Exercise 1.1. Let u be a finite positive measure on (X, F). Then, it satisfies
the monotonicity property, and recall that if A C B then u(B\ A) = u(B) —
w#(A). Indeed B = AU (B \ A), and from the properties of u it follows that
WA U (B A)) = p(4) + u(B\ 4).

e If {E, } en is an increasing sequence of subsets of X, that is F,, C E, 41,
for any n € N, we have

n —+oo +oo
En:UFha UEn:UFha
h=1 n=1 h=1

for any n € N, where F| = Fy and Fj, := Ej \ Ej_1, for any h > 2. Hence
from the properties of u

N(En) = Z N(Fh)a
h=1

and since p(FE,) is increasing, the limit of u(F,) as n — +oo exists.
Passing to the limit we get

+00o +oo +o0o
Jim () =) u(F) = p (U Fh> =pu (U Eh) ,
h=1 h=1 h=1
where the second equality follows from the o-additivity of pu.

e Let {E, }nen be a decreasing sequence of subsets of X, that is F,,11 C E,,
for any n € N. From the De Morgan laws we have

+oo +oo ¢ +o0o
() En= (U E;) =X\ JE;.
n=1 n=1 n=1
Since the sequence {ES },en is increasing, from part (¢) it follows that
400 Foo
p (ﬂ En> = u(X) — p (U EZ)
n=1 n=1
= p(X) = lm p(E7)
—p(X) ~ lim_(u(X) - p(E,)
= lim wp(E,),

n—-+oo

and the last term makes sense because the sequence {u(E,)}nen is de-
creasing in R.

Exercise 1.2.

e Let u be a finite real measure. For all £ € F we define

(o) o
||(E) := sup {Z |(EL)| : E) € F pairwise disjoint, E = U Ek}
k=1 k=1
(1)



We prove that |p] is positive finite measure.
First we prove that |u| is a finite measure.

Since p is a finite real measure, there exist 1, o positive finite measures
such that p = p1 —ps. Let E € F, then for all € > 0 there exists a partition
{En}nr>1 C F of E such that

W(En)| +e =" |na(En) — pa(En)| + ¢
h=1

ul(E) <

s T

1(Bn) + Y pa(En) +& = i (E) + pa(E) + ¢
h=1

<

>
Il
—

then the total variation |y is finite.
Now we prove that |u| is a positive measure and |u|(@) = 0.

The positivity of |u| follows by definition (1). If {E,, },>1 is a measurable
partition of (), then E, = 0 for all n > 1, therefore |u|(0) = 0.

Finally we prove that |u| is o-additive.

Let E € F. We define E; = F and E,, = () for n > 2. Therefore {E), }n>1
is a measurable partition of E. By definition (1), we have

Zlu )| < |pl(E)

then we get [u(E)| < |u|(E).

Let {E,, },n>1 a measurable partition of E. Let € > 0, and for each j, choose
a partition {4; ,}i>1 of E,, such that

lul(En) < Z|V in) 7-
Then

Do lulE) <D0 I Ain) +2 < PI(B) +e

n=11i=1

Since € > 0 is arbitrary, we have

D lul(Bn) < vI(E) = V] (U En> :

n=1 n=1

For the reverse inequality, let {A;};>1 be another partition of E. Since
{A; N E,}i>1 is a measurable partition of E, and {4; N E,},>1 is a
measurable partition of A;, we have

Zlu

AN E)| < Y (A N Ey))|

7,n=1
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ul(Ai N En) < Z |ul(E

i=1
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Taking the supremum over all measurable partitions {4;};>1 of E we get
ul(B) < ul(Bn).
i=1

Let 4 be a positive measure and f € L'(X,u), and let v := fu be the
measure defined by

v(B) = /deu,VB e F.

We prove that
vIB) = [ 1fldu.vB € 7.

We recall that v is absolutely continuous with respect to |v|; then there
exists a unique real valued function h € L'(X, |v|) such that v = h|v| and
|h] =1 |v|-a.e., therefore for all E € F we get

V(E):/Eh dlv|.

For any F, F € F we have
[ txwdu= [ fau=vEnr)= [ e dpl
E ENF E
Given g : X — R bounded and measurable, we claim that:

vEeF, [ fodu= [ hgdv (2)
E E

We know that equation (2) holds for g = xr with F' € F. By the linearity
of the integral, (2) is also true whenever g is a simple function on (X, F).
Let ¢ be nonnegative, measurable and bounded, then there exists a se-
quence {sy},>1 of simple functions on (X, F) such that s, 1 g. Having
proved (2) for simple functions, for all n > 1 we have

/ X Fon di = / hsa dv] 3)
X X

From s,, — g we get: xgfs, = xgfgand xghs, — xghg. Since |xg fsn]| <
|flg € LY (X, ) (since g is bounded) and |xghs,| < |hlg € LY(X, |v|), it
follows from the dominated convergence theorem that

/XEfsn dp—>/ xefg du and /XEhsn d|V\—>/ xrhg d|v|
X X X X

as n — oo. Taking the limit in (3) as n — oo, we see that (2) holds
for all non-negative measurable, bounded g. If g is now an arbitrary C-
valued map which is measurable and bounded, then it can be expressed
as g = g1 — g2 + (g3 — ga) where each g; is non-negative, measurable and
bounded. From the linearity of the integral, we conclude that (2) is also
true for g, which completes the proof of our initial claim.



Since |h| = 1, applying (2) to g = sign(h), for all E € F we get

| #siente) du= [ nsign(hy vl = [ dwi = 1vi(e)

The total variation |v|, of the finite real measure v, has values in Rt
hence:

| fsienttdu= 0
E

Define ¢ = fsign(h) . Then ¢ € L'(X,u), moreover for all E € F we

have
/ ¢ dp > 0.
E

Taking E = {¢ < —1/n} for some n > 1 we get

1
0< / pdp<——u({p <-1/n}) <0
E n
from which we see that pu({¢ < —1/n}) =0 for all n > 1. Since

{e<0}c | J{e<-1/n}

n>1
it follows that u({¢ < 0}) = 0 and consequently, ¢ € RT p-a.e., that is
fsign(h) >0 a.e..
Then there exists N € F with u(N) =0 and f(z)sign(h)(z) € RT for all
x € X \ N. In particular, since |h(z)| =1, for all z € X \ N we have
f(z) sign(h)(z) = [f(x) sign(h)(x)] = | f ()]

It follows that fsign(h) = |f] p—a.e..
Therefore for all £ € F we have

v|(E /f51gn ) dp = /Ifl dp.

Now we prove that if g lv then |pu+ v| = |u| + |v|.

Since pLv then there exist A € F such that |u|(A) = 0 and |v|(X\ A) = 0.
For E € F wehave E = (ENA)U(EN(X\A)) and (ENA)N(EN(X\A)) =
(). By the additivity we get

ln+VI(E) = lp+vI(ENA) + |p+rv|(EN(X\ A)

—sup{sz;C k|:EﬂA:UBk}+

k=1

—}-sup{Oo ln(Fy) +v(Fe)|: EN(X\A) = G }

k=1



We recall that |u(A)]
k > 1 we have u(By)
then

< |p|(A) = 0 so that u(A) = 0; since By, C A for all
=0 for all £ > 1. Similarly v(F;) =0 for all &k > 1,

lu+v|(E) = SUP{Z|V(Bk)| c EnA=J Bk} -
k=1

k=1

+sup{2|u<Fk>|: En(x\4) =J F}

k=1 k=1
= [VI(EQA) + |pl(EN (X \ A)).

Now we recall that [v|(EN (X \ A)) =0 = |u|(ENA), then

[+ VI(E) = |pl(E) + [V[(E).

Exercise 1.4. Prove the Vitali-Lebesgue Theorem 1.1.7
Proof. We will need the following two well known results (see Rudin, Real and
Complex Analysis):
Theorem 1(Riesz’s Theorem). Let (X,.#) be a measurable space and let p
be a positive finite measure on it. Every sequence (fi) of measurable functions
which converges in measure to a function f, contains a subsequence converging
to f pointwise p-a.e.
Theorem 2(Egorov’s Theorem). Let (X,.%#) be a measurable space and let u
be a positive finite positive measure on it. If (fi) is a sequence of measurable
functions which converges pointwise p-a.e. on X, then for every € > 0 a mea-
surable set E. C X exists such that u(FE.) < € and f converges uniformly on
X\ FE..

Let (fx) a sequence satisfying the hypotheses of the Vitali-Lebesgue Theo-
rem, by Theorem 1 we can assume that fj, converges pointwise p-a.e. to f.

Let € > 0 and fix My > 0 such that

sup/ | feldu < e for every M > M,
keN J|fi|>M

By Fatou’s Lemma we get

[ 11 < timint [ fidd < sup [ {feldne <
X k——+4o0 X keNJ x

<swp [ fulductsup [ [fuldu < Mo(X) + e
kENJ|fr|<Mo keEN J| fr|>Mo

Thus f € LY(X, u), in particular there exists M > My such that f|f|>ﬁ |fldu <

€. Now let E. the sets obtained applying Egorov’s Theorem and k£ > kg such



that sup,c x gz |fx — f| <e. Observe that

[Qh—fdu=[;Ejh—fdu+LJh—fdu§

<uX~E) sw (fo— g1+ [ Ul [ Ifldes

rzeXNE.

sMXk+/' |th+/ fildut
E.n{|fk|<Mo} En{|fr|>Mo}

+/ - Ifldu+/ ~ fldp <
B.n{|fI<M} B.n{|fI>M}
< u(X)e+ Moe + e+ Me +e¢.

Exercise 1.5. Let F; X Fa be the o-fields generated by G := {F; X E3 : E; €
Xi,i=1,2}, and, forany z € X; and y € Xy, let usset B, :={y € Xo: (x,y) €
E} and EY := {z € X; : (z,y) € E}. We want to prove that the families of sets

Go={FeFixF:F, ek} G :={FcF xF:FYecF},

are o-fields and contain G. Since the proofs for G, and GY are analogous, we
consider only G,.
Let z € X. We show that G, is a o-field.

(i) 0,X; x X5 € G,. Indeed, we have 0, = {y € Xo: (z,y) € 0} =0 € F», and
(Xl XXQ)IZ{yEXQ : (.’E,y) € Xy XXQ}:XQ e Fo.

(ii) If F € G,, then F° € G,. Since F € G,, F, € F3 and so (F;)¢ € Fy. We
note that F¢ € G, is equivalent to the condition (F€), € F». We have

(F9p ={yeXs:(x,y) e F}={ye Xo:(x,y) ¢ F}
={ye Xy:(z,y) € F}° = (F,)° € Fa.

—+o0

(iii) If {F, }nen C Ge, then U F, € G,. This is true if and only if
n=1
+oo +oo
{y€X2 (z,y) € U Fn} = (U Fn> cFo.
n=1 n=1 T

From the definition we get

+oo +oo
ye (U Fn> = (r,y) e |J P
n=1 T n=1
< (z,y) € F,, for somen € N
<~y € (F,),, forsomen e N
+oo

—ye | JE).

n=1



“+o0
Since F,, € G, for any n € N, (F,), € F» for any n € N. Hence U (Fn)s €

n=1
Fz, and from the previous chain of implications we can conclude that

+oo
(U Fn> € Fo.
n=1 T

Finally, we show that G C G,. If E = F; X E5 € G, then

Ez _ (Da x ¢ Ela
E27 Y GEQ}

which means F, € F> and F € G,.

Exercise 1.7. For a,0 € R we have
R 1 +oo _ )2
(€)= 7/ €i%€ exp {_(‘”“)} da.
210 J_ 0o

We set y = £=2, then dx = ody and

g

1 +oo ial +oo 2 _ 9 .
90 == [ eorrentiny = S [ e {220y,

V2T J_so
B RS O et Rk sl S OY
V2 J s 2

) 1 +oo o 2
— ewg—éo%zi?ﬂ/ exp{—(y 2205) }dy

_ emgféa"‘gz

Exercise 1.8.(Layer cake formula) Prove that if u is a positive finite measure

on (X,.%#)and 0 < f € L'(X, ), then

—+o0
/ fp = / u({z € X| f(x) > t})dt.
X 0

Proof. Let
H={(z,t) € X x[0,400) : f(z) —t >0}

and observe that
e € X17(@) > ) = ul#) = [ xn(w)in(o)

where H' is the vertical section of H (it is a measurable set by Exercise 1.5). It

follows
/Om p{r € X[ f(z) > t})dt = /+Oo (/X it (w)d,u(;v)>dt —

0

now we apply Fubini’s Theorem

:/X (/0“0 XH¢(33)dt>d'u(x) _



and by the fact that yg¢(z) = 1 if, and only if, |f(z)| > ¢t we have

(L e

we now use the fundamental theorem of calculus

- /X f(@)du(@).



