Exercise 1.1. Let μ be a finite positive measure on (X, \mathcal{F}) . Then, it satisfies the monotonicity property, and recall that if $A \subset B$ then $\mu(B \setminus A) = \mu(B)$ – $\mu(A)$. Indeed $B = A \cup (B \setminus A)$, and from the properties of μ it follows that $\mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A).$

• If ${E_n}_{n\in\mathbb{N}}$ is an increasing sequence of subsets of X, that is $E_n \subset E_{n+1}$, for any $n \in \mathbb{N}$, we have

$$
E_n = \bigcup_{h=1}^n F_h, \qquad \bigcup_{n=1}^{+\infty} E_n = \bigcup_{h=1}^{+\infty} F_h,
$$

for any $n \in \mathbb{N}$, where $F_1 = E_1$ and $F_h := E_h \setminus E_{h-1}$, for any $h \geq 2$. Hence from the properties of μ

$$
\mu(E_n) = \sum_{h=1}^n \mu(F_h),
$$

and since $\mu(E_n)$ is increasing, the limit of $\mu(E_n)$ as $n \to +\infty$ exists. Passing to the limit we get

$$
\lim_{n \to +\infty} \mu(E_n) = \sum_{h=1}^{+\infty} \mu(F_h) = \mu\left(\bigcup_{h=1}^{+\infty} F_h\right) = \mu\left(\bigcup_{h=1}^{+\infty} E_h\right),
$$

where the second equality follows from the σ -additivity of μ .

• Let ${E_n}_{n\in\mathbb{N}}$ be a decreasing sequence of subsets of X, that is $E_{n+1} \subset E_n$, for any $n \in \mathbb{N}$. From the De Morgan laws we have

$$
\bigcap_{n=1}^{+\infty} E_n = \left(\bigcup_{n=1}^{+\infty} E_n^c\right)^c = X \setminus \bigcup_{n=1}^{+\infty} E_n^c.
$$

Since the sequence $\{E_n^c\}_{n\in\mathbb{N}}$ is increasing, from part (i) it follows that

$$
\mu\left(\bigcap_{n=1}^{+\infty} E_n\right) = \mu(X) - \mu\left(\bigcup_{n=1}^{+\infty} E_n^c\right)
$$

$$
= \mu(X) - \lim_{n \to +\infty} \mu(E_n^c)
$$

$$
= \mu(X) - \lim_{n \to +\infty} (\mu(X) - \mu(E_n))
$$

$$
= \lim_{n \to +\infty} \mu(E_n),
$$

and the last term makes sense because the sequence $\{\mu(E_n)\}_{n\in\mathbb{N}}$ is decreasing in R.

Exercise 1.2.

• Let μ be a finite real measure. For all $E \in \mathcal{F}$ we define

$$
|\mu|(E) := \sup \left\{ \sum_{k=1}^{\infty} |\mu(E_k)| : E_k \in \mathcal{F} \text{ pairwise disjoint, } E = \bigcup_{k=1}^{\infty} E_k \right\}
$$
(1)

We prove that $|\mu|$ is positive finite measure.

First we prove that $|\mu|$ is a finite measure.

Since μ is a finite real measure, there exist μ_1, μ_2 positive finite measures such that $\mu = \mu_1 - \mu_2$. Let $E \in \mathcal{F}$, then for all $\varepsilon > 0$ there exists a partition ${E_h}_{h\geq 1} \subset \mathcal{F}$ of E such that

$$
|\mu|(E) \le \sum_{h=1}^{\infty} |\mu(E_h)| + \varepsilon = \sum_{h=1}^{\infty} |\mu_1(E_h) - \mu_2(E_h)| + \varepsilon
$$

$$
\le \sum_{h=1}^{\infty} \mu_1(E_h) + \sum_{h=1}^{\infty} \mu_2(E_h) + \varepsilon = \mu_1(E) + \mu_2(E) + \varepsilon
$$

then the total variation $|\mu|$ is finite.

Now we prove that $|\mu|$ is a positive measure and $|\mu|(\emptyset) = 0$.

The positivity of |µ| follows by definition (1). If ${E_n}_{n>1}$ is a measurable partition of \emptyset , then $E_n = \emptyset$ for all $n \geq 1$, therefore $|\mu|(\overline{\emptyset}) = 0$.

Finally we prove that
$$
|\mu|
$$
 is σ -additive.

Let $E \in \mathcal{F}$. We define $E_1 = E$ and $E_n = \emptyset$ for $n \geq 2$. Therefore $\{E_n\}_{n \geq 1}$ is a measurable partition of E . By definition (1) , we have

$$
\sum_{n=1}^{\infty} |\mu(E_n)| \leq |\mu|(E)
$$

then we get $|\mu(E)| \leq |\mu|(E)$.

Let ${E_n}_{n\geq 1}$ a measurable partition of E. Let $\varepsilon > 0$, and for each j, choose a partition $\{A_{i,n}\}_{i>1}$ of E_n such that

$$
|\mu|(E_n) \leq \sum_{i=1}^{\infty} |\nu(A_{i,n})| + \frac{\varepsilon}{2^n}.
$$

Then

$$
\sum_{n=1}^{\infty} |\mu|(E_n) \le \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} |\nu(A_{i,n})| + \varepsilon \le |\nu|(E) + \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, we have

$$
\sum_{n=1}^{\infty} |\mu|(E_n) \leq |\nu|(E) = |\nu| \left(\bigcup_{n=1}^{\infty} E_n\right).
$$

For the reverse inequality, let $\{A_i\}_{i\geq 1}$ be another partition of E. Since ${A_i \cap E_n}_{i\geq 1}$ is a measurable partition of E_n and ${A_i \cap E_n}_{n\geq 1}$ is a measurable partition of A_i , we have

$$
\sum_{i=1}^{\infty} |\mu(A_i)| = \sum_{i=1}^{\infty} \left| \sum_{j=1}^{\infty} \mu(A_i \cap E_n) \right| \leq \sum_{i,n=1}^{\infty} |\mu(A_i \cap E_n)|
$$

$$
\leq \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} |\mu|(A_i \cap E_n) \leq \sum_{i=1}^{\infty} |\mu|(E_n).
$$

Taking the supremum over all measurable partitions $\{A_i\}_{i\geq 1}$ of E we get

$$
|\mu|(E) \le \sum_{i=1}^{\infty} |\mu|(E_n).
$$

• Let μ be a positive measure and $f \in L^1(X, \mu)$, and let $\nu := f\mu$ be the measure defined by

$$
\nu(B) = \int_B f d\mu, \forall B \in \mathcal{F}.
$$

We prove that

$$
|\nu|(B)=\int_B|f|d\mu, \forall B\in\mathcal{F}.
$$

We recall that ν is absolutely continuous with respect to $|\nu|$; then there exists a unique real valued function $h \in L^1(X, |\nu|)$ such that $\nu = h|\nu|$ and $|h| = 1$ |ν|-a.e., therefore for all $E \in \mathcal{F}$ we get

$$
\nu(E) = \int_E h \ d|\nu|.
$$

For any $E, F \in \mathcal{F}$ we have

$$
\int_{E} f \chi_{F} d\mu = \int_{E \cap F} f d\mu = \nu(E \cap F) = \int_{E} h \chi_{F} d|\nu|.
$$

Given $g: X \to \mathbb{R}$ bounded and measurable, we claim that:

$$
\forall E \in \mathcal{F}, \int_{E} fg \ d\mu = \int_{E} hg \ d|\nu| \tag{2}
$$

We know that equation (2) holds for $g = \chi_F$ with $F \in \mathcal{F}$. By the linearity of the integral, (2) is also true whenever g is a simple function on (X, \mathcal{F}) . Let g be nonnegative, measurable and bounded, then there exists a sequence $\{s_n\}_{n\geq 1}$ of simple functions on (X,\mathcal{F}) such that $s_n \uparrow g$. Having proved (2) for simple functions, for all $n \geq 1$ we have

$$
\int_{X} \chi_{E} f s_{n} d\mu = \int_{X} \chi_{E} h s_{n} d|\nu| \tag{3}
$$

From $s_n \to g$ we get: $\chi_E fs_n \to \chi_E fg$ and $\chi_E hs_n \to \chi_E hg$. Since $|\chi_E fs_n| \le$ $|f|g \in L^1(X,\mu)$ (since g is bounded) and $|\chi_Ehs_n| \leq |h|g \in L^1(X, |\nu|)$, it follows from the dominated convergence theorem that

$$
\int_X \chi_E f s_n \ d\mu \to \int_X \chi_E f g \ d\mu \quad \text{and} \quad \int_X \chi_E h s_n \ d|\nu| \to \int_X \chi_E h g \ d|\nu|
$$

as $n \to \infty$. Taking the limit in (3) as $n \to \infty$, we see that (2) holds for all non-negative measurable, bounded g . If g is now an arbitrary \mathbb{C} valued map which is measurable and bounded, then it can be expressed as $g = g_1 - g_2 + i(g_3 - g_4)$ where each g_i is non-negative, measurable and bounded. From the linearity of the integral, we conclude that (2) is also true for g, which completes the proof of our initial claim.

Since $|h| = 1$, applying (2) to $g = \text{sign}(h)$, for all $E \in \mathcal{F}$ we get

$$
\int_E f \operatorname{sign}(h) \ d\mu = \int_E h \operatorname{sign}(h) \ d|\nu| = \int_E d|\nu| = |\nu|(E).
$$

The total variation $|\nu|$, of the finite real measure ν , has values in \mathbb{R}^+ , hence:

$$
\int_E f \operatorname{sign}(h) d\mu \ge 0
$$

Define $\varphi = f \text{sign}(h)$. Then $\varphi \in L^1(X, \mu)$, moreover for all $E \in \mathcal{F}$ we have

$$
\int_E \varphi \, d\mu \ge 0.
$$

Taking $E = \{ \varphi < -1/n \}$ for some $n \ge 1$ we get

$$
0 \le \int_E \varphi \, d\mu \le -\frac{1}{n}\mu(\{\varphi < -1/n\}) \le 0
$$

from which we see that $\mu({\{\varphi < -1/n\}}) = 0$ for all $n \ge 1$. Since

$$
\{\varphi<0\}\subset\bigcup_{n\geq 1}\{\varphi<-1/n\}
$$

it follows that $\mu({\varphi < 0}) = 0$ and consequently, $\varphi \in \mathbb{R}^+$ μ -a.e., that is $f \text{sign}(h) \geq 0$ a.e..

Then there exists $N \in \mathcal{F}$ with $\mu(N) = 0$ and $f(x)$ sign $(h)(x) \in \mathbb{R}^+$ for all $x \in X \setminus N$. In particular, since $|h(x)| = 1$, for all $x \in X \setminus N$ we have

$$
f(x) \operatorname{sign}(h)(x) = |f(x) \operatorname{sign}(h)(x)| = |f(x)|.
$$

It follows that f sign $(h) = |f|$ μ –a.e..

Therefore for all $E \in \mathcal{F}$ we have

$$
|\nu|(E) = \int_E f \operatorname{sign}(h) \, d\mu = \int_E |f| \, d\mu.
$$

• Now we prove that if $\mu \perp \nu$ then $|\mu + \nu| = |\mu| + |\nu|$.

Since $\mu \perp \nu$ then there exist $A \in \mathcal{F}$ such that $|\mu|(A) = 0$ and $|\nu|(X \setminus A) = 0$. For $E \in \mathcal{F}$ we have $E = (E \cap A) \cup (E \cap (X \setminus A))$ and $(E \cap A) \cap (E \cap (X \setminus A)) =$ ∅. By the additivity we get

$$
|\mu + \nu|(E) = |\mu + \nu|(E \cap A) + |\mu + \nu|(E \cap (X \setminus A))
$$

=
$$
\sup \left\{ \sum_{k=1}^{\infty} |\mu(B_k) + \nu(B_k)| : E \cap A = \bigcup_{k=1}^{\infty} B_k \right\} +
$$

+
$$
\sup \left\{ \sum_{k=1}^{\infty} |\mu(F_k) + \nu(F_k)| : E \cap (X \setminus A) = \bigcup_{k=1}^{\infty} F_k \right\}.
$$

We recall that $|\mu(A)| \leq |\mu|(A) = 0$ so that $\mu(A) = 0$; since $B_k \subset A$ for all $k \geq 1$ we have $\mu(B_k) = 0$ for all $k \geq 1$. Similarly $\nu(F_k) = 0$ for all $k \geq 1$, then

$$
|\mu + \nu|(E) = \sup \left\{ \sum_{k=1}^{\infty} |\nu(B_k)| : E \cap A = \bigcup_{k=1}^{\infty} B_k \right\} + \sup \left\{ \sum_{k=1}^{\infty} |\mu(F_k)| : E \cap (X \setminus A) = \bigcup_{k=1}^{\infty} F_k \right\} = |\nu|(E \cap A) + |\mu|(E \cap (X \setminus A)).
$$

Now we recall that $|\nu|(E \cap (X \setminus A)) = 0 = |\mu|(E \cap A)$, then

$$
|\mu + \nu|(E) = |\mu|(E) + |\nu|(E).
$$

Exercise 1.4. Prove the Vitali–Lebesgue Theorem 1.1.7

Proof. We will need the following two well known results (see Rudin, Real and Complex Analysis):

Theorem 1(Riesz's Theorem). Let (X, \mathcal{F}) be a measurable space and let μ be a positive finite measure on it. Every sequence (f_k) of measurable functions which converges in measure to a function f , contains a subsequence converging to f pointwise μ -a.e.

Theorem 2(Egorov's Theorem). Let (X, \mathcal{F}) be a measurable space and let μ be a positive finite positive measure on it. If (f_k) is a sequence of measurable functions which converges pointwise μ -a.e. on X, then for every $\epsilon > 0$ a measurable set $E_{\epsilon} \subseteq X$ exists such that $\mu(E_{\epsilon}) < \epsilon$ and f_k converges uniformly on $X \setminus E_{\epsilon}$.

Let (f_k) a sequence satisfying the hypotheses of the Vitali–Lebesgue Theorem, by Theorem 1 we can assume that f_k converges pointwise μ -a.e. to f.

Let $\epsilon > 0$ and fix $M_0 > 0$ such that

$$
\sup_{k \in \mathbb{N}} \int_{|f_k| > M} |f_k| d\mu < \epsilon \qquad \text{for every } M \ge M_0
$$

By Fatou's Lemma we get

$$
\int_X |f|d\mu \le \liminf_{k \to +\infty} \int_X |f_k|d\mu \le \sup_{k \in \mathbb{N}} \int_X |f_k|d\mu \le
$$

$$
\le \sup_{k \in \mathbb{N}} \int_{|f_k| \le M_0} |f_k|d\mu + \sup_{k \in \mathbb{N}} \int_{|f_k| > M_0} |f_k|d\mu \le M_0 \mu(X) + \epsilon.
$$

Thus $f \in L^1(X, \mu)$, in particular there exists $\overline{M} > M_0$ such that $\int_{|f| > \overline{M}} |f| d\mu <$ ε. Now let E_{ϵ} the sets obtained applying Egorov's Theorem and $k \geq k_0$ such that $\sup_{x \in X \setminus E_{\varepsilon}} |f_k - f| < \varepsilon$. Observe that

$$
\int_{X} |f_{k} - f| d\mu = \int_{X \setminus E_{\epsilon}} |f_{k} - f| d\mu + \int_{E_{\epsilon}} |f_{k} - f| d\mu \le
$$
\n
$$
\leq \mu(X \setminus E_{\epsilon}) \sup_{x \in X \setminus E_{\epsilon}} |f_{k} - f| + \int_{E_{\epsilon}} |f_{k}| d\mu + \int_{E_{\epsilon}} |f| d\mu \le
$$
\n
$$
\leq \mu(X) \epsilon + \int_{E_{\epsilon} \cap \{|f_{k}| \leq M_{0}\}} |f_{k}| d\mu + \int_{E_{\epsilon} \cap \{|f_{k}| > M_{0}\}} |f_{k}| d\mu + \int_{E_{\epsilon} \cap \{|f| > \overline{M}\}} |f| d\mu + \int_{E_{\epsilon} \cap \{|f| > \overline{M}\}} |f| d\mu \le
$$
\n
$$
\leq \mu(X) \epsilon + M_{0} \epsilon + \epsilon + \overline{M} \epsilon + \epsilon.
$$

Exercise 1.5. Let $\mathcal{F}_1 \times \mathcal{F}_2$ be the σ -fields generated by $\mathcal{G} := \{E_1 \times E_2 : E_i \in$ $X_i, i = 1, 2\}$, and, for any $x \in X_1$ and $y \in X_2$, let us set $E_x := \{y \in X_2 : (x, y) \in$ E} and $E^y := \{x \in X_1 : (x, y) \in E\}$. We want to prove that the families of sets

$$
\mathcal{G}_x := \{ F \in \mathcal{F}_1 \times \mathcal{F}_2 : F_x \in \mathcal{F}_2 \}, \quad \mathcal{G}^y := \{ F \in \mathcal{F}_1 \times \mathcal{F}_2 : F^y \in \mathcal{F}_1 \},
$$

are σ -fields and contain G. Since the proofs for \mathcal{G}_x and \mathcal{G}^y are analogous, we consider only \mathcal{G}_x .

Let $x \in X$. We show that \mathcal{G}_x is a σ -field.

- (i) $\emptyset, X_1 \times X_2 \in \mathcal{G}_x$. Indeed, we have $\emptyset_x = \{y \in X_2 : (x, y) \in \emptyset\} = \emptyset \in \mathcal{F}_2$, and $(X_1 \times X_2)_x = \{y \in X_2 : (x, y) \in X_1 \times X_2\} = X_2 \in \mathcal{F}_2.$
- (ii) If $F \in \mathcal{G}_x$, then $F^c \in \mathcal{G}_x$. Since $F \in \mathcal{G}_x$, $F_x \in \mathcal{F}_2$ and so $(F_x)^c \in \mathcal{F}_2$. We note that $F^c \in \mathcal{G}_x$ is equivalent to the condition $(F^c)_x \in \mathcal{F}_2$. We have

$$
(F^{c})_{x} := \{ y \in X_{2} : (x, y) \in F^{c} \} = \{ y \in X_{2} : (x, y) \notin F \} = \{ y \in X_{2} : (x, y) \in F \}^{c} = (F_{x})^{c} \in \mathcal{F}_{2}.
$$

(iii) If $\{F_n\}_{n\in\mathbb{N}}\subset\mathcal{G}_x$, then $+∞$
| | $n=1$ $F_n \in \mathcal{G}_x$. This is true if and only if

$$
\left\{ y \in X_2 : (x, y) \in \bigcup_{n=1}^{+\infty} F_n \right\} = \left(\bigcup_{n=1}^{+\infty} F_n \right)_x \in \mathcal{F}_2.
$$

From the definition we get

$$
y \in \left(\bigcup_{n=1}^{+\infty} F_n\right)_x \iff (x, y) \in \bigcup_{n=1}^{+\infty} F_n
$$

$$
\iff (x, y) \in F_n, \text{ for some } n \in \mathbb{N}
$$

$$
\iff y \in (F_n)_x, \text{ for some } n \in \mathbb{N}
$$

$$
\iff y \in \bigcup_{n=1}^{+\infty} (F_n)_x.
$$

Since $\mathcal{F}_n \in \mathcal{G}_x$ for any $n \in \mathbb{N}$, $(F_n)_x \in \mathcal{F}_2$ for any $n \in \mathbb{N}$. Hence $\bigcup_{n=1}^{+\infty} (F_n)_x \in$ \mathcal{F}_2 , and from the previous chain of implications we can conclude that

$$
\left(\bigcup_{n=1}^{+\infty} F_n\right)_x \in \mathcal{F}_2.
$$

Finally, we show that $\mathcal{G} \subset \mathcal{G}_x$. If $E = E_1 \times E_2 \in \mathcal{G}$, then

$$
E_x = \begin{cases} \emptyset, & x \notin E_1, \\ E_2, & x \in E_2, \end{cases}
$$

which means $E_x \in \mathcal{F}_2$ and $E \in \mathcal{G}_x$.

Exercise 1.7. For $a, \sigma \in \mathbb{R}$ we have

$$
\widehat{\gamma}(\xi) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} e^{ix\xi} \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\} dx.
$$

We set $y = \frac{x-a}{\sigma}$, then $dx = \sigma dy$ and

$$
\widehat{\gamma}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i(\sigma y + a)\xi} e^{-y^2/2} dy = \frac{e^{ia\xi}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{y^2 - 2\sigma\xi iy}{2}\right\} dy
$$

$$
= \frac{e^{ia\xi}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{y^2 - 2\sigma\xi iy - \xi^2\sigma^2 + \xi^2\sigma^2}{2}\right\} dy
$$

$$
= e^{ia\xi - \frac{1}{2}\sigma^2\xi^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left\{-\frac{(y - i\sigma\xi)^2}{2}\right\} dy
$$

$$
= e^{ia\xi - \frac{1}{2}\sigma^2\xi^2}
$$

Exercise 1.8.(Layer cake formula) Prove that if μ is a positive finite measure on (X, \mathscr{F}) and $0 \le f \in L^1(X, \mu)$, then

$$
\int_X f d\mu = \int_0^{+\infty} \mu(\{x \in X \mid f(x) > t\}) dt.
$$

Proof. Let

$$
H = \{(x, t) \in X \times [0, +\infty) : f(x) - t > 0\}
$$

and observe that

$$
\mu({x \in X | f(x) > t}) = \mu(H^t) = \int_X \chi_{H^t}(x) d\mu(x)
$$

where H^t is the vertical section of H (it is a measurable set by Exercise 1.5). It follows

$$
\int_0^{+\infty} \mu({x \in X \mid f(x) > t}) dt = \int_0^{+\infty} \left(\int_X \chi_{H^t}(x) d\mu(x)\right) dt =
$$

now we apply Fubini's Theorem

$$
= \int_X \left(\int_0^{+\infty} \chi_{H^t}(x) dt \right) d\mu(x) =
$$

and by the fact that $\chi_{H^t}(x)=1$ if, and only if, $|f(x)| > t$ we have

$$
= \int_E \left(\int_0^{f(x)} dt \right) d\mu(x) =
$$

we now use the fundamental theorem of calculus

$$
= \int_X f(x) d\mu(x).
$$