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Abstract. In this paper we describe the contributions made by Margherita
Piazzolla Beloch to the field of elementary geometric construction. In particular
we examine her solution of the classical Greek problem of doubling the cube
via paper folding. The solution was achieved by creating a new fold which in
turn enabled Piazzolla Beloch to construct, also by paper folding, the root of any
given cubic polynomial.
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1 Introduction

Paper folding, or origami, has been known for centuries as a fine art form, a way to trans-
form a piece of paper into a stunning three dimensional object. In the last 30-40 years it
has been understood that paper folding can also be an important scientific and technologi-
cal tool. One of the pioneers of the application of paper folding to geometrical problems is
Margherita Piazzolla Beloch. In her book Lezioni di matematica complementare, la matem-
atica elementare vista dall’alto Piazzolla Beloch devotes the last two chapters to elementary
solutions of classical geometric problems. It is probable that her deep interest in elementary
mathematics, a common thread among Italian algebraic geometers at the beginning of the
"900 (cf. [7]), 1s one of the main reason in Piazzolla Beloch’s appreciation and usage of pa-
per folding. Mainly because paper folding is a powerful but simple tool to perform geometric
constructions. Following Piazzolla Beloch, see [21, p.353], we call a geometric problem a
problem of third degree if its resolution requires finding a root of a cubic polynomial ir-
reducible over the rational numbers. Gauss was the first one to state, even though without
proof (see [6]), that angle trisection and cube doubling are not solvable by ruler and compass.
The first published proof is due to M.L. Wantzel (cf. [30]) who actually proved that every
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problem of the third degree cannot be solved by ruler and compass. In her book, Piazzolla
Beloch after describing and investigating classical solutions via mechanical instruments and
higher degree curves turns her attention to a new method: paper folding.

Margherita Piazzolla Beloch’s source of information about paper folding was the book writ-
ten by Sundara Row [23] and an article of Rupp [26]. She published her reflections about
paper folding in a series of articles ([18], [19], and [20]), which appeared several years be-
fore her lecture notes [21]. Her fundamental contribution was the discovery of what is now
often called' Beloch’s fold: Given two point P, and P, and two lines r1 and ry then, when it
exists, we can fold the line reflecting P, onto r1 and P, onto ry. (Fig. 1)

Fig. 1. Two instances of Piazzolla Beloch’s fold

It was this fold that enabled Piazzolla Beloch to show that by using paper folding it is possible
to double the cube and, with the aid of Lill’s graphical method, to solve all cubic equations.
As we shall see in section 7, in all the applications that Piazzolla Beloch considered it was
evident that one could perform the above fold. Nonetheless it is interesting to establish a
sufficient condition for when it is possible to execute Piazzolla Beloch’s fold. We provide
such a sufficient condition by means of (synthetic) projective geometry, see also [8] where
similar conditions are established by means of analytic geometry.

This paper is organized as follows: section 2 contains a short biography of Margherita Piaz-
zolla Beloch. In section 3 we examine her writings around solutions via mechanical instru-
ments and higher degree curves of classical geometric problems. Section 4 encompasses a
brief history of the application of paper folding to geometric problems. In section 5 we in-
troduce Piazzolla Beloch’s fold as well as the other six basic folds of paper folding; section
6 contains our deduction of the sufficient condition for executing Piazzolla Beloch’s fold,
based on synthetic projective geometry and Bezout’s theorem. In the last section we exhibit
three different approaches (graphical, geometrical and algebraic) to show that Piazzolla Be-
loch’s fold can be used to construct a solution to any given cubic equations. The graphical
approach, via Lill’s method, was the one used originally by Piazzolla Beloch, and has been
revisited several times since then. The other two, although quite straightforward, have not
received the same kind of attention.

"Most authors who are native English speakers mistakenly think that Piazzolla is her middle name.
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2 A few biographical notes about Margherita Piazzolla Beloch

The original source of information about Margherita Piazzolla Beloch life is the introduc-
tion of the guide [5] describing the "Collection Montesano", a private collection of offprints
owned by Domenico Montesano which was acquired by Piazzolla Beloch on behalf of the
library of the Mathematics department of Ferrara University.

Margherita Piazzolla Beloch was born in Frascati, near Rome, in 1879. She graduated in
mathematics from Sapienza Universita di Roma, with "dignita di stampa"?, in 1908, under
the supervision of Guido Castelnuovo. Her thesis, entitled "On birational transformations of
space", was indeed published in the Annali di Matematica Pura ed Applicata, [17], one of
the oldest math journal in Italy. Her first official academical appointment was as an assistant
to the chair of "Descriptive Geometry" at the University of Pavia, and then in Palermo.
In 1927 she became full professor of geometry at the University of Ferrara. In Ferrara she
gave courses on many topics, such as descriptive geometry, higher geometry, complementary
mathematics, superior mathematics.

In 1955 she retired but continued to be very active publishing widely for several years. In
the mid *60 she personally prepared for publication a selection of her works [22], which
was finally published in 1967. It consists of over 50 research papers which were divided
in the following three topics: algebraic geometry, projective topology, and photogrammetry.
The latter field was particularly dear to her. As stated in the preface of [22] it was the
Italian Society of Photogrammetry and Topography that in 1961 proposed the publication
of her selected works, to show their gratitude and affection to the scientist. As she herself
acknowledges this was her "preferred field of study".

3 Classical problems: geometric construction and mechanical devices

Of the many geometrical problems studied by the ancient Greek only three gained enduring
fame: doubling a cube, trisecting an angle, and squaring the circle. They owe their celebrity
chiefly to the fact that they withstood every attempt to be solved by ruler and compass for
centuries, until, in the nineteenth century, it was proven that was impossible to solve them
with only ruler and compass, see [11] for a detailed account.

Piazzolla Beloch’s interest in these matters was more on the positive side so to say: she was
interested on which mechanical devices one needed to solve a particular problem or alterna-
tively which curve of higher degree was needed to obtain the desired construction. We now
briefly review the content, relevant to our investigation, of the two chapters of [21] dedicated
to geometric construction and mechanical devices. After giving a detailed construction of
the cissoid of Diocles, the conchoid of Nicomedes, and the Quadratrix of Hippias, she used
them to solve the above mentioned classical problems. Specifically: doubling a cube can
be solved by using either the cissoid or the conchoid, trisecting an angle is solved by the
conchoid, and squaring the circle require the use of the Quadratrix.

She also remarks that any third degree problem can be reduced, by the use of ruler and
compass, to either doubling a cube or trisecting an angle. Since both these problems are
solvable by the conchoid, she concludes that every third degree problem is solvable by the
combined use of ruler, compass and the conchoid.

2worthy of publication
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Having settled these matters she takes a slightly different point of view. Suppose we fix the
set of tools we are allowed to use (where tools mean both mechanical devices and curves).
We then call the frame of problems of the given set of tools all the geometric problems that set
solves. So for example the frame of problems of ruler, compass and conchoid of Nicomedes
contains all the problem of degree less or equal to three. If two sets of tools have the same
frame of problems they are called equivalent. For example ruler and compass is equivalent
to the ruler and a fixed circle completely drawn. She then determines the frame of problems
for several mechanical (hinged) devices, with special regard to those constructed by Alfred
B. Kempe in [10].

The next set of tools she examines is paper folding. Firstly she remarks that several geometric
constructions are more readily done with paper folding than ruler and compass e.g. drawing
a line through a point perpendicular to a given line takes only one fold while one has to use
the compass three time and the ruler once. She then continues showing how to bisect an
angle, find the intersection of a given circle and a given line and lastly find the intersection
of two given circles by paper folding. As a consequence paper folding can solve all the
problems that ruler and compass can. She then shows that paper folding can actually solve
all third degree problems. We examine this latter topic in greater details in sections 5, 6, and
7.

4 A few remarks on the history of geometric constructions via paper folding

As remarked by Piazzolla Beloch in [20], the first author to draw attention to the use of paper
folding in the solution of classical geometric problems was Felix Klein in [11]

Fig. 2. Klein’s reference to Wiener’s work and Sundara Row’s book

In his brief remark Klein mentions the two forefathers of the application of paper folding
to geometric problems: Herman Wiener and Sundara Row. While Wiener’s contribution to
paper folding has been largely forgotten, Sundara Row’s book has become a classic and has
enjoyed a flurry of re-printings (Fig.3)
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The version of Geometric exercises in paper folding by Sundara Row that can be found
nowadays is the one edited by W.W. Beman and D.E. Smith. They also became interested
in the work of Sundara Row thanks to Klein. In fact the first sentence of the preface of
their edition of the book reads "Our attention was first attracted to Sundara Row’s book
by a reference in Klein’s Vortrdge iiber ausgewdhlte Fragen der Elementargeometrie", a
text which they translated from German into English. Beman and Smith in their edition of
Sundara Row’s book added several pictures of actual folded paper, see Fig. 4 as an example ,
in order to replace some of the illustrations present in the original version, which were mere
line drawings.
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Fig. 3. A selection of covers of reprints of Sundara Row’s book

Fig. 11,

Fig. 18.

Fig. 4. Two pictures taken from the book by Sundara Row

It is only in the recent article by Michael Friedman [3] that Herman Wiener work on paper
folding is examined. As both the book of Sundara Row and the article by Wiener on paper
folding appeared in 1893, Friedman asserts that 1893 may be thought of as the first year that
saw a modern mathematical treatment of the problem of determining what kind of object
can be produced by folding paper. Wiener exhibited some paper objects during an exhibition
on mathematical tools and models in 1892 in Munich and wrote a short note [31] for the
catalogue of the exhibition, which is admittedly hard to follow being without the illustrations
which were present at the exhibition. On the other hand, as Friedman points out, there
are some interesting observation in the paper but a general lack of mathematical rigor: for

975



example he gives the instructions to construct a regular pentagon by folding and knotting a
strip of paper (Fig. 5), but does not supply a proof of the regularity (a proof can be found in
[15]).

Fig. 5. The construction of a regular pentagon by Wiener

It must be noted that also Piazzolla Beloch contributions went unnoticed for several year as
mathematicians generally lost interest in the subject. It was only in the late *80 that, thanks
to the efforts of Huzita Humizaki with the aid of Benedetto Scimemi, there was a revival of
interest in paper folding. The first International meeting on Origami Science and Technology,
organized by Humizaki, was held in Ferrara in December 1988 [1]. It is rather peculiar that
even though the first pages of the proceeding of this meeting host a reproduction of Piazzolla
Beloch’s article on paper folding many of the subsequent authors were not aware of her
contributions. The Origami meeting have now become a regular event, the last of which
was held at Tokyo university in 2014 and its proceedings are published by the American
Mathematical Society [16].

S Margherita Piazzolla Beloch innovative folding

Margherita Piazzolla Beloch seems to have been the first one to discover that problems of the
third degree can be solved by means of paper folding. At that time the applications of paper
folding to geometry were still in their infancy and a list of basic folds was not available. We
now have such a complete list of basic foldings (see 6), sometimes improperly called axioms.
It has to be noted that some foldings were discovered several times over, see the introduction
of [9] and [13], for more details.

There is still one basic fold: Piazzolla Beloch’s fold. This fold appeared first in print in the
short note [18], an extract from the lecture notes for her course Matematiche complementari
containing the new result about paper folding. Let us recall its definition: Given two point
Py and P, and two lines r1 and r5 then, when it exists, we can fold the line reflecting P, onto
r1 and P onto ry. (cf. Fig. 1). To see that, when possible, one can actually perform this
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(O1) we can fold the line (O2) we can fold the median of the  (O3) we can fold the bisector
through two points. segment joining two points. of an angle.

P o\x

(04) we can fold the line per- (O5) Given two point P and Q and  (O7) Given a point P and two lines
pendicular to a given line pass- a line 7, we can fold the line passing 7 and m we can fold the line perpen-
ing through a given point. through @ and reflecting P onto .  dicular to r reflecting P ont m

Fig. 6. Six of the seven basic paper foldings

fold we quote B. Scimemi (see [28]) “taking advantage of translucency, first superimpose P;
on r1, then let P; run along r; and meanwhile pay attention to the motion of the point P,
waiting until it comes to lie on the line r5”.

The folds O1-O5 were already extensively used by Sundara Row in [23]. Fold O7 became
widely known only after Koshiro Hatori announced its discovery in 2002, but Justin (see
[12]) already listed it as one of his seven basic fold, 13 years earlier.

Piazzolla Beloch introduced O6 to solve the following problem:Given two points P, and P,
and two lines ry and ry construct a square with vertices X, Y, W, and Z so that X and Y
lie on 1 and ry and Py (respectively P,) lies on the line joining X and Z (respectively Y
and W) (Fig. 7):

Costruire un quadrato di cui
due lati opposti passino
rispettivamente per due punti
dati, e i due rimanenti

vertici situati sui rimanenti
lati stiano rispettivamente

su due rette date

Given two points, P; and P,
and two lines, r; and rg,
construct a square with

two opposite edges passing
through the two given points,
and the remaining vertices
lying on the two given lines

Fig. 7. Piazzolla Beloch’s square
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This square construction is the key to construct solutions of third degree problems by paper
folding. To show why fold O6 enables us to construct the square in Fig. 7, we have to give
a geometrical interpretation of fold O5 and O6. As was already known to Sundara Row the
folding line in OS5 is the tangent line, in (), to the parabola, Py, having r has directrix and
P has focus. In fact as Piazzolla Beloch remarks in [18] one can reconstruct a parabola by
folding its tangents in the following way *: use the bottom edge of a sheet of paper as the
directrix of the parabola, and mark the focus at a given distance from it. Then fold the paper
on itself, without moving the focus making sure that the bottom edge of the sheet passes
through the focus.

Fig. 8. Folding the tangents of a parabola

The folding line produced by fold O6 is then a common tangent to P and P. To show
way fold O6 enable us to construct the square of Fig. 7, we argue along the lines of [18]:
consider the parabola P; (respectively P;) having focus in P, (resp. %) and whose tangent
line in the vertex is ry (resp. r3). Then we perform fold O6 and the folding line, call it f, is
tangent to both P; and P;. Let X (respectively Y) be the intersection of f and r; (resp. r2),
see Fig. 9

The line passing through X (resp. ) and perpendicular to f passes through the focus of P,
(resp. P) which is P, (resp. P%»). Therefore the square having the segment XY as an edge
is the desired square.

6 Piazzolla Beloch’s fold and projective duality

As we already remarked is not always possible to perform fold O6 and most probably Pi-
azzolla Beloch was well aware of this. Moreover, as we shall see in the last section, all the
instance of fold O6 that she needed to perform in her investigation were clearly possible.
Even though several authors seem unaware that fold O6 can not be performed in all cases,
already in [8] there is a discussion, in terms of analytic geometry of when it is possible, see
also [2] for an approach closer to the one presented here. We would like now to give a simple
criterion for when two parabolae do have a common tangent in terms of projective geometry
and projective duality in the plane. Projective duality was well known to Margherita Piaz-
zolla Beloch, who extensively worked on projective algebraic curves. We briefly recall the
basic facts about projective duality, referring the interested reader to [24].

So let A%(R) denote the (affine, real) plane and Po(R) = A?(R) U (> the projective real
plane obtained from A%(R) adjoining ¢>° the “line at infinity” whose points represent the

3"Prendendo cioé I’orlo (rettilineo) di un foglio di carta come direttrice della parabola, e segnando il fuoco
alla data distanza da questa, basta tener fermo il fuoco e ripiegare la carta su se stessa in modo che l’orlo
ripiegato venga a passare per il fuoco." [18, p.187]
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Fig. 9. The underlying parabolae in Piazzolla Beloch’s square

directions of lines in A?(IR). Formally points in Py(R) are represented by three homogeneous
coordinates P[X : Y : Z] and A?(R) correspond to the open subset given by Z # 0. It is
straightforward to check that all parabolae in the affine plane are actually tangent to the line
at infinity, the tangency point being the direction of the symmetry axis of the parabola.

Now we come to projective duality in the plane. The dual projective plane P;(R) is the set of
all lines in Py (IR), and points in Py (R) correspond to lines in P3(IR). Given a conic C€Py(RR)
its dual conic C* is the set of all tangent lines to C. It is readily seen that C* is a conic as well.
Therefore the common tangents to two parabolae C; and C, are the point of intersections of
the dual conics C; and C;.

By Bézout’s theorem [4, section 5.3], there are exactly 4 points of intersection if counted
with the appropriate multiplicity. In this simple case the multiplicity is one unless C; and C;
have the same tangent line at the point of intersection, in which case the multiplicity is 2.
This means that there is a line which not only is tangent to both C; and Cs, but also that the
point of tangency is the same.

Now let us go back to the problem of finding the common tangent to two given parabolae
C; and C,. As we already remarked the line at infinity is tangent to both C; and Cs, thus
C; and C; always intersect in the point () of IP5(R) corresponding to the line at infinity of
Py (R). It follows that the remaining points of intersection can be found by solving the cubic
equation obtained by eliminating the appropriate variable, unless the multiplicity of () is
two, which happens if and only if C; and C;, have parallel symmetry axes. If C; and C, have
parallel symmetry axes we are left with a quadratic equation which may or may not have real
solutions, and both cases do happen. If C; and C, do not have parallel symmetry axis then
the common tangents in AQ(R), different from the line at infinity, are either 3 or 1 and both
cases do happen (10).
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(a) Three common tangents (b) Two common tangents (c) One common tangent (d) No common tangent

Fig. 10. Common tangents to two parabolae

7 Folding solutions of cubic equations

In this section we will show in three different ways, graphic, geometric, and algebraic, how
Margherita Piazzolla Beloch’s folding enables us to construct solution of cubic equations by
paper folding. As is clear from her writings she was aware of all of them but only wrote
down the details for the graphical one. The graphical method is based on Lill’s method (see
[14], [11]) to find real roots of polynomials (with real coefficients) of every degree.

Lill’s method was used by Margherita Piazzolla Beloch in her original solution of cubic
equations by paper foldings in [20]. Since then, a few authors dwell on the subject, notably
Benedetto Scimemi [27] and Thomas C. Hull [9]. Therefore we will be rather brief on Lill’s
method and concentrate on the application of Piazzolla Beloch’s fold. Being a graphical
method we will relay heavily on illustrations.

Lill’s method, which we describe here only for cubic polynomials, goes as follows (we use
the convention of [27]): given a cubic polynomial P(X) = azz® + axz® + ajx + ag we
construct a 4 edge polygonal chain O A3A; A1 Ay, with only right angles, where the starting
point is the origin O, the length of the segment ending in A; is |a;| and in A; the turn is made
clockwise if a;a;—1 > 0 and counterclockwise if a;a;—1 < 0. As usual a picture is worth a
thousand words so we refer the reader to Fig. 11. To find a root Lill proceeds as follows:
draw a line from the origin, forming an angle of 6 radiants with the z-axis and whenever it
hits a edge of the Lill’s polygon, or its continuation, it bounces off on the line orthogonal to
r, choosing the direction that ensures that it will hit the next edge of the Lill’s polygon (or its
continuation). Since we are in degree 3, the Lill’s polygon has at most 4 edges and we have
to perform only two reflections. If after the second reflection we end up with a line which
passes through the point P, then tan(#) is a root of the cubic polynomial associated to the
polygon. Also in this case it is much more illuminating to look at a picture so we refer the
reader to Fig. 11.

Piazzola Beloch’s square construction shows that we can always find, by paper folding, such
an angle §. To see this suppose first that all the coefficients of P(x) are not zero. Then
we can apply Piazzola Beloch square construction to the points O and A and the lines 4
joining Az and A, and r5 joining A, and A;. Since r; and ry are perpendicular, hence not
parallel, we are sure that we can perform Piazzolla Beloch’s fold and construct a square with
O on one edge or on its continuation, A, on the parallel edge and two vertices on r; and r5.
Therefore the line passing trough the origin on which the edge of the square lies is the line
required to find the root of the cubic polynomial by Lill’s method.
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Fig. 11. Finding roots of cubic polynomials via Lill’s polygons
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It is possible to apply Piazzolla Beloch’s construction also if some of the coefficients van-
ishes, one has just to be careful in the choice of the lines 7; and r,. Namely one line will
be the one connecting the two vertices of the polygon and the other one has to be choose
perpendicular to the previous one passing to the vertex corresponding to the coefficient pre-
ceding the missing one. One argues similarly if there are two missing coefficients. Note that
we only need to deal with polynomials of the following form z3 + as2? + ag, 2% + a2 + ag
and 2° + ag. As before, everything is clearer if one looks at a picture and so we refer the
reader to Fig. 13.

It has to be noticed that in order to construct the cubic root of a given number, one does not
need Lill’s method but it is enough to use Piazzolla Beloch’s square construction directly as
shown in [18].

Next we turn to geometry. Let P(z) = ag + a;x + asz® + x3 be a generic monic cubic
polynomial. It suffices to show that we can find its real roots via paper folding. To do so
we have to exhibit two parabolae whose common tangents have slopes that are precisely the
real roots of P(z). Piazzolla Beloch’s square construction suggests that should be enough
to search among parabolae that have symmetry axis either horizontal or vertical. So we
consider the following two families of parabolae

P.iy=a’+c Pa,b:x:aﬁ—l—b.
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Fig. 13. Piazzolla Beloch’s square construction for polynomials with
missing terms

A straightforward computation shows that the slopes of the lines that are common tangents
to P, and P, are the roots of 13 — 4bt? — 4e + % The self-evident choice of a, b, ¢ shows
that we can recover the polynomial P(x).

We come at last to the algebraic approach. Our construction is based on Cardano’s formula
for solving the cubic equations. First of all a general cubic polynomial P(z) = ag + a1 +
asx? + 2 can be reduced, by a linear change of variable, to a polynomial of the form 23 +
px + q. Next Cardano’s formula gives us a real root for this type of polynomials. Namely:

3 2 3 3 2 3

_ /1 K B

x_\/2+\/4+27+\/2 Vi Tor
Since it is possible by paper folding to construct, without the aid of Lill’s polygon, both

the square root and the cubic root of a given quantity, it follows, again, that by using paper
folding we can construct the root of cubic polynomial.
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