En,
for any n ∈ N. From the De Morgan laws we have

+∞⋂
n=1

En =

(
+∞⋃
n=1

Ecn

)c
= X \

+∞⋃
n=1

Ecn.

Since the sequence {Ecn}n∈N is increasing, from part (i) it follows that

µ

(
+∞⋂
n=1

En

)
= µ(X)− µ

(
+∞⋃
n=1

Ecn

)
= µ(X)− lim

n→+∞
µ(Ecn)

= µ(X)− lim
n→+∞

(µ(X)− µ(En))

= lim
n→+∞

µ(En),

and the last term makes sense because the sequence {µ(En)}n∈N is de-
creasing in R.

Exercise 1.2.

• Let µ be a finite real measure. For all E ∈ F we define

|µ|(E) := sup

{ ∞∑
k=1

|µ(Ek)| : Ek ∈ F pairwise disjoint, E =

∞⋃
k=1

Ek

}
(1)
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We prove that |µ| is positive finite measure.

First we prove that |µ| is a finite measure.

Since µ is a finite real measure, there exist µ1, µ2 positive finite measures
such that µ = µ1−µ2. Let E ∈ F , then for all ε > 0 there exists a partition
{Eh}h≥1 ⊂ F of E such that

|µ|(E) ≤
∞∑
h=1

|µ(Eh)|+ ε =

∞∑
h=1

|µ1(Eh)− µ2(Eh)|+ ε

≤
∞∑
h=1

µ1(Eh) +

∞∑
h=1

µ2(Eh) + ε = µ1(E) + µ2(E) + ε

then the total variation |µ| is finite.

Now we prove that |µ| is a positive measure and |µ|(∅) = 0.

The positivity of |µ| follows by definition (1). If {En}n≥1 is a measurable
partition of ∅, then En = ∅ for all n ≥ 1, therefore |µ|(∅) = 0.

Finally we prove that |µ| is σ-additive.

Let E ∈ F . We define E1 = E and En = ∅ for n ≥ 2. Therefore {En}n≥1
is a measurable partition of E. By definition (1), we have

∞∑
n=1

|µ(En)| ≤ |µ|(E)

then we get |µ(E)| ≤ |µ|(E).

Let {En}n≥1 a measurable partition of E. Let ε > 0, and for each j, choose
a partition {Ai,n}i≥1 of En such that

|µ|(En) ≤
∞∑
i=1

|ν(Ai,n)|+ ε

2n
.

Then
∞∑
n=1

|µ|(En) ≤
∞∑
n=1

∞∑
i=1

|ν(Ai,n)|+ ε ≤ |ν|(E) + ε.

Since ε > 0 is arbitrary, we have

∞∑
n=1

|µ|(En) ≤ |ν|(E) = |ν|

( ∞⋃
n=1

En

)
.

For the reverse inequality, let {Ai}i≥1 be another partition of E. Since
{Ai ∩ En}i≥1 is a measurable partition of En and {Ai ∩ En}n≥1 is a
measurable partition of Ai, we have

∞∑
i=1

|µ(Ai)| =
∞∑
i=1

∣∣∣∣∣∣
∞∑
j=1

µ(Ai ∩ En)

∣∣∣∣∣∣ ≤
∞∑

i,n=1

|µ(Ai ∩ En)|

≤
∞∑
n=1

∞∑
i=1

|µ|(Ai ∩ En) ≤
∞∑
i=1

|µ|(En).
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Taking the supremum over all measurable partitions {Ai}i≥1 of E we get

|µ|(E) ≤
∞∑
i=1

|µ|(En).

• Let µ be a positive measure and f ∈ L1(X,µ), and let ν := fµ be the
measure defined by

ν(B) =

∫
B

fdµ,∀B ∈ F .

We prove that

|ν|(B) =

∫
B

|f |dµ,∀B ∈ F .

We recall that ν is absolutely continuous with respect to |ν|; then there
exists a unique real valued function h ∈ L1(X, |ν|) such that ν = h|ν| and
|h| = 1 |ν|-a.e., therefore for all E ∈ F we get

ν(E) =

∫
E

h d|ν|.

For any E,F ∈ F we have∫
E

fχF dµ =

∫
E∩F

f dµ = ν(E ∩ F ) =

∫
E

hχF d|ν|.

Given g : X → R bounded and measurable, we claim that:

∀E ∈ F ,
∫
E

fg dµ =

∫
E

hg d|ν| (2)

We know that equation (2) holds for g = χF with F ∈ F . By the linearity
of the integral, (2) is also true whenever g is a simple function on (X,F).
Let g be nonnegative, measurable and bounded, then there exists a se-
quence {sn}n≥1 of simple functions on (X,F) such that sn ↑ g. Having
proved (2) for simple functions, for all n ≥ 1 we have∫

X

χEfsn dµ =

∫
X

χEhsn d|ν| (3)

From sn → g we get: χEfsn → χEfg and χEhsn → χEhg. Since |χEfsn| ≤
|f |g ∈ L1(X,µ) (since g is bounded) and |χEhsn| ≤ |h|g ∈ L1(X, |ν|), it
follows from the dominated convergence theorem that∫

X

χEfsn dµ→
∫
X

χEfg dµ and

∫
X

χEhsn d|ν| →
∫
X

χEhg d|ν|

as n → ∞. Taking the limit in (3) as n → ∞, we see that (2) holds
for all non-negative measurable, bounded g. If g is now an arbitrary C-
valued map which is measurable and bounded, then it can be expressed
as g = g1 − g2 + i(g3 − g4) where each gi is non-negative, measurable and
bounded. From the linearity of the integral, we conclude that (2) is also
true for g, which completes the proof of our initial claim.
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Since |h| = 1, applying (2) to g = sign(h), for all E ∈ F we get∫
E

f sign(h) dµ =

∫
E

h sign(h) d|ν| =
∫
E

d|ν| = |ν|(E).

The total variation |ν|, of the finite real measure ν, has values in R+,
hence: ∫

E

f sign(h)dµ ≥ 0

Define ϕ = f sign(h) . Then ϕ ∈ L1(X,µ), moreover for all E ∈ F we
have ∫

E

ϕ dµ ≥ 0.

Taking E = {ϕ < −1/n} for some n ≥ 1 we get

0 ≤
∫
E

ϕ dµ ≤ − 1

n
µ({ϕ < −1/n}) ≤ 0

from which we see that µ({ϕ < −1/n}) = 0 for all n ≥ 1. Since

{ϕ < 0} ⊂
⋃
n≥1

{ϕ < −1/n}

it follows that µ({ϕ < 0}) = 0 and consequently, ϕ ∈ R+ µ-a.e., that is
f sign(h) ≥ 0 a.e..

Then there exists N ∈ F with µ(N) = 0 and f(x) sign(h)(x) ∈ R+ for all
x ∈ X \N . In particular, since |h(x)| = 1, for all x ∈ X \N we have

f(x) sign(h)(x) = |f(x) sign(h)(x)| = |f(x)|.

It follows that f sign(h) = |f | µ−a.e..

Therefore for all E ∈ F we have

|ν|(E) =

∫
E

f sign(h) dµ =

∫
E

|f | dµ.

• Now we prove that if µ⊥ν then |µ+ ν| = |µ|+ |ν|.
Since µ⊥ν then there exist A ∈ F such that |µ|(A) = 0 and |ν|(X \A) = 0.
For E ∈ F we have E = (E∩A)∪(E∩(X\A)) and (E∩A)∩(E∩(X\A)) =
∅. By the additivity we get

|µ+ ν|(E) = |µ+ ν|(E ∩A) + |µ+ ν|(E ∩ (X \A))

= sup

{ ∞∑
k=1

|µ(Bk) + ν(Bk)| : E ∩A =

∞⋃
k=1

Bk

}
+

+ sup

{ ∞∑
k=1

|µ(Fk) + ν(Fk)| : E ∩ (X \A) =

∞⋃
k=1

Fk

}
.
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We recall that |µ(A)| ≤ |µ|(A) = 0 so that µ(A) = 0; since Bk ⊂ A for all
k ≥ 1 we have µ(Bk) = 0 for all k ≥ 1. Similarly ν(Fk) = 0 for all k ≥ 1,
then

|µ+ ν|(E) = sup

{ ∞∑
k=1

|ν(Bk)| : E ∩A =

∞⋃
k=1

Bk

}
+

+ sup

{ ∞∑
k=1

|µ(Fk)| : E ∩ (X \A) =

∞⋃
k=1

Fk

}
= |ν|(E ∩A) + |µ|(E ∩ (X \A)).

Now we recall that |ν|(E ∩ (X \A)) = 0 = |µ|(E ∩A), then

|µ+ ν|(E) = |µ|(E) + |ν|(E).

Exercise 1.4. Prove the Vitali–Lebesgue Theorem 1.1.7
Proof. We will need the following two well known results (see Rudin, Real and
Complex Analysis):
Theorem 1(Riesz’s Theorem). Let (X,F ) be a measurable space and let µ
be a positive finite measure on it. Every sequence (fk) of measurable functions
which converges in measure to a function f , contains a subsequence converging
to f pointwise µ-a.e.
Theorem 2(Egorov’s Theorem). Let (X,F ) be a measurable space and let µ
be a positive finite positive measure on it. If (fk) is a sequence of measurable
functions which converges pointwise µ-a.e. on X, then for every ε > 0 a mea-
surable set Eε ⊆ X exists such that µ(Eε) < ε and fk converges uniformly on
X r Eε.

Let (fk) a sequence satisfying the hypotheses of the Vitali–Lebesgue Theo-
rem, by Theorem 1 we can assume that fk converges pointwise µ-a.e. to f .

Let ε > 0 and fix M0 > 0 such that

sup
k∈N

∫
|fk|>M

|fk|dµ < ε for every M ≥M0

By Fatou’s Lemma we get∫
X

|f |dµ ≤ lim inf
k→+∞

∫
X

|fk|dµ ≤ sup
k∈N

∫
X

|fk|dµ ≤

≤ sup
k∈N

∫
|fk|≤M0

|fk|dµ+ sup
k∈N

∫
|fk|>M0

|fk|dµ ≤M0µ(X) + ε.

Thus f ∈ L1(X,µ), in particular there exists M > M0 such that
∫
|f |>M |f |dµ <

ε. Now let Eε the sets obtained applying Egorov’s Theorem and k ≥ k0 such
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that supx∈XrEε |fk − f | < ε. Observe that∫
X

|fk − f |dµ =

∫
XrEε

|fk − f |dµ+

∫
Eε

|fk − f |dµ ≤

≤ µ(X r Eε) sup
x∈XrEε

|fk − f |+
∫
Eε

|fk|dµ+

∫
Eε

|f |dµ ≤

≤ µ(X)ε+

∫
Eε∩{|fk|≤M0}

|fk|dµ+

∫
Eε∩{|fk|>M0}

|fk|dµ+

+

∫
Eε∩{|f |≤M}

|f |dµ+

∫
Eε∩{|f |>M}

|f |dµ ≤

≤ µ(X)ε+M0ε+ ε+Mε+ ε.

Exercise 1.5. Let F1 ×F2 be the σ-fields generated by G := {E1 ×E2 : Ei ∈
Xi, i = 1, 2}, and, for any x ∈ X1 and y ∈ X2, let us set Ex := {y ∈ X2 : (x, y) ∈
E} and Ey := {x ∈ X1 : (x, y) ∈ E}. We want to prove that the families of sets

Gx := {F ∈ F1 ×F2 : Fx ∈ F2}, Gy := {F ∈ F1 ×F2 : F y ∈ F1},

are σ-fields and contain G. Since the proofs for Gx and Gy are analogous, we
consider only Gx.

Let x ∈ X. We show that Gx is a σ-field.

(i) ∅, X1 ×X2 ∈ Gx. Indeed, we have ∅x = {y ∈ X2 : (x, y) ∈ ∅} = ∅ ∈ F2, and
(X1 ×X2)x = {y ∈ X2 : (x, y) ∈ X1 ×X2} = X2 ∈ F2.

(ii) If F ∈ Gx, then F c ∈ Gx. Since F ∈ Gx, Fx ∈ F2 and so (Fx)c ∈ F2. We
note that F c ∈ Gx is equivalent to the condition (F c)x ∈ F2. We have

(F c)x := {y ∈ X2 : (x, y) ∈ F c} = {y ∈ X2 : (x, y) /∈ F}
= {y ∈ X2 : (x, y) ∈ F}c = (Fx)c ∈ F2.

(iii) If {Fn}n∈N ⊂ Gx, then
+∞⋃
n=1

Fn ∈ Gx. This is true if and only if

{
y ∈ X2 : (x, y) ∈

+∞⋃
n=1

Fn

}
=

(
+∞⋃
n=1

Fn

)
x

∈ F2.

From the definition we get

y ∈

(
+∞⋃
n=1

Fn

)
x

⇐⇒ (x, y) ∈
+∞⋃
n=1

Fn

⇐⇒ (x, y) ∈ Fn, for some n ∈ N
⇐⇒ y ∈ (Fn)x, for some n ∈ N

⇐⇒ y ∈
+∞⋃
n=1

(Fn)x.
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Since Fn ∈ Gx for any n ∈ N, (Fn)x ∈ F2 for any n ∈ N. Hence

+∞⋃
n=1

(Fn)x ∈

F2, and from the previous chain of implications we can conclude that(
+∞⋃
n=1

Fn

)
x

∈ F2.

Finally, we show that G ⊂ Gx. If E = E1 × E2 ∈ G, then

Ex =

{
∅, x /∈ E1,

E2, x ∈ E2,

which means Ex ∈ F2 and E ∈ Gx.

Exercise 1.7. For a, σ ∈ R we have

γ̂(ξ) =
1√
2πσ

∫ +∞

−∞
eixξ exp

{
− (x− a)2

2σ2

}
dx.

We set y = x−a
σ , then dx = σdy and

γ̂(ξ) =
1√
2π

∫ +∞

−∞
ei(σy+a)ξe−y

2/2dy =
eiaξ√

2π

∫ +∞

−∞
exp

{
−y

2 − 2σξiy

2

}
dy

=
eiaξ√

2π

∫ +∞

−∞
exp

{
−y

2 − 2σξiy − ξ2σ2 + ξ2σ2

2

}
dy

= eiaξ−
1
2σ

2ξ2 1√
2π

∫ +∞

−∞
exp

{
− (y − iσξ)2

2

}
dy

= eiaξ−
1
2σ

2ξ2

Exercise 1.8.(Layer cake formula) Prove that if µ is a positive finite measure
on (X,F ) and 0 ≤ f ∈ L1(X,µ), then∫

X

fdµ =

∫ +∞

0

µ({x ∈ X | f(x) > t})dt.

Proof. Let
H = {(x, t) ∈ X × [0,+∞) : f(x)− t > 0}

and observe that

µ({x ∈ X | f(x) > t}) = µ(Ht) =

∫
X

χHt(x)dµ(x)

where Ht is the vertical section of H (it is a measurable set by Exercise 1.5). It
follows ∫ +∞

0

µ({x ∈ X | f(x) > t})dt =

∫ +∞

0

(∫
X

χHt(x)dµ(x)

)
dt =

now we apply Fubini’s Theorem

=

∫
X

(∫ +∞

0

χHt(x)dt

)
dµ(x) =
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and by the fact that χHt(x) = 1 if, and only if, |f(x)| > t we have

=

∫
E

(∫ f(x)

0

dt

)
dµ(x) =

we now use the fundamental theorem of calculus

=

∫
X

f(x)dµ(x).
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